verifier.c 169.6 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
23 24
#include <linux/bsearch.h>
#include <linux/sort.h>
Y
Yonghong Song 已提交
25
#include <linux/perf_event.h>
A
Alexei Starovoitov 已提交
26

27 28
#include "disasm.h"

29 30 31 32 33 34 35 36 37
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
38 39 40 41 42 43 44 45 46 47 48 49
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
50
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
78
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
79
 * means the register has some value, but it's not a valid pointer.
80
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
81 82
 *
 * When verifier sees load or store instructions the type of base register
83
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

145
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
146
struct bpf_verifier_stack_elem {
147 148 149 150
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
151
	struct bpf_verifier_state st;
152 153
	int insn_idx;
	int prev_insn_idx;
154
	struct bpf_verifier_stack_elem *next;
155 156
};

157
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 159
#define BPF_COMPLEXITY_LIMIT_STACK	1024

160 161
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

162 163
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
164
	bool raw_mode;
165
	bool pkt_access;
166 167
	int regno;
	int access_size;
168 169
	s64 msize_smax_value;
	u64 msize_umax_value;
170 171
};

172 173
static DEFINE_MUTEX(bpf_verifier_lock);

174 175
void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
		       va_list args)
176
{
177
	unsigned int n;
178

179 180 181 182 183 184 185 186 187 188 189 190
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
191
}
192 193 194 195

/* log_level controls verbosity level of eBPF verifier.
 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 * so the user can figure out what's wrong with the program
196
 */
197 198 199 200 201
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...)
{
	va_list args;

202 203 204
	if (!bpf_verifier_log_needed(&env->log))
		return;

205
	va_start(args, fmt);
206
	bpf_verifier_vlog(&env->log, fmt, args);
207 208 209 210 211 212
	va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);

__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
{
213
	struct bpf_verifier_env *env = private_data;
214 215
	va_list args;

216 217 218
	if (!bpf_verifier_log_needed(&env->log))
		return;

219
	va_start(args, fmt);
220
	bpf_verifier_vlog(&env->log, fmt, args);
221 222
	va_end(args);
}
223

224 225 226 227 228 229
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

230 231 232
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
233
	[SCALAR_VALUE]		= "inv",
234 235 236 237 238
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
239
	[PTR_TO_PACKET]		= "pkt",
240
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
241
	[PTR_TO_PACKET_END]	= "pkt_end",
242 243
};

244 245 246 247 248 249 250 251 252 253 254
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

255 256 257 258 259 260 261 262
static struct bpf_func_state *func(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg)
{
	struct bpf_verifier_state *cur = env->cur_state;

	return cur->frame[reg->frameno];
}

263
static void print_verifier_state(struct bpf_verifier_env *env,
264
				 const struct bpf_func_state *state)
265
{
266
	const struct bpf_reg_state *reg;
267 268 269
	enum bpf_reg_type t;
	int i;

270 271
	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
272
	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
273 274
		reg = &state->regs[i];
		t = reg->type;
275 276
		if (t == NOT_INIT)
			continue;
277 278 279
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
280 281 282
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
283
			verbose(env, "%lld", reg->var_off.value + reg->off);
284 285
			if (t == PTR_TO_STACK)
				verbose(env, ",call_%d", func(env, reg)->callsite);
286
		} else {
287
			verbose(env, "(id=%d", reg->id);
288
			if (t != SCALAR_VALUE)
289
				verbose(env, ",off=%d", reg->off);
290
			if (type_is_pkt_pointer(t))
291
				verbose(env, ",r=%d", reg->range);
292 293 294
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
295
				verbose(env, ",ks=%d,vs=%d",
296 297
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
298 299 300 301 302
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
303
				verbose(env, ",imm=%llx", reg->var_off.value);
304 305 306
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
307
					verbose(env, ",smin_value=%lld",
308 309 310
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
311
					verbose(env, ",smax_value=%lld",
312 313
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
314
					verbose(env, ",umin_value=%llu",
315 316
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
317
					verbose(env, ",umax_value=%llu",
318 319 320
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
321

322
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
323
					verbose(env, ",var_off=%s", tn_buf);
324
				}
325
			}
326
			verbose(env, ")");
327
		}
328
	}
329
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
330 331 332 333 334
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
335
				reg_type_str[state->stack[i].spilled_ptr.type]);
336
		}
337 338
		if (state->stack[i].slot_type[0] == STACK_ZERO)
			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
339
	}
340
	verbose(env, "\n");
341 342
}

343 344
static int copy_stack_state(struct bpf_func_state *dst,
			    const struct bpf_func_state *src)
345
{
346 347 348 349 350 351 352 353 354 355 356 357 358 359
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
360
 * the program calls into realloc_func_state() to grow the stack size.
361 362 363 364
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
365 366
static int realloc_func_state(struct bpf_func_state *state, int size,
			      bool copy_old)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

399 400
static void free_func_state(struct bpf_func_state *state)
{
401 402
	if (!state)
		return;
403 404 405 406
	kfree(state->stack);
	kfree(state);
}

407 408
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
409
{
410 411 412 413 414 415
	int i;

	for (i = 0; i <= state->curframe; i++) {
		free_func_state(state->frame[i]);
		state->frame[i] = NULL;
	}
416 417
	if (free_self)
		kfree(state);
418 419 420 421 422
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
423 424
static int copy_func_state(struct bpf_func_state *dst,
			   const struct bpf_func_state *src)
425 426 427
{
	int err;

428
	err = realloc_func_state(dst, src->allocated_stack, false);
429 430
	if (err)
		return err;
431
	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
432 433 434
	return copy_stack_state(dst, src);
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static int copy_verifier_state(struct bpf_verifier_state *dst_state,
			       const struct bpf_verifier_state *src)
{
	struct bpf_func_state *dst;
	int i, err;

	/* if dst has more stack frames then src frame, free them */
	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
		free_func_state(dst_state->frame[i]);
		dst_state->frame[i] = NULL;
	}
	dst_state->curframe = src->curframe;
	dst_state->parent = src->parent;
	for (i = 0; i <= src->curframe; i++) {
		dst = dst_state->frame[i];
		if (!dst) {
			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
			if (!dst)
				return -ENOMEM;
			dst_state->frame[i] = dst;
		}
		err = copy_func_state(dst, src->frame[i]);
		if (err)
			return err;
	}
	return 0;
}

463 464 465 466 467 468
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
469 470

	if (env->head == NULL)
471
		return -ENOENT;
472

473 474 475 476 477 478 479
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
480
	if (prev_insn_idx)
481 482
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
483
	free_verifier_state(&head->st, false);
484
	kfree(head);
485 486
	env->head = elem;
	env->stack_size--;
487
	return 0;
488 489
}

490 491
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
492
{
493
	struct bpf_verifier_state *cur = env->cur_state;
494
	struct bpf_verifier_stack_elem *elem;
495
	int err;
496

497
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
498 499 500 501 502 503 504 505
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
506 507 508
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
509
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
510
		verbose(env, "BPF program is too complex\n");
511 512 513 514
		goto err;
	}
	return &elem->st;
err:
515 516
	free_verifier_state(env->cur_state, true);
	env->cur_state = NULL;
517
	/* pop all elements and return */
518
	while (!pop_stack(env, NULL, NULL));
519 520 521 522 523 524 525 526
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

527 528
static void __mark_reg_not_init(struct bpf_reg_state *reg);

529 530 531 532 533 534 535 536 537 538 539 540 541
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

542 543 544 545
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
546
{
547
	__mark_reg_known(reg, 0);
548
}
549

550 551 552 553 554 555 556
static void __mark_reg_const_zero(struct bpf_reg_state *reg)
{
	__mark_reg_known(reg, 0);
	reg->off = 0;
	reg->type = SCALAR_VALUE;
}

557 558
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
559 560
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
561
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
562 563 564 565 566 567 568 569
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

661 662 663 664 665 666 667
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
668
	reg->frameno = 0;
669
	__mark_reg_unbounded(reg);
670 671
}

672 673
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
674 675
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
676
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
677 678
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
679 680 681 682 683 684 685 686 687 688 689 690
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

691 692
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
693 694
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
695
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
696 697
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
698 699 700 701
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
702 703
}

704
static void init_reg_state(struct bpf_verifier_env *env,
705
			   struct bpf_func_state *state)
706
{
707
	struct bpf_reg_state *regs = state->regs;
708 709
	int i;

710
	for (i = 0; i < MAX_BPF_REG; i++) {
711
		mark_reg_not_init(env, regs, i);
712 713
		regs[i].live = REG_LIVE_NONE;
	}
714 715

	/* frame pointer */
716
	regs[BPF_REG_FP].type = PTR_TO_STACK;
717
	mark_reg_known_zero(env, regs, BPF_REG_FP);
718
	regs[BPF_REG_FP].frameno = state->frameno;
719 720 721

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
722
	mark_reg_known_zero(env, regs, BPF_REG_1);
723 724
}

725 726 727 728 729 730 731 732 733 734 735
#define BPF_MAIN_FUNC (-1)
static void init_func_state(struct bpf_verifier_env *env,
			    struct bpf_func_state *state,
			    int callsite, int frameno, int subprogno)
{
	state->callsite = callsite;
	state->frameno = frameno;
	state->subprogno = subprogno;
	init_reg_state(env, state);
}

736 737 738 739 740 741
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

742 743
static int cmp_subprogs(const void *a, const void *b)
{
744 745
	return ((struct bpf_subprog_info *)a)->start -
	       ((struct bpf_subprog_info *)b)->start;
746 747 748 749
}

static int find_subprog(struct bpf_verifier_env *env, int off)
{
750
	struct bpf_subprog_info *p;
751

752 753
	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
		    sizeof(env->subprog_info[0]), cmp_subprogs);
754 755
	if (!p)
		return -ENOENT;
756
	return p - env->subprog_info;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

}

static int add_subprog(struct bpf_verifier_env *env, int off)
{
	int insn_cnt = env->prog->len;
	int ret;

	if (off >= insn_cnt || off < 0) {
		verbose(env, "call to invalid destination\n");
		return -EINVAL;
	}
	ret = find_subprog(env, off);
	if (ret >= 0)
		return 0;
J
Jiong Wang 已提交
772
	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
773 774 775
		verbose(env, "too many subprograms\n");
		return -E2BIG;
	}
776 777 778
	env->subprog_info[env->subprog_cnt++].start = off;
	sort(env->subprog_info, env->subprog_cnt,
	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
779 780 781 782 783 784
	return 0;
}

static int check_subprogs(struct bpf_verifier_env *env)
{
	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
785
	struct bpf_subprog_info *subprog = env->subprog_info;
786 787 788
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;

J
Jiong Wang 已提交
789 790 791 792 793
	/* Add entry function. */
	ret = add_subprog(env, 0);
	if (ret < 0)
		return ret;

794 795 796 797 798 799 800 801 802 803 804
	/* determine subprog starts. The end is one before the next starts */
	for (i = 0; i < insn_cnt; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		if (!env->allow_ptr_leaks) {
			verbose(env, "function calls to other bpf functions are allowed for root only\n");
			return -EPERM;
		}
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
805
			verbose(env, "function calls in offloaded programs are not supported yet\n");
806 807 808 809 810 811 812
			return -EINVAL;
		}
		ret = add_subprog(env, i + insn[i].imm + 1);
		if (ret < 0)
			return ret;
	}

J
Jiong Wang 已提交
813 814 815 816 817
	/* Add a fake 'exit' subprog which could simplify subprog iteration
	 * logic. 'subprog_cnt' should not be increased.
	 */
	subprog[env->subprog_cnt].start = insn_cnt;

818 819
	if (env->log.level > 1)
		for (i = 0; i < env->subprog_cnt; i++)
820
			verbose(env, "func#%d @%d\n", i, subprog[i].start);
821 822

	/* now check that all jumps are within the same subprog */
J
Jiong Wang 已提交
823 824
	subprog_start = subprog[cur_subprog].start;
	subprog_end = subprog[cur_subprog + 1].start;
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	for (i = 0; i < insn_cnt; i++) {
		u8 code = insn[i].code;

		if (BPF_CLASS(code) != BPF_JMP)
			goto next;
		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
			goto next;
		off = i + insn[i].off + 1;
		if (off < subprog_start || off >= subprog_end) {
			verbose(env, "jump out of range from insn %d to %d\n", i, off);
			return -EINVAL;
		}
next:
		if (i == subprog_end - 1) {
			/* to avoid fall-through from one subprog into another
			 * the last insn of the subprog should be either exit
			 * or unconditional jump back
			 */
			if (code != (BPF_JMP | BPF_EXIT) &&
			    code != (BPF_JMP | BPF_JA)) {
				verbose(env, "last insn is not an exit or jmp\n");
				return -EINVAL;
			}
			subprog_start = subprog_end;
J
Jiong Wang 已提交
849 850
			cur_subprog++;
			if (cur_subprog < env->subprog_cnt)
851
				subprog_end = subprog[cur_subprog + 1].start;
852 853 854 855 856
		}
	}
	return 0;
}

857
static
858 859 860 861
struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
				       const struct bpf_verifier_state *state,
				       struct bpf_verifier_state *parent,
				       u32 regno)
862
{
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	struct bpf_verifier_state *tmp = NULL;

	/* 'parent' could be a state of caller and
	 * 'state' could be a state of callee. In such case
	 * parent->curframe < state->curframe
	 * and it's ok for r1 - r5 registers
	 *
	 * 'parent' could be a callee's state after it bpf_exit-ed.
	 * In such case parent->curframe > state->curframe
	 * and it's ok for r0 only
	 */
	if (parent->curframe == state->curframe ||
	    (parent->curframe < state->curframe &&
	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
	    (parent->curframe > state->curframe &&
	       regno == BPF_REG_0))
		return parent;

	if (parent->curframe > state->curframe &&
	    regno >= BPF_REG_6) {
		/* for callee saved regs we have to skip the whole chain
		 * of states that belong to callee and mark as LIVE_READ
		 * the registers before the call
		 */
		tmp = parent;
		while (tmp && tmp->curframe != state->curframe) {
			tmp = tmp->parent;
		}
		if (!tmp)
			goto bug;
		parent = tmp;
	} else {
		goto bug;
	}
	return parent;
bug:
	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
	verbose(env, "regno %d parent frame %d current frame %d\n",
		regno, parent->curframe, state->curframe);
902
	return NULL;
903 904 905 906 907 908 909 910
}

static int mark_reg_read(struct bpf_verifier_env *env,
			 const struct bpf_verifier_state *state,
			 struct bpf_verifier_state *parent,
			 u32 regno)
{
	bool writes = parent == state->parent; /* Observe write marks */
911

A
Alexei Starovoitov 已提交
912 913
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
914
		return 0;
A
Alexei Starovoitov 已提交
915

916 917
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
918
		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
919
			break;
920 921 922
		parent = skip_callee(env, state, parent, regno);
		if (!parent)
			return -EFAULT;
923
		/* ... then we depend on parent's value */
924
		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
925 926
		state = parent;
		parent = state->parent;
927
		writes = true;
928
	}
929
	return 0;
930 931 932
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
933 934
			 enum reg_arg_type t)
{
935 936 937
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs;
938

939
	if (regno >= MAX_BPF_REG) {
940
		verbose(env, "R%d is invalid\n", regno);
941 942 943 944 945 946
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
947
			verbose(env, "R%d !read_ok\n", regno);
948 949
			return -EACCES;
		}
950
		return mark_reg_read(env, vstate, vstate->parent, regno);
951 952 953
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
954
			verbose(env, "frame pointer is read only\n");
955 956
			return -EACCES;
		}
957
		regs[regno].live |= REG_LIVE_WRITTEN;
958
		if (t == DST_OP)
959
			mark_reg_unknown(env, regs, regno);
960 961 962 963
	}
	return 0;
}

964 965 966 967 968 969 970
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
971
	case PTR_TO_PACKET:
972
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
973
	case PTR_TO_PACKET_END:
974 975 976 977 978 979 980
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

981 982 983 984 985 986
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state *reg)
{
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
}

987 988 989
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
990
static int check_stack_write(struct bpf_verifier_env *env,
991 992
			     struct bpf_func_state *state, /* func where register points to */
			     int off, int size, int value_regno)
993
{
994
	struct bpf_func_state *cur; /* state of the current function */
995
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
996
	enum bpf_reg_type type;
997

998 999
	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
				 true);
1000 1001
	if (err)
		return err;
1002 1003 1004
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
1005 1006 1007 1008 1009 1010
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
1011

1012
	cur = env->cur_state->frame[env->cur_state->curframe];
1013
	if (value_regno >= 0 &&
1014
	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1015 1016

		/* register containing pointer is being spilled into stack */
1017
		if (size != BPF_REG_SIZE) {
1018
			verbose(env, "invalid size of register spill\n");
1019 1020 1021
			return -EACCES;
		}

1022 1023 1024 1025 1026
		if (state != cur && type == PTR_TO_STACK) {
			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
			return -EINVAL;
		}

1027
		/* save register state */
1028
		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1029
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1030

1031
		for (i = 0; i < BPF_REG_SIZE; i++)
1032
			state->stack[spi].slot_type[i] = STACK_SPILL;
1033
	} else {
1034 1035
		u8 type = STACK_MISC;

1036
		/* regular write of data into stack */
1037
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		/* only mark the slot as written if all 8 bytes were written
		 * otherwise read propagation may incorrectly stop too soon
		 * when stack slots are partially written.
		 * This heuristic means that read propagation will be
		 * conservative, since it will add reg_live_read marks
		 * to stack slots all the way to first state when programs
		 * writes+reads less than 8 bytes
		 */
		if (size == BPF_REG_SIZE)
			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;

		/* when we zero initialize stack slots mark them as such */
		if (value_regno >= 0 &&
		    register_is_null(&cur->regs[value_regno]))
			type = STACK_ZERO;

1055
		for (i = 0; i < size; i++)
1056
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1057
				type;
1058 1059 1060 1061
	}
	return 0;
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/* registers of every function are unique and mark_reg_read() propagates
 * the liveness in the following cases:
 * - from callee into caller for R1 - R5 that were used as arguments
 * - from caller into callee for R0 that used as result of the call
 * - from caller to the same caller skipping states of the callee for R6 - R9,
 *   since R6 - R9 are callee saved by implicit function prologue and
 *   caller's R6 != callee's R6, so when we propagate liveness up to
 *   parent states we need to skip callee states for R6 - R9.
 *
 * stack slot marking is different, since stacks of caller and callee are
 * accessible in both (since caller can pass a pointer to caller's stack to
 * callee which can pass it to another function), hence mark_stack_slot_read()
 * has to propagate the stack liveness to all parent states at given frame number.
 * Consider code:
 * f1() {
 *   ptr = fp - 8;
 *   *ptr = ctx;
 *   call f2 {
 *      .. = *ptr;
 *   }
 *   .. = *ptr;
 * }
 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
 * to mark liveness at the f1's frame and not f2's frame.
 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
 * to propagate liveness to f2 states at f1's frame level and further into
 * f1 states at f1's frame level until write into that stack slot
 */
static void mark_stack_slot_read(struct bpf_verifier_env *env,
				 const struct bpf_verifier_state *state,
				 struct bpf_verifier_state *parent,
				 int slot, int frameno)
1094
{
1095
	bool writes = parent == state->parent; /* Observe write marks */
1096 1097

	while (parent) {
1098 1099 1100 1101 1102 1103 1104 1105
		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
			/* since LIVE_WRITTEN mark is only done for full 8-byte
			 * write the read marks are conservative and parent
			 * state may not even have the stack allocated. In such case
			 * end the propagation, since the loop reached beginning
			 * of the function
			 */
			break;
1106
		/* if read wasn't screened by an earlier write ... */
1107
		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1108 1109
			break;
		/* ... then we depend on parent's value */
1110
		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1111 1112
		state = parent;
		parent = state->parent;
1113
		writes = true;
1114 1115 1116
	}
}

1117
static int check_stack_read(struct bpf_verifier_env *env,
1118 1119
			    struct bpf_func_state *reg_state /* func where register points to */,
			    int off, int size, int value_regno)
1120
{
1121 1122
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1123 1124
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
1125

1126
	if (reg_state->allocated_stack <= slot) {
1127 1128 1129 1130
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
1131
	stype = reg_state->stack[spi].slot_type;
1132

1133
	if (stype[0] == STACK_SPILL) {
1134
		if (size != BPF_REG_SIZE) {
1135
			verbose(env, "invalid size of register spill\n");
1136 1137
			return -EACCES;
		}
1138
		for (i = 1; i < BPF_REG_SIZE; i++) {
1139
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1140
				verbose(env, "corrupted spill memory\n");
1141 1142 1143 1144
				return -EACCES;
			}
		}

1145
		if (value_regno >= 0) {
1146
			/* restore register state from stack */
1147
			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1148 1149 1150 1151 1152
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1153
		}
1154 1155
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
1156 1157
		return 0;
	} else {
1158 1159
		int zeros = 0;

1160
		for (i = 0; i < size; i++) {
1161 1162 1163 1164 1165
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
				continue;
			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
				zeros++;
				continue;
1166
			}
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
			verbose(env, "invalid read from stack off %d+%d size %d\n",
				off, i, size);
			return -EACCES;
		}
		mark_stack_slot_read(env, vstate, vstate->parent, spi,
				     reg_state->frameno);
		if (value_regno >= 0) {
			if (zeros == size) {
				/* any size read into register is zero extended,
				 * so the whole register == const_zero
				 */
				__mark_reg_const_zero(&state->regs[value_regno]);
			} else {
				/* have read misc data from the stack */
				mark_reg_unknown(env, state->regs, value_regno);
			}
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1184 1185 1186 1187 1188 1189
		}
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
1190
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1191
			      int size, bool zero_size_allowed)
1192
{
1193 1194
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
1195

1196 1197
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
1198
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1199 1200 1201 1202 1203 1204
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

1205 1206
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1207
			    int off, int size, bool zero_size_allowed)
1208
{
1209 1210
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1211 1212 1213
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

1214 1215 1216
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
1217
	 */
1218 1219
	if (env->log.level)
		print_verifier_state(env, state);
1220 1221 1222 1223 1224 1225
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
1226
	if (reg->smin_value < 0) {
1227
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1228 1229 1230
			regno);
		return -EACCES;
	}
1231 1232
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
1233
	if (err) {
1234 1235
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
1236 1237 1238
		return err;
	}

1239 1240 1241
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1242
	 */
1243
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1244
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1245 1246 1247
			regno);
		return -EACCES;
	}
1248 1249
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
1250
	if (err)
1251 1252
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
1253
	return err;
1254 1255
}

A
Alexei Starovoitov 已提交
1256 1257
#define MAX_PACKET_OFF 0xffff

1258
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1259 1260
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
1261
{
1262
	switch (env->prog->type) {
1263 1264 1265 1266 1267
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
1268
		/* fallthrough */
1269 1270
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
1271
	case BPF_PROG_TYPE_XDP:
1272
	case BPF_PROG_TYPE_LWT_XMIT:
1273
	case BPF_PROG_TYPE_SK_SKB:
1274
	case BPF_PROG_TYPE_SK_MSG:
1275 1276 1277 1278
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
1279 1280 1281 1282 1283 1284
		return true;
	default:
		return false;
	}
}

1285
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1286
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
1287
{
1288
	struct bpf_reg_state *regs = cur_regs(env);
1289
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
1290

1291 1292
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
1293
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1294
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
1295 1296 1297 1298 1299
		return -EACCES;
	}
	return 0;
}

1300
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1301
			       int size, bool zero_size_allowed)
1302
{
1303
	struct bpf_reg_state *regs = cur_regs(env);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
1315
	if (reg->smin_value < 0) {
1316
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1317 1318 1319
			regno);
		return -EACCES;
	}
1320
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1321
	if (err) {
1322
		verbose(env, "R%d offset is outside of the packet\n", regno);
1323 1324 1325 1326 1327 1328
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1329
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1330
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1331
{
1332 1333 1334
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
1335

1336
	if (env->ops->is_valid_access &&
1337
	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1338 1339 1340 1341 1342 1343
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
1344
		 */
1345
		*reg_type = info.reg_type;
1346

1347
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1348 1349 1350
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
1351
		return 0;
1352
	}
1353

1354
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1355 1356 1357
	return -EACCES;
}

1358 1359
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
1360
{
1361
	if (allow_ptr_leaks)
1362 1363
		return false;

1364
	return reg->type != SCALAR_VALUE;
1365 1366
}

1367 1368
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
1369
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1370 1371
}

1372 1373 1374 1375 1376 1377 1378
static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return reg->type == PTR_TO_CTX;
}

1379 1380 1381 1382 1383 1384 1385
static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
{
	const struct bpf_reg_state *reg = cur_regs(env) + regno;

	return type_is_pkt_pointer(reg->type);
}

1386 1387
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1388
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1389
{
1390
	struct tnum reg_off;
1391
	int ip_align;
1392 1393 1394 1395 1396

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1397 1398 1399 1400 1401 1402 1403
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1404
	 */
1405
	ip_align = 2;
1406 1407 1408 1409 1410 1411

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1412 1413
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1414
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1415 1416
		return -EACCES;
	}
1417

A
Alexei Starovoitov 已提交
1418 1419 1420
	return 0;
}

1421 1422
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1423 1424
				       const char *pointer_desc,
				       int off, int size, bool strict)
1425
{
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1437
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1438
			pointer_desc, tn_buf, reg->off, off, size);
1439 1440 1441
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1442 1443 1444
	return 0;
}

1445
static int check_ptr_alignment(struct bpf_verifier_env *env,
1446 1447
			       const struct bpf_reg_state *reg, int off,
			       int size, bool strict_alignment_once)
1448
{
1449
	bool strict = env->strict_alignment || strict_alignment_once;
1450
	const char *pointer_desc = "";
1451

1452 1453
	switch (reg->type) {
	case PTR_TO_PACKET:
1454 1455 1456 1457
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1458
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1459 1460 1461 1462 1463 1464 1465 1466
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
1467 1468 1469 1470 1471
		/* The stack spill tracking logic in check_stack_write()
		 * and check_stack_read() relies on stack accesses being
		 * aligned.
		 */
		strict = true;
1472
		break;
1473
	default:
1474
		break;
1475
	}
1476 1477
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1478 1479
}

1480 1481 1482 1483
static int update_stack_depth(struct bpf_verifier_env *env,
			      const struct bpf_func_state *func,
			      int off)
{
1484
	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1485 1486 1487 1488 1489

	if (stack >= -off)
		return 0;

	/* update known max for given subprogram */
1490
	env->subprog_info[func->subprogno].stack_depth = -off;
1491 1492
	return 0;
}
1493

1494 1495 1496 1497 1498 1499 1500 1501
/* starting from main bpf function walk all instructions of the function
 * and recursively walk all callees that given function can call.
 * Ignore jump and exit insns.
 * Since recursion is prevented by check_cfg() this algorithm
 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
 */
static int check_max_stack_depth(struct bpf_verifier_env *env)
{
1502 1503
	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
	struct bpf_subprog_info *subprog = env->subprog_info;
1504 1505 1506
	struct bpf_insn *insn = env->prog->insnsi;
	int ret_insn[MAX_CALL_FRAMES];
	int ret_prog[MAX_CALL_FRAMES];
1507

1508 1509 1510 1511
process_func:
	/* round up to 32-bytes, since this is granularity
	 * of interpreter stack size
	 */
1512
	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1513
	if (depth > MAX_BPF_STACK) {
1514
		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1515
			frame + 1, depth);
1516 1517
		return -EACCES;
	}
1518
continue_func:
J
Jiong Wang 已提交
1519
	subprog_end = subprog[idx + 1].start;
1520 1521 1522 1523 1524 1525 1526
	for (; i < subprog_end; i++) {
		if (insn[i].code != (BPF_JMP | BPF_CALL))
			continue;
		if (insn[i].src_reg != BPF_PSEUDO_CALL)
			continue;
		/* remember insn and function to return to */
		ret_insn[frame] = i + 1;
1527
		ret_prog[frame] = idx;
1528 1529 1530

		/* find the callee */
		i = i + insn[i].imm + 1;
1531 1532
		idx = find_subprog(env, i);
		if (idx < 0) {
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i);
			return -EFAULT;
		}
		frame++;
		if (frame >= MAX_CALL_FRAMES) {
			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
			return -EFAULT;
		}
		goto process_func;
	}
	/* end of for() loop means the last insn of the 'subprog'
	 * was reached. Doesn't matter whether it was JA or EXIT
	 */
	if (frame == 0)
		return 0;
1549
	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1550 1551
	frame--;
	i = ret_insn[frame];
1552
	idx = ret_prog[frame];
1553
	goto continue_func;
1554 1555
}

1556
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static int get_callee_stack_depth(struct bpf_verifier_env *env,
				  const struct bpf_insn *insn, int idx)
{
	int start = idx + insn->imm + 1, subprog;

	subprog = find_subprog(env, start);
	if (subprog < 0) {
		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
			  start);
		return -EFAULT;
	}
1568
	return env->subprog_info[subprog].stack_depth;
1569
}
1570
#endif
1571

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
/* truncate register to smaller size (in bytes)
 * must be called with size < BPF_REG_SIZE
 */
static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
{
	u64 mask;

	/* clear high bits in bit representation */
	reg->var_off = tnum_cast(reg->var_off, size);

	/* fix arithmetic bounds */
	mask = ((u64)1 << (size * 8)) - 1;
	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
		reg->umin_value &= mask;
		reg->umax_value &= mask;
	} else {
		reg->umin_value = 0;
		reg->umax_value = mask;
	}
	reg->smin_value = reg->umin_value;
	reg->smax_value = reg->umax_value;
}

1595 1596 1597 1598 1599 1600
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1601 1602 1603
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
			    int off, int bpf_size, enum bpf_access_type t,
			    int value_regno, bool strict_alignment_once)
1604
{
1605 1606
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1607
	struct bpf_func_state *state;
1608 1609 1610 1611 1612 1613
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1614
	/* alignment checks will add in reg->off themselves */
1615
	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
A
Alexei Starovoitov 已提交
1616 1617
	if (err)
		return err;
1618

1619 1620 1621 1622
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1623 1624
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1625
			verbose(env, "R%d leaks addr into map\n", value_regno);
1626 1627
			return -EACCES;
		}
1628

1629
		err = check_map_access(env, regno, off, size, false);
1630
		if (!err && t == BPF_READ && value_regno >= 0)
1631
			mark_reg_unknown(env, regs, value_regno);
1632

A
Alexei Starovoitov 已提交
1633
	} else if (reg->type == PTR_TO_CTX) {
1634
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1635

1636 1637
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1638
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1639 1640
			return -EACCES;
		}
1641 1642 1643
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1644
		if (reg->off) {
1645 1646
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1647 1648 1649 1650
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1651 1652 1653
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1654 1655
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1656 1657 1658
				tn_buf, off, size);
			return -EACCES;
		}
1659
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1660
		if (!err && t == BPF_READ && value_regno >= 0) {
1661
			/* ctx access returns either a scalar, or a
1662 1663
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1664 1665
			 */
			if (reg_type == SCALAR_VALUE)
1666
				mark_reg_unknown(env, regs, value_regno);
1667
			else
1668
				mark_reg_known_zero(env, regs,
1669
						    value_regno);
1670 1671 1672 1673
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1674
		}
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1685
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1686 1687 1688 1689
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1690
		if (off >= 0 || off < -MAX_BPF_STACK) {
1691 1692
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1693 1694
			return -EACCES;
		}
1695

1696 1697 1698 1699
		state = func(env, reg);
		err = update_stack_depth(env, state, off);
		if (err)
			return err;
1700

1701
		if (t == BPF_WRITE)
1702 1703
			err = check_stack_write(env, state, off, size,
						value_regno);
1704
		else
1705 1706
			err = check_stack_read(env, state, off, size,
					       value_regno);
1707
	} else if (reg_is_pkt_pointer(reg)) {
1708
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1709
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1710 1711
			return -EACCES;
		}
1712 1713
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1714 1715
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1716 1717
			return -EACCES;
		}
1718
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1719
		if (!err && t == BPF_READ && value_regno >= 0)
1720
			mark_reg_unknown(env, regs, value_regno);
1721
	} else {
1722 1723
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1724 1725
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1726

1727
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1728
	    regs[value_regno].type == SCALAR_VALUE) {
1729
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1730
		coerce_reg_to_size(&regs[value_regno], size);
A
Alexei Starovoitov 已提交
1731
	}
1732 1733 1734
	return err;
}

1735
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1736 1737 1738 1739 1740
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1741
		verbose(env, "BPF_XADD uses reserved fields\n");
1742 1743 1744 1745
		return -EINVAL;
	}

	/* check src1 operand */
1746
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1747 1748 1749 1750
	if (err)
		return err;

	/* check src2 operand */
1751
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1752 1753 1754
	if (err)
		return err;

1755
	if (is_pointer_value(env, insn->src_reg)) {
1756
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1757 1758 1759
		return -EACCES;
	}

1760 1761 1762 1763 1764
	if (is_ctx_reg(env, insn->dst_reg) ||
	    is_pkt_reg(env, insn->dst_reg)) {
		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
			"context" : "packet");
1765 1766 1767
		return -EACCES;
	}

1768
	/* check whether atomic_add can read the memory */
1769
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1770
			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1771 1772 1773 1774
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1775
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1776
				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1777 1778 1779 1780
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1781 1782 1783
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1784
 */
1785
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1786 1787
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1788
{
1789
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1790
	struct bpf_func_state *state = func(env, reg);
1791
	int off, i, slot, spi;
1792

1793
	if (reg->type != PTR_TO_STACK) {
1794
		/* Allow zero-byte read from NULL, regardless of pointer type */
1795
		if (zero_size_allowed && access_size == 0 &&
1796
		    register_is_null(reg))
1797 1798
			return 0;

1799
		verbose(env, "R%d type=%s expected=%s\n", regno,
1800
			reg_type_str[reg->type],
1801
			reg_type_str[PTR_TO_STACK]);
1802
		return -EACCES;
1803
	}
1804

1805
	/* Only allow fixed-offset stack reads */
1806
	if (!tnum_is_const(reg->var_off)) {
1807 1808
		char tn_buf[48];

1809
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1810
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1811
			regno, tn_buf);
1812
		return -EACCES;
1813
	}
1814
	off = reg->off + reg->var_off.value;
1815
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1816
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1817
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1818 1819 1820 1821
			regno, off, access_size);
		return -EACCES;
	}

1822 1823 1824 1825 1826 1827
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1828
	for (i = 0; i < access_size; i++) {
1829 1830
		u8 *stype;

1831 1832
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
1833 1834 1835 1836 1837 1838 1839 1840 1841
		if (state->allocated_stack <= slot)
			goto err;
		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
		if (*stype == STACK_MISC)
			goto mark;
		if (*stype == STACK_ZERO) {
			/* helper can write anything into the stack */
			*stype = STACK_MISC;
			goto mark;
1842
		}
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
err:
		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
			off, i, access_size);
		return -EACCES;
mark:
		/* reading any byte out of 8-byte 'spill_slot' will cause
		 * the whole slot to be marked as 'read'
		 */
		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
				     spi, state->frameno);
1853
	}
1854
	return update_stack_depth(env, state, off);
1855 1856
}

1857 1858 1859 1860
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1861
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1862

1863
	switch (reg->type) {
1864
	case PTR_TO_PACKET:
1865
	case PTR_TO_PACKET_META:
1866 1867
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1868
	case PTR_TO_MAP_VALUE:
1869 1870
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1871
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1872 1873 1874 1875 1876
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
{
	return type == ARG_PTR_TO_MEM ||
	       type == ARG_PTR_TO_MEM_OR_NULL ||
	       type == ARG_PTR_TO_UNINIT_MEM;
}

static bool arg_type_is_mem_size(enum bpf_arg_type type)
{
	return type == ARG_CONST_SIZE ||
	       type == ARG_CONST_SIZE_OR_ZERO;
}

1890
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1891 1892
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1893
{
1894
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1895
	enum bpf_reg_type expected_type, type = reg->type;
1896 1897
	int err = 0;

1898
	if (arg_type == ARG_DONTCARE)
1899 1900
		return 0;

1901 1902 1903
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1904

1905 1906
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1907 1908
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1909 1910
			return -EACCES;
		}
1911
		return 0;
1912
	}
1913

1914
	if (type_is_pkt_pointer(type) &&
1915
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1916
		verbose(env, "helper access to the packet is not allowed\n");
1917 1918 1919
		return -EACCES;
	}

1920
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1921 1922
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1923
		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1924
		    type != expected_type)
1925
			goto err_type;
1926 1927
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1928 1929
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1930
			goto err_type;
1931 1932
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1933 1934
		if (type != expected_type)
			goto err_type;
1935 1936
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1937 1938
		if (type != expected_type)
			goto err_type;
1939
	} else if (arg_type_is_mem_ptr(arg_type)) {
1940 1941
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1942
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1943 1944
		 * happens during stack boundary checking.
		 */
1945
		if (register_is_null(reg) &&
1946
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1947
			/* final test in check_stack_boundary() */;
1948 1949
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1950
			 type != expected_type)
1951
			goto err_type;
1952
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1953
	} else {
1954
		verbose(env, "unsupported arg_type %d\n", arg_type);
1955 1956 1957 1958 1959
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1960
		meta->map_ptr = reg->map_ptr;
1961 1962 1963 1964 1965
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1966
		if (!meta->map_ptr) {
1967 1968 1969 1970 1971
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1972
			verbose(env, "invalid map_ptr to access map->key\n");
1973 1974
			return -EACCES;
		}
1975 1976 1977
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->key_size, false,
					      NULL);
1978 1979 1980 1981
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1982
		if (!meta->map_ptr) {
1983
			/* kernel subsystem misconfigured verifier */
1984
			verbose(env, "invalid map_ptr to access map->value\n");
1985 1986
			return -EACCES;
		}
1987 1988 1989
		err = check_helper_mem_access(env, regno,
					      meta->map_ptr->value_size, false,
					      NULL);
1990
	} else if (arg_type_is_mem_size(arg_type)) {
1991
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1992

1993 1994 1995 1996 1997 1998
		/* remember the mem_size which may be used later
		 * to refine return values.
		 */
		meta->msize_smax_value = reg->smax_value;
		meta->msize_umax_value = reg->umax_value;

1999 2000
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
2001
		 */
2002
		if (!tnum_is_const(reg->var_off))
2003 2004 2005 2006 2007 2008 2009
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

2010
		if (reg->smin_value < 0) {
2011
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2012 2013 2014
				regno);
			return -EACCES;
		}
2015

2016
		if (reg->umin_value == 0) {
2017 2018 2019
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
2020 2021 2022
			if (err)
				return err;
		}
2023

2024
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2025
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2026 2027 2028 2029
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
2030
					      reg->umax_value,
2031
					      zero_size_allowed, meta);
2032 2033 2034
	}

	return err;
2035
err_type:
2036
	verbose(env, "R%d type=%s expected=%s\n", regno,
2037 2038
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
2039 2040
}

2041 2042
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
2043 2044 2045 2046
{
	if (!map)
		return 0;

2047 2048 2049 2050 2051 2052 2053 2054
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
2055 2056
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
2057 2058 2059 2060 2061 2062
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
2063
	case BPF_MAP_TYPE_CGROUP_ARRAY:
2064
		if (func_id != BPF_FUNC_skb_under_cgroup &&
2065
		    func_id != BPF_FUNC_current_task_under_cgroup)
2066 2067
			goto error;
		break;
2068 2069 2070 2071 2072
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
2073
		if (func_id != BPF_FUNC_redirect_map)
2074 2075
			goto error;
		break;
2076 2077 2078
	/* Restrict bpf side of cpumap and xskmap, open when use-cases
	 * appear.
	 */
2079
	case BPF_MAP_TYPE_CPUMAP:
2080
	case BPF_MAP_TYPE_XSKMAP:
2081 2082 2083
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
2084
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
2085
	case BPF_MAP_TYPE_HASH_OF_MAPS:
2086 2087
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
2088
		break;
2089 2090 2091
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
2092 2093
		    func_id != BPF_FUNC_map_delete_elem &&
		    func_id != BPF_FUNC_msg_redirect_map)
2094 2095
			goto error;
		break;
2096 2097 2098 2099 2100 2101 2102 2103 2104
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
J
Jiong Wang 已提交
2105
		if (env->subprog_cnt > 1) {
2106 2107 2108
			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
			return -EINVAL;
		}
2109 2110 2111
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
2112
	case BPF_FUNC_perf_event_read_value:
2113 2114 2115 2116 2117 2118 2119
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
2120
	case BPF_FUNC_current_task_under_cgroup:
2121
	case BPF_FUNC_skb_under_cgroup:
2122 2123 2124
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
2125
	case BPF_FUNC_redirect_map:
2126
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2127 2128
		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2129 2130
			goto error;
		break;
2131
	case BPF_FUNC_sk_redirect_map:
2132
	case BPF_FUNC_msg_redirect_map:
2133 2134 2135 2136 2137 2138 2139
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
2140 2141
	default:
		break;
2142 2143 2144
	}

	return 0;
2145
error:
2146
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2147
		map->map_type, func_id_name(func_id), func_id);
2148
	return -EINVAL;
2149 2150
}

2151
static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2152 2153 2154
{
	int count = 0;

2155
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2156
		count++;
2157
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2158
		count++;
2159
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2160
		count++;
2161
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2162
		count++;
2163
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2164 2165
		count++;

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	/* We only support one arg being in raw mode at the moment,
	 * which is sufficient for the helper functions we have
	 * right now.
	 */
	return count <= 1;
}

static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
				    enum bpf_arg_type arg_next)
{
	return (arg_type_is_mem_ptr(arg_curr) &&
	        !arg_type_is_mem_size(arg_next)) ||
	       (!arg_type_is_mem_ptr(arg_curr) &&
		arg_type_is_mem_size(arg_next));
}

static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
{
	/* bpf_xxx(..., buf, len) call will access 'len'
	 * bytes from memory 'buf'. Both arg types need
	 * to be paired, so make sure there's no buggy
	 * helper function specification.
	 */
	if (arg_type_is_mem_size(fn->arg1_type) ||
	    arg_type_is_mem_ptr(fn->arg5_type)  ||
	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
		return false;

	return true;
}

static int check_func_proto(const struct bpf_func_proto *fn)
{
	return check_raw_mode_ok(fn) &&
	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2204 2205
}

2206 2207
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
2208
 */
2209 2210
static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
				     struct bpf_func_state *state)
A
Alexei Starovoitov 已提交
2211
{
2212
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
2213 2214 2215
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2216
		if (reg_is_pkt_pointer_any(&regs[i]))
2217
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
2218

2219 2220
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2221
			continue;
2222
		reg = &state->stack[i].spilled_ptr;
2223 2224
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
2225 2226 2227
	}
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{
	struct bpf_verifier_state *vstate = env->cur_state;
	int i;

	for (i = 0; i <= vstate->curframe; i++)
		__clear_all_pkt_pointers(env, vstate->frame[i]);
}

static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
			   int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	int i, subprog, target_insn;

A
Alexei Starovoitov 已提交
2244
	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2245
		verbose(env, "the call stack of %d frames is too deep\n",
A
Alexei Starovoitov 已提交
2246
			state->curframe + 2);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
		return -E2BIG;
	}

	target_insn = *insn_idx + insn->imm;
	subprog = find_subprog(env, target_insn + 1);
	if (subprog < 0) {
		verbose(env, "verifier bug. No program starts at insn %d\n",
			target_insn + 1);
		return -EFAULT;
	}

	caller = state->frame[state->curframe];
	if (state->frame[state->curframe + 1]) {
		verbose(env, "verifier bug. Frame %d already allocated\n",
			state->curframe + 1);
		return -EFAULT;
	}

	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
	if (!callee)
		return -ENOMEM;
	state->frame[state->curframe + 1] = callee;

	/* callee cannot access r0, r6 - r9 for reading and has to write
	 * into its own stack before reading from it.
	 * callee can read/write into caller's stack
	 */
	init_func_state(env, callee,
			/* remember the callsite, it will be used by bpf_exit */
			*insn_idx /* callsite */,
			state->curframe + 1 /* frameno within this callchain */,
J
Jiong Wang 已提交
2278
			subprog /* subprog number within this prog */);
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

	/* copy r1 - r5 args that callee can access */
	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
		callee->regs[i] = caller->regs[i];

	/* after the call regsiters r0 - r5 were scratched */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		mark_reg_not_init(env, caller->regs, caller_saved[i]);
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}

	/* only increment it after check_reg_arg() finished */
	state->curframe++;

	/* and go analyze first insn of the callee */
	*insn_idx = target_insn;

	if (env->log.level) {
		verbose(env, "caller:\n");
		print_verifier_state(env, caller);
		verbose(env, "callee:\n");
		print_verifier_state(env, callee);
	}
	return 0;
}

static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
{
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_func_state *caller, *callee;
	struct bpf_reg_state *r0;

	callee = state->frame[state->curframe];
	r0 = &callee->regs[BPF_REG_0];
	if (r0->type == PTR_TO_STACK) {
		/* technically it's ok to return caller's stack pointer
		 * (or caller's caller's pointer) back to the caller,
		 * since these pointers are valid. Only current stack
		 * pointer will be invalid as soon as function exits,
		 * but let's be conservative
		 */
		verbose(env, "cannot return stack pointer to the caller\n");
		return -EINVAL;
	}

	state->curframe--;
	caller = state->frame[state->curframe];
	/* return to the caller whatever r0 had in the callee */
	caller->regs[BPF_REG_0] = *r0;

	*insn_idx = callee->callsite + 1;
	if (env->log.level) {
		verbose(env, "returning from callee:\n");
		print_verifier_state(env, callee);
		verbose(env, "to caller at %d:\n", *insn_idx);
		print_verifier_state(env, caller);
	}
	/* clear everything in the callee */
	free_func_state(callee);
	state->frame[state->curframe + 1] = NULL;
	return 0;
}

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
				   int func_id,
				   struct bpf_call_arg_meta *meta)
{
	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];

	if (ret_type != RET_INTEGER ||
	    (func_id != BPF_FUNC_get_stack &&
	     func_id != BPF_FUNC_probe_read_str))
		return;

	ret_reg->smax_value = meta->msize_smax_value;
	ret_reg->umax_value = meta->msize_umax_value;
	__reg_deduce_bounds(ret_reg);
	__reg_bound_offset(ret_reg);
}

2359
static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2360 2361
{
	const struct bpf_func_proto *fn = NULL;
2362
	struct bpf_reg_state *regs;
2363
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
2364
	bool changes_data;
2365 2366 2367 2368
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2369 2370
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
2371 2372 2373
		return -EINVAL;
	}

2374
	if (env->ops->get_func_proto)
2375
		fn = env->ops->get_func_proto(func_id, env->prog);
2376
	if (!fn) {
2377 2378
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
2379 2380 2381 2382
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2383
	if (!env->prog->gpl_compatible && fn->gpl_only) {
2384
		verbose(env, "cannot call GPL only function from proprietary program\n");
2385 2386 2387
		return -EINVAL;
	}

2388
	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2389
	changes_data = bpf_helper_changes_pkt_data(fn->func);
2390 2391 2392 2393 2394
	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
			func_id_name(func_id), func_id);
		return -EINVAL;
	}
A
Alexei Starovoitov 已提交
2395

2396
	memset(&meta, 0, sizeof(meta));
2397
	meta.pkt_access = fn->pkt_access;
2398

2399
	err = check_func_proto(fn);
2400
	if (err) {
2401
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2402
			func_id_name(func_id), func_id);
2403 2404 2405
		return err;
	}

2406
	/* check args */
2407
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2408 2409
	if (err)
		return err;
2410
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2411 2412
	if (err)
		return err;
2413 2414 2415 2416 2417 2418 2419
	if (func_id == BPF_FUNC_tail_call) {
		if (meta.map_ptr == NULL) {
			verbose(env, "verifier bug\n");
			return -EINVAL;
		}
		env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
	}
2420
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2421 2422
	if (err)
		return err;
2423
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2424 2425
	if (err)
		return err;
2426
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2427 2428 2429
	if (err)
		return err;

2430 2431 2432 2433
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
2434 2435
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
				       BPF_WRITE, -1, false);
2436 2437 2438 2439
		if (err)
			return err;
	}

2440
	regs = cur_regs(env);
2441
	/* reset caller saved regs */
2442
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2443
		mark_reg_not_init(env, regs, caller_saved[i]);
2444 2445
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
2446

2447
	/* update return register (already marked as written above) */
2448
	if (fn->ret_type == RET_INTEGER) {
2449
		/* sets type to SCALAR_VALUE */
2450
		mark_reg_unknown(env, regs, BPF_REG_0);
2451 2452 2453
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2454 2455
		struct bpf_insn_aux_data *insn_aux;

2456
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2457
		/* There is no offset yet applied, variable or fixed */
2458
		mark_reg_known_zero(env, regs, BPF_REG_0);
2459
		regs[BPF_REG_0].off = 0;
2460 2461 2462 2463
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
2464
		if (meta.map_ptr == NULL) {
2465 2466
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
2467 2468
			return -EINVAL;
		}
2469
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2470
		regs[BPF_REG_0].id = ++env->id_gen;
2471 2472 2473 2474 2475
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2476
	} else {
2477
		verbose(env, "unknown return type %d of func %s#%d\n",
2478
			fn->ret_type, func_id_name(func_id), func_id);
2479 2480
		return -EINVAL;
	}
2481

2482 2483
	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);

2484
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2485 2486
	if (err)
		return err;
2487

Y
Yonghong Song 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
		const char *err_str;

#ifdef CONFIG_PERF_EVENTS
		err = get_callchain_buffers(sysctl_perf_event_max_stack);
		err_str = "cannot get callchain buffer for func %s#%d\n";
#else
		err = -ENOTSUPP;
		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
#endif
		if (err) {
			verbose(env, err_str, func_id_name(func_id), func_id);
			return err;
		}

		env->prog->has_callchain_buf = true;
	}

A
Alexei Starovoitov 已提交
2506 2507 2508 2509 2510
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
2529 2530
}

A
Alexei Starovoitov 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
static bool check_reg_sane_offset(struct bpf_verifier_env *env,
				  const struct bpf_reg_state *reg,
				  enum bpf_reg_type type)
{
	bool known = tnum_is_const(reg->var_off);
	s64 val = reg->var_off.value;
	s64 smin = reg->smin_value;

	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
		verbose(env, "math between %s pointer and %lld is not allowed\n",
			reg_type_str[type], val);
		return false;
	}

	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
		verbose(env, "%s pointer offset %d is not allowed\n",
			reg_type_str[type], reg->off);
		return false;
	}

	if (smin == S64_MIN) {
		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
			reg_type_str[type]);
		return false;
	}

	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
		verbose(env, "value %lld makes %s pointer be out of bounds\n",
			smin, reg_type_str[type]);
		return false;
	}

	return true;
}

2566 2567 2568 2569 2570 2571 2572 2573 2574
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
2575
{
2576 2577 2578
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg;
2579
	bool known = tnum_is_const(off_reg->var_off);
2580 2581 2582 2583
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
2584
	u8 opcode = BPF_OP(insn->code);
2585
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
2586

2587
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
2588

2589 2590 2591 2592 2593 2594 2595
	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
2596 2597 2598 2599
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2600 2601 2602
		verbose(env,
			"R%d 32-bit pointer arithmetic prohibited\n",
			dst);
2603
		return -EACCES;
A
Alexei Starovoitov 已提交
2604 2605
	}

2606
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2607 2608
		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
			dst);
2609 2610 2611
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2612 2613
		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
			dst);
2614 2615 2616
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
2617 2618
		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
			dst);
2619 2620 2621 2622 2623
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
2624
	 */
2625 2626
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
2627

A
Alexei Starovoitov 已提交
2628 2629 2630 2631
	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
		return -EINVAL;

2632 2633 2634 2635
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
2636
		 */
2637 2638
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
2639
			/* pointer += K.  Accumulate it into fixed offset */
2640 2641 2642 2643
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2644
			dst_reg->var_off = ptr_reg->var_off;
2645
			dst_reg->off = ptr_reg->off + smin_val;
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
2657
		 */
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
2674 2675
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2676
		if (reg_is_pkt_pointer(ptr_reg)) {
2677 2678 2679 2680 2681 2682 2683 2684
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
2685 2686
			verbose(env, "R%d tried to subtract pointer from scalar\n",
				dst);
2687 2688 2689 2690 2691
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
2692
		 */
2693
		if (ptr_reg->type == PTR_TO_STACK) {
2694 2695
			verbose(env, "R%d subtraction from stack pointer prohibited\n",
				dst);
2696 2697
			return -EACCES;
		}
2698 2699
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
2700
			/* pointer -= K.  Subtract it from fixed offset */
2701 2702 2703 2704
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
2705 2706
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
2707
			dst_reg->off = ptr_reg->off - smin_val;
2708 2709 2710 2711 2712
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
2713
		 */
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
2732 2733
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
2734
		if (reg_is_pkt_pointer(ptr_reg)) {
2735 2736
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
2737
			if (smin_val < 0)
2738
				dst_reg->range = 0;
2739
		}
2740 2741 2742 2743
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
2744 2745 2746
		/* bitwise ops on pointers are troublesome, prohibit. */
		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2747 2748 2749
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2750 2751
		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
			dst, bpf_alu_string[opcode >> 4]);
2752
		return -EACCES;
2753 2754
	}

A
Alexei Starovoitov 已提交
2755 2756 2757
	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
		return -EINVAL;

2758 2759 2760
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2761 2762 2763
	return 0;
}

J
Jann Horn 已提交
2764 2765 2766 2767
/* WARNING: This function does calculations on 64-bit values, but the actual
 * execution may occur on 32-bit values. Therefore, things like bitshifts
 * need extra checks in the 32-bit case.
 */
2768 2769 2770 2771
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2772
{
2773
	struct bpf_reg_state *regs = cur_regs(env);
2774
	u8 opcode = BPF_OP(insn->code);
2775
	bool src_known, dst_known;
2776 2777
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
J
Jann Horn 已提交
2778
	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2779

2780 2781 2782 2783
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2784 2785
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2786

2787 2788 2789 2790 2791 2792 2793 2794 2795
	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
	    smin_val > smax_val || umin_val > umax_val) {
		/* Taint dst register if offset had invalid bounds derived from
		 * e.g. dead branches.
		 */
		__mark_reg_unknown(dst_reg);
		return 0;
	}

A
Alexei Starovoitov 已提交
2796 2797 2798 2799 2800 2801
	if (!src_known &&
	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
		__mark_reg_unknown(dst_reg);
		return 0;
	}

2802 2803
	switch (opcode) {
	case BPF_ADD:
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2820
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2821 2822
		break;
	case BPF_SUB:
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2841
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2842 2843
		break;
	case BPF_MUL:
2844 2845
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2846
			/* Ain't nobody got time to multiply that sign */
2847 2848
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2849 2850
			break;
		}
2851 2852
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2853
		 */
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2871 2872
		break;
	case BPF_AND:
2873
		if (src_known && dst_known) {
2874 2875
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2876 2877
			break;
		}
2878 2879
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2880
		 */
2881
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2899 2900 2901
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2902 2903
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2904 2905
			break;
		}
2906 2907
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2908 2909
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2910 2911 2912 2913 2914 2915 2916 2917 2918
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2919
		} else {
2920 2921 2922 2923 2924
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2925
		}
2926 2927
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2928 2929
		break;
	case BPF_LSH:
J
Jann Horn 已提交
2930 2931 2932
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2933
			 */
2934
			mark_reg_unknown(env, regs, insn->dst_reg);
2935 2936
			break;
		}
2937 2938
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2939
		 */
2940 2941 2942 2943 2944 2945
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2946
		} else {
2947 2948
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2949
		}
2950
		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2951 2952
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2953 2954
		break;
	case BPF_RSH:
J
Jann Horn 已提交
2955 2956 2957
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
2958
			 */
2959
			mark_reg_unknown(env, regs, insn->dst_reg);
2960 2961
			break;
		}
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
		 * be negative, then either:
		 * 1) src_reg might be zero, so the sign bit of the result is
		 *    unknown, so we lose our signed bounds
		 * 2) it's known negative, thus the unsigned bounds capture the
		 *    signed bounds
		 * 3) the signed bounds cross zero, so they tell us nothing
		 *    about the result
		 * If the value in dst_reg is known nonnegative, then again the
		 * unsigned bounts capture the signed bounds.
		 * Thus, in all cases it suffices to blow away our signed bounds
		 * and rely on inferring new ones from the unsigned bounds and
		 * var_off of the result.
		 */
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
2978
		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
2979 2980 2981 2982
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2983
		break;
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
	case BPF_ARSH:
		if (umax_val >= insn_bitness) {
			/* Shifts greater than 31 or 63 are undefined.
			 * This includes shifts by a negative number.
			 */
			mark_reg_unknown(env, regs, insn->dst_reg);
			break;
		}

		/* Upon reaching here, src_known is true and
		 * umax_val is equal to umin_val.
		 */
		dst_reg->smin_value >>= umin_val;
		dst_reg->smax_value >>= umin_val;
		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);

		/* blow away the dst_reg umin_value/umax_value and rely on
		 * dst_reg var_off to refine the result.
		 */
		dst_reg->umin_value = 0;
		dst_reg->umax_value = U64_MAX;
		__update_reg_bounds(dst_reg);
		break;
3007
	default:
3008
		mark_reg_unknown(env, regs, insn->dst_reg);
3009 3010 3011
		break;
	}

J
Jann Horn 已提交
3012 3013 3014 3015 3016 3017
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->32 */
		coerce_reg_to_size(dst_reg, 4);
		coerce_reg_to_size(&src_reg, 4);
	}

3018 3019
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
3020 3021 3022 3023 3024 3025 3026 3027 3028
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
3029 3030 3031
	struct bpf_verifier_state *vstate = env->cur_state;
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
3044 3045
				 * an arbitrary scalar. Disallow all math except
				 * pointer subtraction
3046
				 */
3047 3048 3049
				if (opcode == BPF_SUB){
					mark_reg_unknown(env, regs, insn->dst_reg);
					return 0;
3050
				}
3051 3052 3053 3054
				verbose(env, "R%d pointer %s pointer prohibited\n",
					insn->dst_reg,
					bpf_alu_string[opcode >> 4]);
				return -EACCES;
3055 3056 3057 3058 3059
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
3060 3061
				return adjust_ptr_min_max_vals(env, insn,
							       src_reg, dst_reg);
3062 3063 3064
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
3065 3066
			return adjust_ptr_min_max_vals(env, insn,
						       dst_reg, src_reg);
3067 3068 3069 3070 3071 3072
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
3073
		__mark_reg_known(&off_reg, insn->imm);
3074
		src_reg = &off_reg;
3075 3076 3077
		if (ptr_reg) /* pointer += K */
			return adjust_ptr_min_max_vals(env, insn,
						       ptr_reg, src_reg);
3078 3079 3080 3081
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
3082
		print_verifier_state(env, state);
3083
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3084 3085 3086
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
3087
		print_verifier_state(env, state);
3088
		verbose(env, "verifier internal error: no src_reg\n");
3089 3090 3091
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3092 3093
}

3094
/* check validity of 32-bit and 64-bit arithmetic operations */
3095
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3096
{
3097
	struct bpf_reg_state *regs = cur_regs(env);
3098 3099 3100 3101 3102 3103 3104 3105
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
3106
				verbose(env, "BPF_NEG uses reserved fields\n");
3107 3108 3109 3110
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3111 3112
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
3113
				verbose(env, "BPF_END uses reserved fields\n");
3114 3115 3116 3117 3118
				return -EINVAL;
			}
		}

		/* check src operand */
3119
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3120 3121 3122
		if (err)
			return err;

3123
		if (is_pointer_value(env, insn->dst_reg)) {
3124
			verbose(env, "R%d pointer arithmetic prohibited\n",
3125 3126 3127 3128
				insn->dst_reg);
			return -EACCES;
		}

3129
		/* check dest operand */
3130
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3131 3132 3133 3134 3135 3136 3137
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3138
				verbose(env, "BPF_MOV uses reserved fields\n");
3139 3140 3141 3142
				return -EINVAL;
			}

			/* check src operand */
3143
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3144 3145 3146 3147
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3148
				verbose(env, "BPF_MOV uses reserved fields\n");
3149 3150 3151 3152 3153
				return -EINVAL;
			}
		}

		/* check dest operand */
3154
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3155 3156 3157 3158 3159 3160 3161 3162 3163
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
3164
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3165
			} else {
3166
				/* R1 = (u32) R2 */
3167
				if (is_pointer_value(env, insn->src_reg)) {
3168 3169
					verbose(env,
						"R%d partial copy of pointer\n",
3170 3171 3172
						insn->src_reg);
					return -EACCES;
				}
3173
				mark_reg_unknown(env, regs, insn->dst_reg);
3174
				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3175 3176 3177 3178 3179
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
3180
			regs[insn->dst_reg].type = SCALAR_VALUE;
3181 3182 3183 3184 3185 3186 3187
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				__mark_reg_known(regs + insn->dst_reg,
						 insn->imm);
			} else {
				__mark_reg_known(regs + insn->dst_reg,
						 (u32)insn->imm);
			}
3188 3189 3190
		}

	} else if (opcode > BPF_END) {
3191
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3192 3193 3194 3195 3196 3197
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
3198
				verbose(env, "BPF_ALU uses reserved fields\n");
3199 3200 3201
				return -EINVAL;
			}
			/* check src1 operand */
3202
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3203 3204 3205 3206
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3207
				verbose(env, "BPF_ALU uses reserved fields\n");
3208 3209 3210 3211 3212
				return -EINVAL;
			}
		}

		/* check src2 operand */
3213
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3214 3215 3216 3217 3218
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3219
			verbose(env, "div by zero\n");
3220 3221 3222
			return -EINVAL;
		}

3223 3224 3225 3226 3227
		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
3228 3229 3230 3231 3232
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
3233
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
3234 3235 3236 3237
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
3238
		/* check dest operand */
3239
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
3240 3241 3242
		if (err)
			return err;

3243
		return adjust_reg_min_max_vals(env, insn);
3244 3245 3246 3247 3248
	}

	return 0;
}

3249
static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3250
				   struct bpf_reg_state *dst_reg,
3251
				   enum bpf_reg_type type,
3252
				   bool range_right_open)
A
Alexei Starovoitov 已提交
3253
{
3254
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3255
	struct bpf_reg_state *regs = state->regs, *reg;
3256
	u16 new_range;
3257
	int i, j;
3258

3259 3260
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
3261 3262 3263
		/* This doesn't give us any range */
		return;

3264 3265
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3266 3267 3268 3269 3270
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

3271 3272 3273 3274 3275
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
3276
	 *
3277
	 * pkt_data in dst register:
3278 3279 3280 3281 3282 3283
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
3284 3285 3286 3287 3288
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
3289 3290 3291 3292 3293
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
3294
	 * pkt_data in src register:
3295 3296 3297 3298 3299 3300
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
3301 3302 3303 3304 3305
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
3306 3307 3308 3309 3310 3311
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3312 3313 3314
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
3315
	 */
3316

3317 3318 3319 3320 3321
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
3322
	for (i = 0; i < MAX_BPF_REG; i++)
3323
		if (regs[i].type == type && regs[i].id == dst_reg->id)
3324
			/* keep the maximum range already checked */
3325
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
3326

3327 3328 3329 3330 3331 3332 3333 3334 3335
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			reg = &state->stack[i].spilled_ptr;
			if (reg->type == type && reg->id == dst_reg->id)
				reg->range = max(reg->range, new_range);
		}
A
Alexei Starovoitov 已提交
3336 3337 3338
	}
}

3339 3340 3341
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
3342
 * In JEQ/JNE cases we also adjust the var_off values.
3343 3344 3345 3346 3347
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
3348 3349 3350 3351 3352 3353 3354 3355
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
3356

3357 3358 3359 3360 3361
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3362
		__mark_reg_known(true_reg, val);
3363 3364 3365 3366 3367
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3368
		__mark_reg_known(false_reg, val);
3369 3370
		break;
	case BPF_JGT:
3371 3372 3373
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
3374
	case BPF_JSGT:
3375 3376
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3377
		break;
3378 3379 3380 3381 3382 3383 3384 3385
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
3386
	case BPF_JGE:
3387 3388 3389
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
3390
	case BPF_JSGE:
3391 3392
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3393
		break;
3394 3395 3396 3397 3398 3399 3400 3401
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
3402 3403 3404 3405
	default:
		break;
	}

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3417 3418
}

3419 3420
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
3421 3422 3423 3424 3425
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
3426 3427
	if (__is_pointer_value(false, false_reg))
		return;
3428

3429 3430 3431 3432 3433
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
3434
		__mark_reg_known(true_reg, val);
3435 3436 3437 3438 3439
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
3440
		__mark_reg_known(false_reg, val);
3441 3442
		break;
	case BPF_JGT:
3443 3444 3445
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
3446
	case BPF_JSGT:
3447 3448
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3449
		break;
3450 3451 3452 3453 3454 3455 3456 3457
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
3458
	case BPF_JGE:
3459 3460 3461
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
3462
	case BPF_JSGE:
3463 3464
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3465
		break;
3466 3467 3468 3469 3470 3471 3472 3473
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
3474 3475 3476 3477
	default:
		break;
	}

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
3489 3490 3491 3492 3493 3494
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
3495 3496 3497 3498 3499 3500 3501 3502
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
3503 3504
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
3534
		break;
3535
	}
3536 3537
}

3538
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3539
			 bool is_null)
3540 3541 3542 3543
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3544 3545 3546 3547
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
3548 3549
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
3550
				 reg->off)) {
3551 3552
			__mark_reg_known_zero(reg);
			reg->off = 0;
3553 3554 3555
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
3556 3557 3558 3559
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
3560
			reg->type = PTR_TO_MAP_VALUE;
3561
		}
3562 3563 3564 3565 3566
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
3567 3568 3569 3570 3571 3572
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
3573
static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3574
			  bool is_null)
3575
{
3576
	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3577
	struct bpf_reg_state *regs = state->regs;
3578
	u32 id = regs[regno].id;
3579
	int i, j;
3580 3581

	for (i = 0; i < MAX_BPF_REG; i++)
3582
		mark_map_reg(regs, i, id, is_null);
3583

3584 3585 3586 3587 3588 3589 3590
	for (j = 0; j <= vstate->curframe; j++) {
		state = vstate->frame[j];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
			if (state->stack[i].slot_type[0] != STACK_SPILL)
				continue;
			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
		}
3591 3592 3593
	}
}

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

3687
static int check_cond_jmp_op(struct bpf_verifier_env *env,
3688 3689
			     struct bpf_insn *insn, int *insn_idx)
{
3690 3691 3692 3693
	struct bpf_verifier_state *this_branch = env->cur_state;
	struct bpf_verifier_state *other_branch;
	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
	struct bpf_reg_state *dst_reg, *other_branch_regs;
3694 3695 3696
	u8 opcode = BPF_OP(insn->code);
	int err;

3697
	if (opcode > BPF_JSLE) {
3698
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3699 3700 3701 3702 3703
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
3704
			verbose(env, "BPF_JMP uses reserved fields\n");
3705 3706 3707 3708
			return -EINVAL;
		}

		/* check src1 operand */
3709
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3710 3711
		if (err)
			return err;
3712 3713

		if (is_pointer_value(env, insn->src_reg)) {
3714
			verbose(env, "R%d pointer comparison prohibited\n",
3715 3716 3717
				insn->src_reg);
			return -EACCES;
		}
3718 3719
	} else {
		if (insn->src_reg != BPF_REG_0) {
3720
			verbose(env, "BPF_JMP uses reserved fields\n");
3721 3722 3723 3724 3725
			return -EINVAL;
		}
	}

	/* check src2 operand */
3726
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3727 3728 3729
	if (err)
		return err;

A
Alexei Starovoitov 已提交
3730 3731
	dst_reg = &regs[insn->dst_reg];

3732 3733 3734
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3735
	    dst_reg->type == SCALAR_VALUE &&
3736 3737 3738
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;
3756
	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3757

3758 3759
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
3760 3761 3762 3763
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
3764 3765
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
3766 3767 3768
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
3769
				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3770 3771 3772
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
3773
				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3774 3775 3776 3777
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
3778 3779
				reg_combine_min_max(&other_branch_regs[insn->src_reg],
						    &other_branch_regs[insn->dst_reg],
3780 3781 3782 3783
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3784
		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3785 3786 3787
					dst_reg, insn->imm, opcode);
	}

3788
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3789
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3790 3791
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3792 3793 3794
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3795 3796
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3797 3798 3799
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3800 3801
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3802
		return -EACCES;
3803
	}
3804
	if (env->log.level)
3805
		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3806 3807 3808
	return 0;
}

3809 3810 3811 3812 3813 3814 3815 3816
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3817
/* verify BPF_LD_IMM64 instruction */
3818
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3819
{
3820
	struct bpf_reg_state *regs = cur_regs(env);
3821 3822 3823
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3824
		verbose(env, "invalid BPF_LD_IMM insn\n");
3825 3826 3827
		return -EINVAL;
	}
	if (insn->off != 0) {
3828
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3829 3830 3831
		return -EINVAL;
	}

3832
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3833 3834 3835
	if (err)
		return err;

3836 3837 3838
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3839
		regs[insn->dst_reg].type = SCALAR_VALUE;
3840
		__mark_reg_known(&regs[insn->dst_reg], imm);
3841
		return 0;
3842
	}
3843 3844 3845 3846 3847 3848 3849 3850 3851

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3852 3853 3854 3855 3856
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3857
	case BPF_PROG_TYPE_SCHED_ACT:
3858 3859 3860 3861 3862 3863
		return true;
	default:
		return false;
	}
}

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3879
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3880
{
3881
	struct bpf_reg_state *regs = cur_regs(env);
3882 3883 3884
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3885
	if (!may_access_skb(env->prog->type)) {
3886
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3887 3888 3889
		return -EINVAL;
	}

3890 3891 3892 3893 3894
	if (!env->ops->gen_ld_abs) {
		verbose(env, "bpf verifier is misconfigured\n");
		return -EINVAL;
	}

J
Jiong Wang 已提交
3895
	if (env->subprog_cnt > 1) {
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
		/* when program has LD_ABS insn JITs and interpreter assume
		 * that r1 == ctx == skb which is not the case for callees
		 * that can have arbitrary arguments. It's problematic
		 * for main prog as well since JITs would need to analyze
		 * all functions in order to make proper register save/restore
		 * decisions in the main prog. Hence disallow LD_ABS with calls
		 */
		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
		return -EINVAL;
	}

3907
	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3908
	    BPF_SIZE(insn->code) == BPF_DW ||
3909
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3910
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3911 3912 3913 3914
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3915
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3916 3917 3918 3919
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3920 3921
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3922 3923 3924 3925 3926
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3927
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3928 3929 3930 3931 3932
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3933
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3934
		mark_reg_not_init(env, regs, caller_saved[i]);
3935 3936
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3937 3938

	/* mark destination R0 register as readable, since it contains
3939 3940
	 * the value fetched from the packet.
	 * Already marked as written above.
3941
	 */
3942
	mark_reg_unknown(env, regs, BPF_REG_0);
3943 3944 3945
	return 0;
}

3946 3947 3948 3949 3950 3951 3952 3953
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
A
Andrey Ignatov 已提交
3954
	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
3955
	case BPF_PROG_TYPE_SOCK_OPS:
3956
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3957 3958 3959 3960 3961
		break;
	default:
		return 0;
	}

3962
	reg = cur_regs(env) + BPF_REG_0;
3963
	if (reg->type != SCALAR_VALUE) {
3964
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3965 3966 3967 3968 3969
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3970
		verbose(env, "At program exit the register R0 ");
3971 3972 3973 3974
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3975
			verbose(env, "has value %s", tn_buf);
3976
		} else {
3977
			verbose(env, "has unknown scalar value");
3978
		}
3979
		verbose(env, " should have been 0 or 1\n");
3980 3981 3982 3983 3984
		return -EINVAL;
	}
	return 0;
}

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

4025
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4026

4027 4028 4029 4030 4031 4032 4033 4034 4035
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
4036
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4037 4038 4039 4040 4041 4042 4043 4044
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
4045
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4046 4047 4048
		return -EINVAL;
	}

4049 4050 4051 4052
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

4053 4054 4055 4056 4057 4058 4059 4060 4061
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4062
		verbose(env, "back-edge from insn %d to %d\n", t, w);
4063 4064 4065 4066 4067
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
4068
		verbose(env, "insn state internal bug\n");
4069 4070 4071 4072 4073 4074 4075 4076
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
4077
static int check_cfg(struct bpf_verifier_env *env)
4078 4079 4080 4081 4082 4083
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

4084 4085 4086 4087
	ret = check_subprogs(env);
	if (ret < 0)
		return ret;

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4118 4119
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4120 4121 4122 4123 4124 4125 4126 4127
			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
				env->explored_states[t] = STATE_LIST_MARK;
				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
				if (ret == 1)
					goto peek_stack;
				else if (ret < 0)
					goto err_free;
			}
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
4140 4141 4142
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
4143 4144
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
4145 4146
		} else {
			/* conditional jump with two edges */
4147
			env->explored_states[t] = STATE_LIST_MARK;
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
4174
		verbose(env, "pop stack internal bug\n");
4175 4176 4177 4178 4179 4180 4181 4182
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
4183
			verbose(env, "unreachable insn %d\n", i);
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

4196 4197 4198 4199
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
4200 4201 4202 4203
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
4222
 */
4223
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
4224
{
4225
	unsigned int i;
A
Alexei Starovoitov 已提交
4226

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
4243 4244
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
4245
{
4246 4247
	bool equal;

4248 4249 4250 4251
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

4252 4253 4254 4255 4256 4257 4258 4259 4260
	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;

	if (rold->type == PTR_TO_STACK)
		/* two stack pointers are equal only if they're pointing to
		 * the same stack frame, since fp-8 in foo != fp-8 in bar
		 */
		return equal && rold->frameno == rcur->frameno;

	if (equal)
A
Alexei Starovoitov 已提交
4261 4262
		return true;

4263 4264
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
4265
		return true;
4266 4267 4268 4269 4270 4271 4272 4273 4274
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
4275 4276 4277 4278 4279 4280
			/* We're trying to use a pointer in place of a scalar.
			 * Even if the scalar was unbounded, this could lead to
			 * pointer leaks because scalars are allowed to leak
			 * while pointers are not. We could make this safe in
			 * special cases if root is calling us, but it's
			 * probably not worth the hassle.
4281
			 */
4282
			return false;
4283 4284
		}
	case PTR_TO_MAP_VALUE:
4285 4286 4287 4288 4289 4290 4291 4292
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
4307
	case PTR_TO_PACKET_META:
4308
	case PTR_TO_PACKET:
4309
		if (rcur->type != rold->type)
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
4340

4341 4342
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
4343 4344 4345
	return false;
}

4346 4347
static bool stacksafe(struct bpf_func_state *old,
		      struct bpf_func_state *cur,
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

4365 4366
		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
			/* explored state didn't use this */
4367
			continue;
4368

4369 4370
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
4371 4372 4373 4374 4375 4376 4377
		/* if old state was safe with misc data in the stack
		 * it will be safe with zero-initialized stack.
		 * The opposite is not true
		 */
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
			continue;
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
4434 4435
static bool func_states_equal(struct bpf_func_state *old,
			      struct bpf_func_state *cur)
4436
{
4437 4438
	struct idpair *idmap;
	bool ret = false;
4439 4440
	int i;

4441 4442 4443
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
4444
		return false;
4445 4446

	for (i = 0; i < MAX_BPF_REG; i++) {
4447
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4448
			goto out_free;
4449 4450
	}

4451 4452
	if (!stacksafe(old, cur, idmap))
		goto out_free;
4453 4454 4455 4456
	ret = true;
out_free:
	kfree(idmap);
	return ret;
4457 4458
}

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
			 struct bpf_verifier_state *cur)
{
	int i;

	if (old->curframe != cur->curframe)
		return false;

	/* for states to be equal callsites have to be the same
	 * and all frame states need to be equivalent
	 */
	for (i = 0; i <= old->curframe; i++) {
		if (old->frame[i]->callsite != cur->frame[i]->callsite)
			return false;
		if (!func_states_equal(old->frame[i], cur->frame[i]))
			return false;
	}
	return true;
}

4480
/* A write screens off any subsequent reads; but write marks come from the
4481 4482 4483 4484 4485
 * straight-line code between a state and its parent.  When we arrive at an
 * equivalent state (jump target or such) we didn't arrive by the straight-line
 * code, so read marks in the state must propagate to the parent regardless
 * of the state's write marks. That's what 'parent == state->parent' comparison
 * in mark_reg_read() and mark_stack_slot_read() is for.
4486
 */
4487 4488 4489
static int propagate_liveness(struct bpf_verifier_env *env,
			      const struct bpf_verifier_state *vstate,
			      struct bpf_verifier_state *vparent)
4490
{
4491 4492
	int i, frame, err = 0;
	struct bpf_func_state *state, *parent;
4493

4494 4495 4496 4497 4498
	if (vparent->curframe != vstate->curframe) {
		WARN(1, "propagate_live: parent frame %d current frame %d\n",
		     vparent->curframe, vstate->curframe);
		return -EFAULT;
	}
4499 4500 4501 4502
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
4503
		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4504
			continue;
4505 4506 4507 4508
		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
			err = mark_reg_read(env, vstate, vparent, i);
			if (err)
				return err;
4509 4510
		}
	}
4511

4512
	/* ... and stack slots */
4513 4514 4515 4516 4517 4518 4519 4520 4521
	for (frame = 0; frame <= vstate->curframe; frame++) {
		state = vstate->frame[frame];
		parent = vparent->frame[frame];
		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
				continue;
			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
				mark_stack_slot_read(env, vstate, vparent, i, frame);
4522 4523
		}
	}
4524
	return err;
4525 4526
}

4527
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4528
{
4529 4530
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
4531
	struct bpf_verifier_state *cur = env->cur_state;
4532
	int i, j, err;
4533 4534 4535 4536 4537 4538 4539 4540 4541

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
4542
		if (states_equal(env, &sl->state, cur)) {
4543
			/* reached equivalent register/stack state,
4544 4545
			 * prune the search.
			 * Registers read by the continuation are read by us.
4546 4547 4548 4549 4550 4551
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
4552
			 */
4553 4554 4555
			err = propagate_liveness(env, &sl->state, cur);
			if (err)
				return err;
4556
			return 1;
4557
		}
4558 4559 4560 4561 4562
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
4563 4564 4565 4566
	 * but it will either reach outer most bpf_exit (which means it's safe)
	 * or it will be rejected. Since there are no loops, we won't be
	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
	 * again on the way to bpf_exit
4567
	 */
4568
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4569 4570 4571 4572
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
4573 4574 4575 4576 4577 4578
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
4579 4580
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
4581
	/* connect new state to parentage chain */
4582
	cur->parent = &new_sl->state;
4583 4584 4585 4586 4587 4588
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
4589
	for (i = 0; i < BPF_REG_FP; i++)
4590 4591 4592 4593 4594 4595 4596
		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;

	/* all stack frames are accessible from callee, clear them all */
	for (j = 0; j <= cur->curframe; j++) {
		struct bpf_func_state *frame = cur->frame[j];

		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4597
			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4598
	}
4599 4600 4601
	return 0;
}

4602
static int do_check(struct bpf_verifier_env *env)
4603
{
4604
	struct bpf_verifier_state *state;
4605
	struct bpf_insn *insns = env->prog->insnsi;
4606
	struct bpf_reg_state *regs;
4607
	int insn_cnt = env->prog->len, i;
4608 4609 4610 4611
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

4612 4613 4614
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
4615
	state->curframe = 0;
4616
	state->parent = NULL;
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
	if (!state->frame[0]) {
		kfree(state);
		return -ENOMEM;
	}
	env->cur_state = state;
	init_func_state(env, state->frame[0],
			BPF_MAIN_FUNC /* callsite */,
			0 /* frameno */,
			0 /* subprogno, zero == main subprog */);
4627 4628 4629 4630 4631 4632 4633
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
4634
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4635 4636 4637 4638 4639 4640 4641
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

4642
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4643 4644
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
4645 4646 4647 4648
				insn_processed);
			return -E2BIG;
		}

4649 4650 4651 4652 4653
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
4654
			if (env->log.level) {
4655
				if (do_print_state)
4656
					verbose(env, "\nfrom %d to %d: safe\n",
4657 4658
						prev_insn_idx, insn_idx);
				else
4659
					verbose(env, "%d: safe\n", insn_idx);
4660 4661 4662 4663
			}
			goto process_bpf_exit;
		}

4664 4665 4666
		if (need_resched())
			cond_resched();

4667 4668 4669
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
4670
			else
4671
				verbose(env, "\nfrom %d to %d:",
4672
					prev_insn_idx, insn_idx);
4673
			print_verifier_state(env, state->frame[state->curframe]);
4674 4675 4676
			do_print_state = false;
		}

4677
		if (env->log.level) {
4678 4679
			const struct bpf_insn_cbs cbs = {
				.cb_print	= verbose,
4680
				.private_data	= env,
4681 4682
			};

4683
			verbose(env, "%d: ", insn_idx);
4684
			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4685 4686
		}

4687 4688 4689 4690 4691 4692
		if (bpf_prog_is_dev_bound(env->prog->aux)) {
			err = bpf_prog_offload_verify_insn(env, insn_idx,
							   prev_insn_idx);
			if (err)
				return err;
		}
4693

4694
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
4695
		env->insn_aux_data[insn_idx].seen = true;
4696
		if (class == BPF_ALU || class == BPF_ALU64) {
4697
			err = check_alu_op(env, insn);
4698 4699 4700 4701
			if (err)
				return err;

		} else if (class == BPF_LDX) {
4702
			enum bpf_reg_type *prev_src_type, src_reg_type;
4703 4704 4705

			/* check for reserved fields is already done */

4706
			/* check src operand */
4707
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4708 4709 4710
			if (err)
				return err;

4711
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4712 4713 4714
			if (err)
				return err;

4715 4716
			src_reg_type = regs[insn->src_reg].type;

4717 4718 4719
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
4720
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4721
					       BPF_SIZE(insn->code), BPF_READ,
4722
					       insn->dst_reg, false);
4723 4724 4725
			if (err)
				return err;

4726 4727 4728
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
4729 4730
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
4731
				 * save type to validate intersecting paths
4732
				 */
4733
				*prev_src_type = src_reg_type;
4734

4735
			} else if (src_reg_type != *prev_src_type &&
4736
				   (src_reg_type == PTR_TO_CTX ||
4737
				    *prev_src_type == PTR_TO_CTX)) {
4738 4739 4740 4741 4742 4743 4744
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
4745
				verbose(env, "same insn cannot be used with different pointers\n");
4746 4747 4748
				return -EINVAL;
			}

4749
		} else if (class == BPF_STX) {
4750
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4751

4752
			if (BPF_MODE(insn->code) == BPF_XADD) {
4753
				err = check_xadd(env, insn_idx, insn);
4754 4755 4756 4757 4758 4759 4760
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
4761
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4762 4763 4764
			if (err)
				return err;
			/* check src2 operand */
4765
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4766 4767 4768
			if (err)
				return err;

4769 4770
			dst_reg_type = regs[insn->dst_reg].type;

4771
			/* check that memory (dst_reg + off) is writeable */
4772
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4773
					       BPF_SIZE(insn->code), BPF_WRITE,
4774
					       insn->src_reg, false);
4775 4776 4777
			if (err)
				return err;

4778 4779 4780 4781 4782
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
4783
				   (dst_reg_type == PTR_TO_CTX ||
4784
				    *prev_dst_type == PTR_TO_CTX)) {
4785
				verbose(env, "same insn cannot be used with different pointers\n");
4786 4787 4788
				return -EINVAL;
			}

4789 4790 4791
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
4792
				verbose(env, "BPF_ST uses reserved fields\n");
4793 4794 4795
				return -EINVAL;
			}
			/* check src operand */
4796
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4797 4798 4799
			if (err)
				return err;

4800 4801 4802 4803 4804 4805
			if (is_ctx_reg(env, insn->dst_reg)) {
				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
					insn->dst_reg);
				return -EACCES;
			}

4806
			/* check that memory (dst_reg + off) is writeable */
4807
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4808
					       BPF_SIZE(insn->code), BPF_WRITE,
4809
					       -1, false);
4810 4811 4812 4813 4814 4815 4816 4817 4818
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
4819 4820
				    (insn->src_reg != BPF_REG_0 &&
				     insn->src_reg != BPF_PSEUDO_CALL) ||
4821
				    insn->dst_reg != BPF_REG_0) {
4822
					verbose(env, "BPF_CALL uses reserved fields\n");
4823 4824 4825
					return -EINVAL;
				}

4826 4827 4828 4829
				if (insn->src_reg == BPF_PSEUDO_CALL)
					err = check_func_call(env, insn, &insn_idx);
				else
					err = check_helper_call(env, insn->imm, insn_idx);
4830 4831 4832 4833 4834 4835 4836 4837
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4838
					verbose(env, "BPF_JA uses reserved fields\n");
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
4850
					verbose(env, "BPF_EXIT uses reserved fields\n");
4851 4852 4853
					return -EINVAL;
				}

4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
				if (state->curframe) {
					/* exit from nested function */
					prev_insn_idx = insn_idx;
					err = prepare_func_exit(env, &insn_idx);
					if (err)
						return err;
					do_print_state = true;
					continue;
				}

4864 4865 4866 4867 4868 4869
				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4870
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4871 4872 4873
				if (err)
					return err;

4874
				if (is_pointer_value(env, BPF_REG_0)) {
4875
					verbose(env, "R0 leaks addr as return value\n");
4876 4877 4878
					return -EACCES;
				}

4879 4880 4881
				err = check_return_code(env);
				if (err)
					return err;
4882
process_bpf_exit:
4883 4884 4885 4886
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4901 4902 4903 4904
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4905 4906 4907 4908 4909 4910
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4911
				env->insn_aux_data[insn_idx].seen = true;
4912
			} else {
4913
				verbose(env, "invalid BPF_LD mode\n");
4914 4915 4916
				return -EINVAL;
			}
		} else {
4917
			verbose(env, "unknown insn class %d\n", class);
4918 4919 4920 4921 4922 4923
			return -EINVAL;
		}

		insn_idx++;
	}

4924 4925
	verbose(env, "processed %d insns (limit %d), stack depth ",
		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
J
Jiong Wang 已提交
4926
	for (i = 0; i < env->subprog_cnt; i++) {
4927
		u32 depth = env->subprog_info[i].stack_depth;
4928 4929

		verbose(env, "%d", depth);
J
Jiong Wang 已提交
4930
		if (i + 1 < env->subprog_cnt)
4931 4932 4933
			verbose(env, "+");
	}
	verbose(env, "\n");
4934
	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
4935 4936 4937
	return 0;
}

4938 4939 4940
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4941 4942
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4943 4944 4945
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4946 4947
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4948 4949 4950
					struct bpf_prog *prog)

{
4951 4952 4953 4954 4955 4956 4957
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4958
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4959 4960 4961 4962
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4963
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4964 4965
			return -EINVAL;
		}
4966
	}
4967 4968 4969 4970 4971 4972 4973

	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
	    !bpf_offload_dev_match(prog, map)) {
		verbose(env, "offload device mismatch between prog and map\n");
		return -EINVAL;
	}

4974 4975 4976
	return 0;
}

4977 4978 4979
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4980
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4981 4982 4983
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4984
	int i, j, err;
4985

4986
	err = bpf_prog_calc_tag(env->prog);
4987 4988 4989
	if (err)
		return err;

4990
	for (i = 0; i < insn_cnt; i++, insn++) {
4991
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4992
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4993
			verbose(env, "BPF_LDX uses reserved fields\n");
4994 4995 4996
			return -EINVAL;
		}

4997 4998 4999
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5000
			verbose(env, "BPF_STX uses reserved fields\n");
5001 5002 5003
			return -EINVAL;
		}

5004 5005 5006 5007 5008 5009 5010
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
5011
				verbose(env, "invalid bpf_ld_imm64 insn\n");
5012 5013 5014 5015 5016 5017 5018 5019
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5020 5021
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
5022 5023 5024 5025
				return -EINVAL;
			}

			f = fdget(insn->imm);
5026
			map = __bpf_map_get(f);
5027
			if (IS_ERR(map)) {
5028
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5029 5030 5031 5032
					insn->imm);
				return PTR_ERR(map);
			}

5033
			err = check_map_prog_compatibility(env, map, env->prog);
5034 5035 5036 5037 5038
			if (err) {
				fdput(f);
				return err;
			}

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
5060 5061 5062 5063 5064 5065 5066
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

5067 5068 5069 5070
			fdput(f);
next_insn:
			insn++;
			i++;
5071 5072 5073 5074 5075 5076 5077
			continue;
		}

		/* Basic sanity check before we invest more work here. */
		if (!bpf_opcode_in_insntable(insn->code)) {
			verbose(env, "unknown opcode %02x\n", insn->code);
			return -EINVAL;
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
5089
static void release_maps(struct bpf_verifier_env *env)
5090 5091 5092 5093 5094 5095 5096 5097
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5098
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

5109 5110 5111 5112 5113 5114 5115 5116
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
5117
	int i;
5118 5119 5120 5121 5122 5123 5124 5125 5126

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
5127 5128
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
5129 5130 5131 5132 5133
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

5134 5135 5136 5137 5138 5139
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
{
	int i;

	if (len == 1)
		return;
J
Jiong Wang 已提交
5140 5141
	/* NOTE: fake 'exit' subprog should be updated as well. */
	for (i = 0; i <= env->subprog_cnt; i++) {
5142
		if (env->subprog_info[i].start < off)
5143
			continue;
5144
		env->subprog_info[i].start += len - 1;
5145 5146 5147
	}
}

5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
5158
	adjust_subprog_starts(env, off, len);
5159 5160 5161
	return new_prog;
}

5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
/* The verifier does more data flow analysis than llvm and will not
 * explore branches that are dead at run time. Malicious programs can
 * have dead code too. Therefore replace all dead at-run-time code
 * with 'ja -1'.
 *
 * Just nops are not optimal, e.g. if they would sit at the end of the
 * program and through another bug we would manage to jump there, then
 * we'd execute beyond program memory otherwise. Returning exception
 * code also wouldn't work since we can have subprogs where the dead
 * code could be located.
A
Alexei Starovoitov 已提交
5172 5173 5174 5175
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5176
	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
A
Alexei Starovoitov 已提交
5177 5178 5179 5180 5181 5182 5183
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
5184
		memcpy(insn + i, &trap, sizeof(trap));
A
Alexei Starovoitov 已提交
5185 5186 5187
	}
}

5188 5189 5190
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
5191
static int convert_ctx_accesses(struct bpf_verifier_env *env)
5192
{
5193
	const struct bpf_verifier_ops *ops = env->ops;
5194
	int i, cnt, size, ctx_field_size, delta = 0;
5195
	const int insn_cnt = env->prog->len;
5196
	struct bpf_insn insn_buf[16], *insn;
5197
	struct bpf_prog *new_prog;
5198
	enum bpf_access_type type;
5199 5200
	bool is_narrower_load;
	u32 target_size;
5201

5202 5203 5204 5205
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
5206
			verbose(env, "bpf verifier is misconfigured\n");
5207 5208
			return -EINVAL;
		} else if (cnt) {
5209
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5210 5211
			if (!new_prog)
				return -ENOMEM;
5212

5213
			env->prog = new_prog;
5214
			delta += cnt - 1;
5215 5216 5217 5218
		}
	}

	if (!ops->convert_ctx_access)
5219 5220
		return 0;

5221
	insn = env->prog->insnsi + delta;
5222

5223
	for (i = 0; i < insn_cnt; i++, insn++) {
5224 5225 5226
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5227
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5228
			type = BPF_READ;
5229 5230 5231
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5232
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5233 5234
			type = BPF_WRITE;
		else
5235 5236
			continue;

5237
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5238 5239
			continue;

5240
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5241
		size = BPF_LDST_BYTES(insn);
5242 5243 5244 5245 5246 5247

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
5248
		is_narrower_load = size < ctx_field_size;
5249
		if (is_narrower_load) {
5250 5251 5252 5253
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
5254
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5255 5256
				return -EINVAL;
			}
5257

5258
			size_code = BPF_H;
5259 5260 5261 5262
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
5263

5264 5265 5266
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
5267 5268 5269 5270 5271 5272

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
5273
			verbose(env, "bpf verifier is misconfigured\n");
5274 5275
			return -EINVAL;
		}
5276 5277

		if (is_narrower_load && size < target_size) {
5278 5279
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5280
								(1 << size * 8) - 1);
5281 5282
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5283
								(1 << size * 8) - 1);
5284
		}
5285

5286
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5287 5288 5289
		if (!new_prog)
			return -ENOMEM;

5290
		delta += cnt - 1;
5291 5292 5293

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
5294
		insn      = new_prog->insnsi + i + delta;
5295 5296 5297 5298 5299
	}

	return 0;
}

5300 5301 5302 5303
static int jit_subprogs(struct bpf_verifier_env *env)
{
	struct bpf_prog *prog = env->prog, **func, *tmp;
	int i, j, subprog_start, subprog_end = 0, len, subprog;
5304
	struct bpf_insn *insn;
5305 5306 5307
	void *old_bpf_func;
	int err = -ENOMEM;

J
Jiong Wang 已提交
5308
	if (env->subprog_cnt <= 1)
5309 5310
		return 0;

5311
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		subprog = find_subprog(env, i + insn->imm + 1);
		if (subprog < 0) {
			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
				  i + insn->imm + 1);
			return -EFAULT;
		}
		/* temporarily remember subprog id inside insn instead of
		 * aux_data, since next loop will split up all insns into funcs
		 */
J
Jiong Wang 已提交
5324
		insn->off = subprog;
5325 5326 5327 5328 5329 5330 5331 5332
		/* remember original imm in case JIT fails and fallback
		 * to interpreter will be needed
		 */
		env->insn_aux_data[i].call_imm = insn->imm;
		/* point imm to __bpf_call_base+1 from JITs point of view */
		insn->imm = 1;
	}

J
Jiong Wang 已提交
5333
	func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL);
5334 5335 5336
	if (!func)
		return -ENOMEM;

J
Jiong Wang 已提交
5337
	for (i = 0; i < env->subprog_cnt; i++) {
5338
		subprog_start = subprog_end;
J
Jiong Wang 已提交
5339
		subprog_end = env->subprog_info[i + 1].start;
5340 5341 5342 5343 5344 5345 5346

		len = subprog_end - subprog_start;
		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
		if (!func[i])
			goto out_free;
		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
		       len * sizeof(struct bpf_insn));
5347
		func[i]->type = prog->type;
5348
		func[i]->len = len;
5349 5350
		if (bpf_prog_calc_tag(func[i]))
			goto out_free;
5351 5352 5353 5354 5355
		func[i]->is_func = 1;
		/* Use bpf_prog_F_tag to indicate functions in stack traces.
		 * Long term would need debug info to populate names
		 */
		func[i]->aux->name[0] = 'F';
5356
		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
		func[i]->jit_requested = 1;
		func[i] = bpf_int_jit_compile(func[i]);
		if (!func[i]->jited) {
			err = -ENOTSUPP;
			goto out_free;
		}
		cond_resched();
	}
	/* at this point all bpf functions were successfully JITed
	 * now populate all bpf_calls with correct addresses and
	 * run last pass of JIT
	 */
J
Jiong Wang 已提交
5369
	for (i = 0; i < env->subprog_cnt; i++) {
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
		insn = func[i]->insnsi;
		for (j = 0; j < func[i]->len; j++, insn++) {
			if (insn->code != (BPF_JMP | BPF_CALL) ||
			    insn->src_reg != BPF_PSEUDO_CALL)
				continue;
			subprog = insn->off;
			insn->off = 0;
			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
				func[subprog]->bpf_func -
				__bpf_call_base;
		}
	}
J
Jiong Wang 已提交
5382
	for (i = 0; i < env->subprog_cnt; i++) {
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
		old_bpf_func = func[i]->bpf_func;
		tmp = bpf_int_jit_compile(func[i]);
		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
			err = -EFAULT;
			goto out_free;
		}
		cond_resched();
	}

	/* finally lock prog and jit images for all functions and
	 * populate kallsysm
	 */
J
Jiong Wang 已提交
5396
	for (i = 0; i < env->subprog_cnt; i++) {
5397 5398 5399
		bpf_prog_lock_ro(func[i]);
		bpf_prog_kallsyms_add(func[i]);
	}
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412

	/* Last step: make now unused interpreter insns from main
	 * prog consistent for later dump requests, so they can
	 * later look the same as if they were interpreted only.
	 */
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		unsigned long addr;

		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = env->insn_aux_data[i].call_imm;
		subprog = find_subprog(env, i + insn->off + 1);
J
Jiong Wang 已提交
5413
		addr  = (unsigned long)func[subprog]->bpf_func;
5414 5415 5416 5417 5418
		addr &= PAGE_MASK;
		insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
			    addr - __bpf_call_base;
	}

5419 5420 5421
	prog->jited = 1;
	prog->bpf_func = func[0]->bpf_func;
	prog->aux->func = func;
J
Jiong Wang 已提交
5422
	prog->aux->func_cnt = env->subprog_cnt;
5423 5424
	return 0;
out_free:
J
Jiong Wang 已提交
5425
	for (i = 0; i < env->subprog_cnt; i++)
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
		if (func[i])
			bpf_jit_free(func[i]);
	kfree(func);
	/* cleanup main prog to be interpreted */
	prog->jit_requested = 0;
	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		insn->off = 0;
		insn->imm = env->insn_aux_data[i].call_imm;
	}
	return err;
}

5441 5442
static int fixup_call_args(struct bpf_verifier_env *env)
{
5443
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5444 5445 5446
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
	int i, depth;
5447 5448
#endif
	int err;
5449

5450 5451 5452 5453
	err = 0;
	if (env->prog->jit_requested) {
		err = jit_subprogs(env);
		if (err == 0)
5454
			return 0;
5455 5456
	}
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
5457 5458 5459 5460 5461 5462 5463 5464 5465
	for (i = 0; i < prog->len; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL) ||
		    insn->src_reg != BPF_PSEUDO_CALL)
			continue;
		depth = get_callee_stack_depth(env, insn, i);
		if (depth < 0)
			return depth;
		bpf_patch_call_args(insn, depth);
	}
5466 5467 5468
	err = 0;
#endif
	return err;
5469 5470
}

5471
/* fixup insn->imm field of bpf_call instructions
5472
 * and inline eligible helpers as explicit sequence of BPF instructions
5473 5474 5475
 *
 * this function is called after eBPF program passed verification
 */
5476
static int fixup_bpf_calls(struct bpf_verifier_env *env)
5477
{
5478 5479
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
5480
	const struct bpf_func_proto *fn;
5481
	const int insn_cnt = prog->len;
5482 5483 5484 5485
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
5486

5487
	for (i = 0; i < insn_cnt; i++, insn++) {
5488 5489 5490
		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5491
		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
			struct bpf_insn mask_and_div[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx div 0 -> 0 */
				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
				*insn,
			};
			struct bpf_insn mask_and_mod[] = {
				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
				/* Rx mod 0 -> Rx */
				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
				*insn,
			};
			struct bpf_insn *patchlet;

			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
				patchlet = mask_and_div + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
			} else {
				patchlet = mask_and_mod + (is64 ? 1 : 0);
				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
			}

			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5519 5520 5521 5522 5523 5524 5525 5526 5527
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
		if (BPF_CLASS(insn->code) == BPF_LD &&
		    (BPF_MODE(insn->code) == BPF_ABS ||
		     BPF_MODE(insn->code) == BPF_IND)) {
			cnt = env->ops->gen_ld_abs(insn, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
				verbose(env, "bpf verifier is misconfigured\n");
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5547 5548
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
5549 5550
		if (insn->src_reg == BPF_PSEUDO_CALL)
			continue;
5551

5552 5553 5554 5555
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
5556 5557
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
5558
		if (insn->imm == BPF_FUNC_tail_call) {
5559 5560 5561 5562 5563 5564
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
5565
			env->prog->aux->stack_depth = MAX_BPF_STACK;
5566

5567 5568 5569 5570
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
5571
			 */
5572
			insn->imm = 0;
5573
			insn->code = BPF_JMP | BPF_TAIL_CALL;
5574 5575 5576 5577 5578 5579 5580 5581 5582

			/* instead of changing every JIT dealing with tail_call
			 * emit two extra insns:
			 * if (index >= max_entries) goto out;
			 * index &= array->index_mask;
			 * to avoid out-of-bounds cpu speculation
			 */
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
			if (map_ptr == BPF_MAP_PTR_POISON) {
5583
				verbose(env, "tail_call abusing map_ptr\n");
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
				return -EINVAL;
			}
			if (!map_ptr->unpriv_array)
				continue;
			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
						  map_ptr->max_entries, 2);
			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
						    container_of(map_ptr,
								 struct bpf_array,
								 map)->index_mask);
			insn_buf[2] = *insn;
			cnt = 3;
			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
5603 5604
			continue;
		}
5605

5606 5607 5608
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
5609
		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5610
		    insn->imm == BPF_FUNC_map_lookup_elem) {
5611
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
5612 5613
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
5614 5615 5616 5617
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5618
				verbose(env, "bpf verifier is misconfigured\n");
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

5635
		if (insn->imm == BPF_FUNC_redirect_map) {
5636 5637 5638 5639 5640 5641
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
5656
patch_call_imm:
5657
		fn = env->ops->get_func_proto(insn->imm, env->prog);
5658 5659 5660 5661
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
5662 5663
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
5664 5665
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
5666
		}
5667
		insn->imm = fn->func - __bpf_call_base;
5668 5669
	}

5670 5671
	return 0;
}
5672

5673
static void free_states(struct bpf_verifier_env *env)
5674
{
5675
	struct bpf_verifier_state_list *sl, *sln;
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
5687
				free_verifier_state(&sl->state, false);
5688 5689 5690 5691 5692 5693 5694 5695
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

5696
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
5697
{
5698
	struct bpf_verifier_env *env;
M
Martin KaFai Lau 已提交
5699
	struct bpf_verifier_log *log;
A
Alexei Starovoitov 已提交
5700 5701
	int ret = -EINVAL;

5702 5703 5704 5705
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

5706
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5707 5708
	 * allocate/free it every time bpf_check() is called
	 */
5709
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5710 5711
	if (!env)
		return -ENOMEM;
5712
	log = &env->log;
5713

5714 5715 5716 5717 5718
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
5719
	env->prog = *prog;
5720
	env->ops = bpf_verifier_ops[env->prog->type];
5721

5722 5723 5724 5725 5726 5727 5728
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
5729 5730 5731
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
5732 5733

		ret = -EINVAL;
5734 5735 5736
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
5737
			goto err_unlock;
5738
	}
5739 5740 5741

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5742
		env->strict_alignment = true;
5743

5744
	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5745 5746 5747 5748 5749
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
			goto err_unlock;
	}

5750 5751 5752 5753
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

5754
	env->explored_states = kcalloc(env->prog->len,
5755
				       sizeof(struct bpf_verifier_state_list *),
5756 5757 5758 5759 5760
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

5761 5762
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

5763 5764 5765 5766
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

5767
	ret = do_check(env);
5768 5769 5770 5771
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
5772

5773
skip_full_check:
5774
	while (!pop_stack(env, NULL, NULL));
5775
	free_states(env);
5776

A
Alexei Starovoitov 已提交
5777 5778 5779
	if (ret == 0)
		sanitize_dead_code(env);

5780 5781 5782
	if (ret == 0)
		ret = check_max_stack_depth(env);

5783 5784 5785 5786
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

5787
	if (ret == 0)
5788
		ret = fixup_bpf_calls(env);
5789

5790 5791 5792
	if (ret == 0)
		ret = fixup_call_args(env);

5793
	if (log->level && bpf_verifier_log_full(log))
5794
		ret = -ENOSPC;
5795
	if (log->level && !log->ubuf) {
5796
		ret = -EFAULT;
5797
		goto err_release_maps;
5798 5799
	}

5800 5801
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
5802 5803 5804
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
5805

5806
		if (!env->prog->aux->used_maps) {
5807
			ret = -ENOMEM;
5808
			goto err_release_maps;
5809 5810
		}

5811
		memcpy(env->prog->aux->used_maps, env->used_maps,
5812
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5813
		env->prog->aux->used_map_cnt = env->used_map_cnt;
5814 5815 5816 5817 5818 5819

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
5820

5821
err_release_maps:
5822
	if (!env->prog->aux->used_maps)
5823 5824 5825 5826
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
5827
	*prog = env->prog;
5828
err_unlock:
5829
	mutex_unlock(&bpf_verifier_lock);
5830 5831 5832
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
5833 5834
	return ret;
}