nn.py 332.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder, Program
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29 30
from .tensor import concat
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
Y
Yu Yang 已提交
34 35

__all__ = [
X
Xin Pan 已提交
36 37 38 39 40 41 42 43 44 45
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
46
    'bpr_loss',
X
Xin Pan 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
64
    'sequence_unpad',
X
Xin Pan 已提交
65 66 67 68 69 70 71 72
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
73
    'sequence_slice',
X
Xin Pan 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
91
    'group_norm',
X
Xin Pan 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
105
    'roi_align',
X
Xin Pan 已提交
106 107 108 109
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
110
    'resize_nearest',
X
Xin Pan 已提交
111 112 113 114 115 116
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
117
    'selu',
X
Xin Pan 已提交
118 119 120
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
121
    'margin_rank_loss',
X
Xin Pan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
165
    'space_to_depth',
W
whs 已提交
166
    'affine_grid',
S
sneaxiy 已提交
167
    'sequence_reverse',
168
    'affine_channel',
B
barrierye 已提交
169
    'similarity_focus',
M
minqiyang 已提交
170
    'hash',
D
dengkaipeng 已提交
171
    'grid_sampler',
G
gmcather 已提交
172 173
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
174
    'bilinear_tensor_product',
C
chengduo 已提交
175 176
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
177
    'lstm',
S
sneaxiy 已提交
178
    'py_func',
Y
Yu Yang 已提交
179 180
]

J
jerrywgz 已提交
181 182
kIgnoreIndex = -100

Y
Yu Yang 已提交
183 184 185 186 187 188 189

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
190
       is_test=False,
191
       name=None):
Y
Yu Yang 已提交
192
    """
193
    **Fully Connected Layer**
Y
Yu Yang 已提交
194

195 196 197 198 199 200 201 202
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
203
    to the output as well.
C
caoying03 已提交
204

C
caoying03 已提交
205
    This process can be formulated as follows:
206 207 208

    .. math::

209
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
210 211 212

    In the above equation:

C
caoying03 已提交
213 214 215 216
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
217
    * :math:`Act`: The activation function.
C
caoying03 已提交
218
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
219 220

    Args:
R
ranqiu 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
236 237
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
238
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
239
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
240
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
241

242
    Returns:
F
fengjiayi 已提交
243
        Variable: The transformation result.
244 245

    Raises:
C
caoying03 已提交
246
        ValueError: If rank of the input tensor is less than 2.
247 248 249 250

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
251
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
252
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
253
    """
C
caoying03 已提交
254

C
caoying03 已提交
255
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
256 257 258 259

    dtype = helper.input_dtype()

    mul_results = []
260 261
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
262 263 264
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
265

Y
Yu Yang 已提交
266
        w = helper.create_parameter(
267
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
268
        tmp = helper.create_variable_for_type_inference(dtype)
269
        helper.append_op(
270 271 272
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
273
            outputs={"Out": tmp},
M
mozga-intel 已提交
274 275
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
276 277 278 279
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
280
    else:
X
Xin Pan 已提交
281
        pre_bias = helper.create_variable_for_type_inference(dtype)
282
        helper.append_op(
283 284 285
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
286
            attrs={"use_mkldnn": False})
287 288 289 290
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
291 292


293 294 295
def embedding(input,
              size,
              is_sparse=False,
296
              is_distributed=False,
297 298 299
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
300
    """
301 302
    **Embedding Layer**

303
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
304 305
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
306 307 308

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
309 310

    Args:
311 312 313 314 315
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
316
        is_distributed(bool): Whether to run lookup table from remote parameter server.
317 318
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
319
            with zeros whenever lookup encounters it in :attr:`input`. If
320
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
321 322
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
323
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
324

325 326 327
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
328

329 330
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
331

C
chengduoZH 已提交
332
          dict_size = len(dataset.ids)
333
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
334
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
335 336 337
    """

    helper = LayerHelper('embedding', **locals())
338 339 340
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
341 342
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
343 344
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
345
    tmp = helper.create_variable_for_type_inference(dtype)
346 347
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
348 349 350 351 352
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
353 354 355
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
356
            'remote_prefetch': remote_prefetch,
357 358
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
359 360 361
    return tmp


W
wopeizl 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
378

W
wopeizl 已提交
379 380 381 382 383 384 385 386 387 388 389
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
390

W
wopeizl 已提交
391 392 393 394
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
395

W
wopeizl 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
482 483


P
phlrain 已提交
484 485 486 487 488 489
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
490
         dropout_prob=0.0,
P
phlrain 已提交
491 492 493 494 495
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
496
    """
P
phlrain 已提交
497
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
498 499 500 501 502

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
542 543
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
544 545 546 547 548 549
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
550
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
551

L
liuhongyu 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
577
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
578 579 580 581 582 583
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
584 585 586
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
646 647 648 649 650 651 652 653 654 655 656
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
657 658
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
659 660 661
    """
    **Dynamic LSTMP Layer**

662 663 664 665 666 667
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
668 669 670 671 672

    The formula is as follows:

    .. math::

673
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
674

675
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
676

677
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
678

679
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
680

681
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
682

683
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
684

685
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
686

Y
Yibing Liu 已提交
687 688 689 690 691 692
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
693
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
694
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
695
          bias vector).
Y
Yibing Liu 已提交
696 697 698
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
699
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
700
    * :math:`h`: The hidden state.
701
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
702 703
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
704
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
705
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
706
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
707 708
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
709 710 711 712

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
713

Y
Yibing Liu 已提交
714 715 716 717 718 719 720 721 722 723 724 725
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
726
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
727 728
                               hidden-hidden weight and projection weight.

729 730
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
731 732
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
733 734
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
735
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
736 737 738 739 740

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
741
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
742 743 744 745 746 747
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
748
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
749 750 751
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
752
                                - The shape is (1 x 7D).
C
chengduo 已提交
753 754 755 756 757

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
758 759 760 761 762 763 764 765 766
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
767
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
768 769
                              default "tanh".
        proj_activation(str): The activation for projection output.
770
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
771 772
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
773 774
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
775 776

    Returns:
777 778 779 780
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
781 782

    Examples:
783

Y
Yibing Liu 已提交
784 785
        .. code-block:: python

786 787 788 789
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
790
            hidden_dim, proj_dim = 512, 256
791
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
792
                                     act=None, bias_attr=None)
793 794 795
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
796 797 798 799
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
800
    """
801

C
chengduo 已提交
802
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
803
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
804
    size = size // 4
Y
Yibing Liu 已提交
805 806 807 808 809 810 811 812 813 814
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
815 816 817 818 819 820
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
849 850 851 852 853 854 855 856 857
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
858
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
859

860
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
861
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
862

G
guosheng 已提交
863 864 865 866 867 868 869 870 871
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
872

G
guosheng 已提交
873
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
874

G
guosheng 已提交
875
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
876 877
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
878 879 880 881
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
882
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
883 884

    Args:
885 886
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
887
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
888
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
889 890
            is the hidden size.
        size(int): The dimension of the gru cell.
891
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
892 893
            hidden-hidden weight matrix. Note:

894
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
895
              :math:`D` is the hidden size.
896
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
897
              The first part are weights of the update gate and reset gate with
898
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
899
              candidate hidden state with shape :math:`(D \\times D)`.
900 901 902 903 904

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
905
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
906
            the bias in the update gate, reset gate and candidate calculations.
907 908 909
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
910 911
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
912
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
913 914 915
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
916
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
917
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
918 919 920 921
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
922 923

    Returns:
G
guosheng 已提交
924
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
925
            and sequence length is the same with the input.
926

G
guosheng 已提交
927
    Examples:
928

G
guosheng 已提交
929 930
        .. code-block:: python

931 932 933 934
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
935
            hidden_dim = 512
936
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
937
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
938 939 940 941 942 943 944 945 946
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
947
    batch_size = input.shape[0]
G
guosheng 已提交
948
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
949
    if h_0:
G
guosheng 已提交
950
        assert h_0.shape == (
Y
Yancey 已提交
951 952 953
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
954

X
Xin Pan 已提交
955 956 957 958
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
977 978 979
def gru_unit(input,
             hidden,
             size,
980 981
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
982
             activation='tanh',
983
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
984
    """
985
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
986

987 988
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
989

990
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
991

992
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
993

994
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
995 996

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
997 998 999
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1000 1001
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1002 1003
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1004 1005 1006
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1007 1008 1009

    Args:
        input (Variable): The fc transformed input value of current step.
1010
        hidden (Variable): The hidden value of gru unit from previous step.
1011
        size (integer): The input dimension value.
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1026
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1027
            the bias in the update gate, reset gate and candidate calculations.
1028 1029 1030
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1031 1032
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1033 1034 1035 1036
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1037

1038 1039 1040 1041 1042 1043
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1044

1045
             # assuming we have x_t_data and prev_hidden of size=10
1046
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1047 1048
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1061
    size = size // 3
Y
Yu Yang 已提交
1062 1063

    # create weight
1064 1065
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1066

X
Xin Pan 已提交
1067 1068 1069
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1070
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1071
    # create bias
1072
    if helper.bias_attr:
Y
Yu Yang 已提交
1073 1074 1075
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1076
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1077 1078 1079

    helper.append_op(
        type='gru_unit',
1080
        inputs=inputs,
Y
Yu Yang 已提交
1081 1082 1083 1084 1085 1086
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1087 1088
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1089 1090 1091 1092 1093
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1094
@templatedoc()
1095
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1096 1097 1098 1099 1100 1101 1102
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1103
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1104 1105 1106 1107
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1108 1109 1110
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1111 1112

    """
Y
Yu Yang 已提交
1113 1114 1115 1116 1117 1118
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1119 1120 1121 1122 1123 1124 1125 1126
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1142 1143 1144 1145
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1146

W
wopeizl 已提交
1147 1148
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1149

W
wopeizl 已提交
1150
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1151

W
wopeizl 已提交
1152
        label(${label_type}): ${label_comment}
1153

W
wopeizl 已提交
1154 1155
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1156

W
wopeizl 已提交
1157 1158
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1159

W
wopeizl 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1170
                "Transition": transition,
W
wopeizl 已提交
1171 1172
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1173

W
wopeizl 已提交
1174
    return viterbi_path
Y
Yu Yang 已提交
1175 1176


Y
yi.wu 已提交
1177
@templatedoc()
F
fengjiayi 已提交
1178
def cos_sim(X, Y):
Y
Yu Yang 已提交
1179
    """
Y
yi.wu 已提交
1180 1181 1182
    ${comment}

    Args:
1183 1184
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1185

Y
yi.wu 已提交
1186
    Returns:
1187
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1188
    """
F
fengjiayi 已提交
1189
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1190 1191 1192
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1203 1204 1205 1206 1207
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1208
            dropout_implementation="downgrade_in_infer"):
1209 1210 1211 1212 1213
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1214
    training. The dropout operator randomly sets (according to the given dropout
1215 1216 1217 1218
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1219 1220
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1221 1222 1223 1224 1225 1226 1227
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1239
                                           dropout op can be removed from the program.
P
phlrain 已提交
1240
                                           the program will be efficient
1241

P
phlrain 已提交
1242

1243 1244

    Returns:
1245
        Variable: A tensor variable is the shape with `x`.
1246 1247

    Examples:
1248

1249 1250
        .. code-block:: python

1251 1252
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1253 1254
    """

F
fengjiayi 已提交
1255
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1256 1257 1258
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1259 1260 1261 1262

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1263 1264 1265 1266 1267
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1268 1269 1270 1271
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1272 1273
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1274
        })
1275 1276 1277
    return out


J
jerrywgz 已提交
1278
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1279
    """
Y
Yibing Liu 已提交
1280 1281
    **Cross Entropy Layer**

1282 1283 1284
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1285 1286

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1287
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1288

Y
Yibing Liu 已提交
1289
        .. math::
Y
yangyaming 已提交
1290

Y
Yibing Liu 已提交
1291 1292 1293
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1294 1295
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1296 1297 1298 1299 1300

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1301
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1302 1303 1304
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1305 1306
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1307
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1308

Y
Yibing Liu 已提交
1309
    Args:
Y
yangyaming 已提交
1310
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1311 1312 1313 1314
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1315
        label (Variable|list): the ground truth which is a 2-D tensor. When
1316 1317 1318 1319
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1320
        soft_label (bool): a flag indicating whether to
1321
                                           interpretate the given labels as soft
1322
                                           labels. Default: `False`.
M
minqiyang 已提交
1323 1324
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1325
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1326 1327 1328 1329 1330

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1331 1332 1333 1334 1335
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1336 1337 1338 1339 1340 1341

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1342
    """
F
fengjiayi 已提交
1343
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1344
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1345 1346 1347 1348 1349
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1350 1351
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1352 1353 1354
    return out


F
frankwhzhang 已提交
1355
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1356 1357 1358
    """
    Bayesian Personalized Ranking Loss Operator.

1359
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1360 1361 1362 1363 1364 1365
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1366 1367 1368 1369 1370 1371
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1372 1373
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1374 1375 1376
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1377 1378 1379
    Examples:
        .. code-block:: python

1380
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1381
    """
1382 1383 1384 1385 1386 1387

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1388
                'Label': [label]},
1389 1390 1391 1392
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1393
def square_error_cost(input, label):
Y
Yu Yang 已提交
1394
    """
1395 1396
    **Square error cost layer**

1397 1398
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1413 1414
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1415 1416

    Returns:
G
guosheng 已提交
1417
        Variable: The tensor variable storing the element-wise squared error \
1418
                  difference of input and label.
1419 1420 1421 1422 1423 1424 1425 1426

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1427
    """
F
fengjiayi 已提交
1428
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1429
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1430 1431 1432 1433 1434 1435
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1436
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1437
    helper.append_op(
F
fengjiayi 已提交
1438 1439
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1440 1441 1442
    return square_out


Y
yi.wu 已提交
1443
@templatedoc()
Y
Yu Yang 已提交
1444 1445 1446 1447
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1448
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1449
    """
Y
yi.wu 已提交
1450
    **Chunk Evaluator**
Y
yi.wu 已提交
1451

Y
yangyaming 已提交
1452
    This function computes and outputs the precision, recall and
1453
    F1-score of chunk detection.
Y
yi.wu 已提交
1454

Y
yi.wu 已提交
1455 1456 1457 1458 1459 1460 1461 1462
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1463

Y
yi.wu 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1489

Y
yi.wu 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1514
    Args:
1515 1516 1517 1518 1519
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1520

Y
yi.wu 已提交
1521
    Returns:
Y
update  
yi.wu 已提交
1522 1523 1524
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1525

Y
yi.wu 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1538
    """
F
fengjiayi 已提交
1539
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1540 1541

    # prepare output
X
Xin Pan 已提交
1542 1543 1544 1545 1546 1547 1548
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1549 1550 1551 1552 1553 1554 1555 1556

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1557 1558 1559 1560
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1561 1562 1563
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1564 1565
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1566
        })
1567 1568
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1569 1570


1571
@templatedoc()
Y
Yu Yang 已提交
1572 1573 1574 1575 1576 1577 1578
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1579 1580
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1581 1582 1583 1584
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1585 1586 1587 1588 1589 1590 1591

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1605

1606 1607
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1608 1609 1610 1611 1612 1613 1614
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1615
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1626
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1627 1628 1629 1630 1631 1632
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1633
def sequence_softmax(input, use_cudnn=False, name=None):
1634 1635 1636
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1637
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1654 1655 1656
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1669 1670
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1671
    softmax_out = helper.create_variable_for_type_inference(dtype)
1672 1673 1674 1675 1676 1677 1678 1679
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1680
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1681
    """
1682
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1683
    has the same shape as the input.
Q
qiaolongfei 已提交
1684

1685 1686 1687 1688 1689 1690
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1691
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1692 1693 1694 1695 1696 1697 1698

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1699
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1700 1701 1702 1703 1704 1705 1706 1707

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1708 1709 1710
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1723 1724
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1725
    softmax_out = helper.create_variable_for_type_inference(dtype)
1726 1727 1728 1729 1730 1731 1732 1733
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1734 1735 1736
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1737 1738
           stride=1,
           padding=0,
1739
           dilation=1,
Y
Yu Yang 已提交
1740 1741 1742
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1743
           use_cudnn=True,
1744 1745
           act=None,
           name=None):
Y
Yu Yang 已提交
1746
    """
C
chengduoZH 已提交
1747
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1748 1749
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1750
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1751 1752 1753 1754 1755 1756 1757
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1758 1759 1760
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1761

1762
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1763

C
chengduoZH 已提交
1764 1765
    .. math::

C
refine  
chengduoZH 已提交
1766
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1767

T
tensor-tang 已提交
1768
    Where:
C
chengduoZH 已提交
1769

1770 1771 1772 1773 1774
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1775
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1776 1777 1778

    Example:

1779 1780
        - Input:

W
weixing02 已提交
1781
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1782

W
weixing02 已提交
1783
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1784

1785
        - Output:
T
tensor-tang 已提交
1786

W
weixing02 已提交
1787
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1788

C
chengduoZH 已提交
1789
        Where
1790 1791

        .. math::
C
chengduoZH 已提交
1792

W
weixing02 已提交
1793 1794
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1795 1796

    Args:
1797
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1798
        num_filters(int): The number of filter. It is as same as the output
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1827 1828
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1829 1830
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1831
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1832
            will be named automatically. Default: None
C
chengduoZH 已提交
1833 1834

    Returns:
G
guosheng 已提交
1835
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1836 1837
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1838
    Raises:
1839 1840
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1841

C
chengduoZH 已提交
1842 1843 1844
    Examples:
        .. code-block:: python

1845 1846
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1847 1848 1849
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1850
    assert param_attr is not False, "param_attr should not be False here."
1851
    l_type = 'conv2d'
X
xzl 已提交
1852 1853
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1854
        l_type = 'depthwise_conv2d'
1855 1856 1857 1858

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1859 1860 1861 1862 1863
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1864
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1865

C
chengduoZH 已提交
1866 1867 1868
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1869
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1870

C
chengduoZH 已提交
1871 1872
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1873 1874

    input_shape = input.shape
M
minqiyang 已提交
1875
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1876 1877

    def _get_default_param_initializer():
C
chengduo 已提交
1878 1879
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1880 1881 1882 1883 1884 1885 1886 1887
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1888
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1904
    helper.append_op(
1905
        type=l_type,
Y
Yu Yang 已提交
1906 1907 1908 1909 1910
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1911 1912 1913
        attrs={
            'strides': stride,
            'paddings': padding,
1914
            'dilations': dilation,
C
chengduoZH 已提交
1915
            'groups': groups,
1916
            'use_cudnn': use_cudnn,
1917
            'use_mkldnn': False,
C
chengduoZH 已提交
1918
        })
Y
Yu Yang 已提交
1919 1920 1921 1922 1923 1924

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1942 1943 1944 1945 1946 1947
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1957 1958
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1959 1960 1961
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1962
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1988
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1989 1990
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1991
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1992 1993
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1994
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1995 1996
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1997
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1998 1999 2000 2001 2002 2003
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2014 2015
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2016 2017
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2018
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2019
            will be named automatically. Default: None.
C
chengduoZH 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2032 2033
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2034 2035 2036
    """

    l_type = 'conv3d'
C
chengduo 已提交
2037
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2048
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2062 2063 2064
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2065 2066 2067 2068 2069 2070 2071 2072
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2073
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2088
            'use_mkldnn': False
C
chengduoZH 已提交
2089 2090
        })

2091
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2092 2093 2094 2095

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2096
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2097
    """
Y
yangyaming 已提交
2098 2099 2100
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2112
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2113 2114 2115 2116 2117
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2118
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2119 2120 2121 2122 2123 2124 2125

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2126 2127
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2128

L
Luo Tao 已提交
2129 2130
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2131
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2132
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2133
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2134 2135 2136 2137 2138 2139 2140

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2141

Y
yangyaming 已提交
2142
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2143 2144 2145 2146 2147
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2148 2149
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2150
    """
F
fengjiayi 已提交
2151
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2152
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2153 2154
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2155 2156 2157 2158 2159 2160

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2161 2162
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2163

Y
yangyaming 已提交
2164 2165 2166 2167 2168
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2169 2170 2171
    return pool_out


C
add doc  
chengduoZH 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2191
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2192 2193 2194 2195 2196
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2197
def sequence_first_step(input):
L
Luo Tao 已提交
2198
    """
L
Luo Tao 已提交
2199
    This function gets the first step of sequence.
L
Luo Tao 已提交
2200 2201 2202 2203

    .. code-block:: text

       x is a 1-level LoDTensor:
2204
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2205 2206 2207 2208 2209
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2210
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2211
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2212

L
Luo Tao 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2222

Y
yangyaming 已提交
2223
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2224 2225 2226
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2227 2228 2229
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2230
def sequence_last_step(input):
L
Luo Tao 已提交
2231
    """
L
Luo Tao 已提交
2232
    This function gets the last step of sequence.
L
Luo Tao 已提交
2233 2234 2235 2236

    .. code-block:: text

       x is a 1-level LoDTensor:
2237
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2238 2239 2240 2241 2242
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2243
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2244
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2245

L
Luo Tao 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2255

Y
yangyaming 已提交
2256
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2257 2258 2259
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2260 2261 2262
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2263 2264 2265 2266
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2267
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2268 2269 2270 2271 2272
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2273

Y
Yibing Liu 已提交
2274 2275
	- Case:

2276
            Given the input Variable **input**:
2277

2278 2279 2280
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2281

2282
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2283

2284
            the output Variable will be
2285

2286 2287 2288
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2289 2290

    NOTE: The first dimension size of **input**, **offset** and **length**
2291
          should be equal. The **offset** should start from 0.
2292

Y
Yibing Liu 已提交
2293
    Args:
2294
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2295
                         sequences.
Y
Yibing Liu 已提交
2296 2297 2298 2299 2300 2301
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2302
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2313
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2314 2315 2316 2317
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2318
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2333
@templatedoc()
Y
Yu Yang 已提交
2334
def pool2d(input,
C
chengduoZH 已提交
2335 2336
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2337 2338
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2339
           global_pooling=False,
C
chengduoZH 已提交
2340
           use_cudnn=True,
2341
           ceil_mode=False,
2342 2343
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2344
    """
F
fengjiayi 已提交
2345
    ${comment}
2346 2347

    Args:
2348 2349 2350
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2351
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2352
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2353 2354
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2355
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2356 2357 2358 2359 2360 2361
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2362 2363 2364
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2365
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2366
                        layer will be named automatically.
2367
        exclusive (bool): Whether to exclude padding points in average pooling
2368
                          mode, default is true
F
fengjiayi 已提交
2369

2370
    Returns:
F
fengjiayi 已提交
2371
        Variable: The pooling result.
F
fengjiayi 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2385 2386 2387 2388
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2389
                            global_pooling=False)
Y
Yu Yang 已提交
2390 2391 2392 2393 2394
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2395

C
chengduoZH 已提交
2396 2397 2398 2399 2400
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2401 2402 2403 2404
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2405 2406
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2407

C
Add doc  
chengduoZH 已提交
2408
    l_type = 'pool2d'
2409 2410

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2411
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2412
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2413 2414

    helper.append_op(
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2426 2427
            "use_mkldnn": False,
            "exclusive": exclusive,
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2441 2442
           name=None,
           exclusive=True):
2443 2444
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2445
    pooling configurations mentioned in input parameters.
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2458
        exclusive (bool): Whether to exclude padding points in average pooling
2459
                          mode, default is true
2460

2461
    Returns:
2462
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2463 2464 2465 2466 2467
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2468

C
chengduoZH 已提交
2469 2470 2471 2472 2473
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2474 2475 2476
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2477

C
chengduoZH 已提交
2478 2479
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2480

2481 2482
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2483
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2484
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2485 2486

    helper.append_op(
2487
        type=l_type,
Y
Yu Yang 已提交
2488 2489 2490 2491 2492 2493 2494
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2495
            "paddings": pool_padding,
2496
            "use_cudnn": use_cudnn,
2497
            "ceil_mode": ceil_mode,
2498 2499
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2512
               data_layout='NCHW',
Y
Yang Yang 已提交
2513
               in_place=False,
2514 2515
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2516
               moving_variance_name=None,
2517
               do_model_average_for_mean_and_var=False,
2518 2519
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2520
    """
Q
qiaolongfei 已提交
2521 2522 2523 2524
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2525

Q
qiaolongfei 已提交
2526
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2527

Q
qiaolongfei 已提交
2528 2529
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2530 2531 2532
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2545

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2559
    Args:
Q
qiaolongfei 已提交
2560
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2561 2562 2563 2564
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2565 2566 2567 2568 2569 2570 2571 2572
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2573
        data_layout(string, default NCHW): NCHW|NHWC
2574
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2575 2576 2577 2578
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2579
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2580
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2581 2582 2583 2584 2585
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2586 2587

    Returns:
Q
qiaolongfei 已提交
2588
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2589 2590 2591 2592 2593 2594 2595

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2596
    """
C
chengduo 已提交
2597
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2618 2619 2620
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2621 2622

    bias = helper.create_parameter(
2623
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2624 2625 2626
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2627

2628 2629
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2630 2631 2632
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2633
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2634
        shape=param_shape,
2635 2636 2637 2638 2639 2640 2641
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2642
            trainable=False,
W
wanghaoshuang 已提交
2643
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2644
        shape=param_shape,
2645 2646
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2647 2648 2649 2650 2651 2652

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2653 2654 2655 2656
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2657

X
Xin Pan 已提交
2658 2659
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2677 2678 2679 2680
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2681
            "use_mkldnn": False,
2682 2683
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2684
        })
Y
Yu Yang 已提交
2685 2686 2687 2688

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2689
@templatedoc()
G
guosheng 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2700
    ${comment}
G
guosheng 已提交
2701 2702 2703

    The formula is as follows:

Y
yuyang18 已提交
2704
    ..  math::
G
guosheng 已提交
2705 2706 2707 2708 2709 2710 2711

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2712 2713 2714 2715 2716 2717 2718 2719
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2720

G
guosheng 已提交
2721 2722
    Args:
        input(Variable): The input tensor variable.
2723
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2724
            normalization. Default True.
2725
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2726 2727
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2728
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2729
            Default 1.
2730
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2731
            division by zero. Default 1e-05.
G
guosheng 已提交
2732
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2733 2734
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2735 2736
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2737
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2738 2739
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2740
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2741
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2742
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2743 2744 2745
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2746 2747

    Returns:
Y
yuyang18 已提交
2748
        ${y_comment}
G
guosheng 已提交
2749 2750 2751

    Examples:

Y
yuyang18 已提交
2752 2753 2754
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2770
    if shift:
G
guosheng 已提交
2771 2772 2773 2774 2775 2776
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2777 2778 2779 2780 2781
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2875 2876 2877 2878
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2879 2880 2881
                     padding=0,
                     stride=1,
                     dilation=1,
2882
                     groups=None,
C
caoying03 已提交
2883
                     param_attr=None,
2884
                     bias_attr=None,
C
chengduoZH 已提交
2885
                     use_cudnn=True,
2886
                     act=None,
C
caoying03 已提交
2887
                     name=None):
Y
Yu Yang 已提交
2888
    """
2889 2890 2891 2892 2893 2894 2895 2896
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2897 2898
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2899 2900 2901
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2902 2903 2904 2905 2906

    For each input :math:`X`, the equation is:

    .. math::

2907
        Out = \sigma (W \\ast X + b)
2908

2909
    Where:
2910 2911 2912

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2913 2914 2915 2916
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2917

2918 2919 2920 2921
    Example:

        - Input:

2922
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2923

2924
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2925 2926 2927

        - Output:

2928
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2929 2930

        Where
Y
Yu Yang 已提交
2931

2932 2933
        .. math::

2934 2935 2936 2937
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2938 2939

    Args:
2940 2941 2942 2943
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2944 2945 2946 2947
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2976
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2977 2978 2979
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2980
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2981
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2982 2983

    Returns:
2984
        Variable: The tensor variable storing the convolution transpose result.
2985 2986

    Raises:
2987 2988
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2989 2990 2991 2992

    Examples:
       .. code-block:: python

2993 2994
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2995
    """
C
chengduo 已提交
2996
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2997 2998 2999 3000 3001 3002 3003 3004
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3005 3006 3007
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3008 3009 3010
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3011

C
chengduoZH 已提交
3012 3013
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3014

Y
Yu Yang 已提交
3015 3016 3017 3018 3019
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3020

Y
Yu Yang 已提交
3021 3022
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3023

C
chengduoZH 已提交
3024
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3025
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3026
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3027
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3028
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3029 3030 3031
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3032

3033 3034 3035 3036 3037 3038 3039
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3040
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3041
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3042

Y
Yu Yang 已提交
3043 3044 3045
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3046
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3047
    helper.append_op(
3048
        type=op_type,
Y
Yu Yang 已提交
3049 3050
        inputs={'Input': [input],
                'Filter': [img_filter]},
3051
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3052
        attrs={
3053
            'output_size': output_size,
3054 3055 3056 3057 3058
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3059 3060
        })

3061 3062 3063
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3064 3065


3066
def conv3d_transpose(input,
Y
Yu Yang 已提交
3067 3068 3069
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3070 3071 3072
                     padding=0,
                     stride=1,
                     dilation=1,
3073
                     groups=None,
C
caoying03 已提交
3074
                     param_attr=None,
3075
                     bias_attr=None,
C
chengduoZH 已提交
3076
                     use_cudnn=True,
3077
                     act=None,
C
caoying03 已提交
3078
                     name=None):
Y
Yu Yang 已提交
3079
    """
3080
    **Convlution3D transpose layer**
3081

3082
    The convolution3D transpose layer calculates the output based on the input,
3083
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3084 3085 3086 3087 3088 3089
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3090 3091 3092
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3093 3094 3095 3096 3097

    For each input :math:`X`, the equation is:

    .. math::

3098
        Out = \sigma (W \\ast X + b)
3099 3100 3101

    In the above equation:

3102 3103
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3104 3105 3106 3107
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3108

3109 3110 3111 3112
    Example:

        - Input:

3113
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3114

3115
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3116 3117 3118

        - Output:

3119
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3120 3121

        Where
Y
Yu Yang 已提交
3122

3123 3124
        .. math::

3125 3126 3127
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3128 3129

    Args:
3130
        input(Variable): The input image with [N, C, D, H, W] format.
3131 3132 3133
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3134
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3135 3136
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3137
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3138 3139 3140
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3141 3142
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3143
        stride(int|tuple): The stride size. If stride is a tuple, it must
3144 3145
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3146
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3147 3148 3149
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3150 3151 3152 3153 3154
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3164 3165
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3166 3167
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3168 3169
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3170 3171

    Returns:
3172
        Variable: The tensor variable storing the convolution transpose result.
3173 3174

    Raises:
3175 3176
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3177 3178 3179 3180

    Examples:
       .. code-block:: python

3181 3182
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3183
    """
C
chengduo 已提交
3184
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3185 3186
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3187
    if not isinstance(input, Variable):
3188
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3189 3190
    input_channel = input.shape[1]

3191 3192 3193
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3194

C
chengduoZH 已提交
3195 3196 3197
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3198 3199 3200 3201 3202 3203
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3204 3205 3206
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3207

3208
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3209
                         padding[0] - 1) // dilation[0] + 1
3210
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3211
                         padding[1] - 1) // dilation[1] + 1
3212
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3213
                         padding[2] - 1) // dilation[2] + 1
3214
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3215
    else:
3216 3217
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3218

3219
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3220
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3221 3222 3223
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3224
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3225
    helper.append_op(
3226
        type=l_type,
Y
Yu Yang 已提交
3227 3228
        inputs={'Input': [input],
                'Filter': [img_filter]},
3229
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3230 3231 3232 3233
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3234
            'groups': groups,
C
chengduoZH 已提交
3235 3236
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3237

3238 3239
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3240
    return out
Y
yangyaming 已提交
3241 3242


Y
yangyaming 已提交
3243
def sequence_expand(x, y, ref_level=-1, name=None):
3244
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3245 3246 3247 3248
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3249 3250 3251 3252 3253

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3254
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3255
                x.data = [[a], [b], [c], [d]]
3256 3257 3258
                x.dims = [4, 1]

            y is a LoDTensor:
3259 3260
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3261

Y
yangyaming 已提交
3262
            ref_level: 0
3263

Y
yangyaming 已提交
3264
            then output is a 1-level LoDTensor:
3265
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3266
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3267 3268 3269 3270
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3271
                x.data = [[a], [b], [c]]
3272 3273 3274
                x.dims = [3, 1]

            y is a LoDTensor:
3275
                y.lod = [[2, 0, 3]]
3276

Y
yangyaming 已提交
3277
            ref_level: -1
3278

Y
yangyaming 已提交
3279 3280 3281
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3282 3283 3284
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3285 3286
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3287
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3288
                        will be named automatically.
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3299
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3300
    """
Y
yangyaming 已提交
3301
    helper = LayerHelper('sequence_expand', input=x, **locals())
3302
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3303
    tmp = helper.create_variable_for_type_inference(dtype)
3304
    helper.append_op(
Y
yangyaming 已提交
3305 3306 3307 3308 3309
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3310
    return tmp
3311 3312


C
chengduo 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3369
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3370 3371 3372 3373 3374 3375 3376 3377
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3378
@templatedoc()
3379
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3380 3381 3382 3383 3384
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3385 3386 3387
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3388
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3389 3390 3391 3392
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3393 3394 3395
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3396

F
fengjiayi 已提交
3397
    Returns:
M
minqiyang 已提交
3398
        Variable: The padded sequence batch and the original lengths before
3399
                  padding. All sequences has the same length.
M
minqiyang 已提交
3400

F
fengjiayi 已提交
3401 3402 3403 3404 3405 3406 3407
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3408
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3409
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3410 3411 3412 3413 3414
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3415 3416
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3417 3418 3419 3420

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3421 3422 3423 3424 3425 3426
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3427 3428
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3429
        attrs={'padded_length': maxlen})
3430
    return out, length
F
fengjiayi 已提交
3431 3432


3433
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3434
    """
3435
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3436

3437 3438
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3448 3449 3450
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3451
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3452 3453 3454 3455 3456 3457

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3458
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3459 3460 3461 3462 3463 3464

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3465 3466
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3481
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3493 3494 3495 3496 3497 3498 3499 3500 3501
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3502 3503
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3504 3505 3506

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3507 3508

    This layer does the search in beams for one time step. Specifically, it
3509 3510 3511 3512 3513 3514
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3515

3516 3517 3518 3519 3520 3521 3522 3523
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3524

3525
    Args:
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3551

3552
    Returns:
3553 3554
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3555 3556 3557 3558

    Examples:
        .. code-block:: python

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3576 3577 3578 3579
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3580 3581 3582
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3583 3584 3585 3586 3587

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3588
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3606 3607 3608 3609 3610 3611 3612
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3613

3614 3615 3616 3617 3618 3619 3620 3621 3622
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3623

3624 3625 3626 3627 3628 3629
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3630

3631 3632
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3633

3634 3635 3636 3637 3638 3639
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3640 3641
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3657 3658 3659 3660
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3661
              param_attr=None,
C
caoying03 已提交
3662 3663
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3664 3665 3666 3667
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3668
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3669

3670
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3671

3672
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3673

3674
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3675 3676 3677

            h_t & = o_t tanh(c_t)

3678 3679 3680 3681 3682 3683
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3684 3685 3686

        .. math::

3687
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3688 3689 3690 3691 3692 3693 3694 3695

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3696
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3697 3698

    Args:
Y
yangyaming 已提交
3699 3700 3701 3702 3703 3704
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3705
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3718 3719
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3720 3721

    Returns:
Y
yangyaming 已提交
3722
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3723 3724

    Raises:
3725 3726 3727 3728
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3729 3730 3731 3732 3733 3734

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3735
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3736
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3737
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3754
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3755 3756 3757 3758
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3759 3760
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3761 3762 3763
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3764
    size = cell_t_prev.shape[1]
3765
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3766 3767
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3768
                param_attr=param_attr,
3769
                bias_attr=bias_attr)
Y
yangyaming 已提交
3770
    dtype = x_t.dtype
X
Xin Pan 已提交
3771 3772
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3782
    return h, c
G
guosheng 已提交
3783 3784


C
caoying03 已提交
3785
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3786
    """
Y
yangyaming 已提交
3787
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3788 3789 3790

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3791
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3792 3793
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3794 3795
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3796
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3797
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3798
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3799 3800
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3801 3802 3803

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3804

G
guosheng 已提交
3805 3806 3807 3808 3809 3810
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3811
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3812 3813 3814 3815
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3816 3817 3818 3819

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3820
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3821 3822 3823
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3824 3825
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3826
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3827 3828
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3829 3830 3831 3832 3833
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3834
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3835 3836 3837 3838
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3839 3840


C
caoying03 已提交
3841
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3842
    """
Y
Yibing Liu 已提交
3843
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3844 3845 3846

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3847 3848 3849
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3850
            must be in the range :math:`[-rank(input), rank(input))`. If
3851
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3852
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3853 3854
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3855
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3856
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3857
                       will be named automatically.
G
guosheng 已提交
3858 3859

    Returns:
Y
Yibing Liu 已提交
3860
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3861

G
guosheng 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3872 3873
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3874 3875 3876 3877 3878 3879 3880

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3881 3882
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3883
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3884 3885
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3886 3887 3888 3889 3890
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3891
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3892 3893 3894 3895
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3896 3897


C
caoying03 已提交
3898
def reduce_max(input, dim=None, keep_dim=False, name=None):
3899
    """
Y
yangyaming 已提交
3900
    Computes the maximum of tensor elements over the given dimension.
3901 3902 3903

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3904
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3905 3906 3907
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3908
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3909 3910
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3911
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3912 3913
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3914 3915 3916

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3917

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3929 3930 3931 3932 3933 3934 3935

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3936 3937
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3938
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3939 3940
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3941 3942 3943 3944 3945
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3946
            'dim': dim if dim != None else [0],
3947 3948 3949 3950 3951 3952
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3953
def reduce_min(input, dim=None, keep_dim=False, name=None):
3954
    """
Y
yangyaming 已提交
3955
    Computes the minimum of tensor elements over the given dimension.
3956 3957 3958

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3959
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3960 3961 3962
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3963
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3964 3965
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3966
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3967 3968
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3969 3970 3971

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3972

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3984 3985 3986 3987 3988 3989 3990

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3991 3992
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3993
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3994 3995
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3996 3997 3998 3999 4000
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4001
            'dim': dim if dim != None else [0],
4002 4003 4004 4005
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4006 4007


4008 4009 4010 4011 4012 4013
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4014
        dim (list|int|None): The dimensions along which the product is performed. If
4015 4016
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4017 4018
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4019 4020 4021
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4022
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4023
            layer will be named automatically.
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4038
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4039
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4040 4041 4042 4043 4044 4045 4046

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4047 4048
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4049
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4050 4051
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4052 4053 4054 4055 4056
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4057
            'dim': dim if dim != None else [0],
4058 4059 4060 4061 4062 4063
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4064
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4065
    """
C
caoying03 已提交
4066
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4067 4068 4069

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4070 4071 4072 4073 4074
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4075
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4076
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4077
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4078 4079
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4080 4081

    Returns:
D
dzhwinter 已提交
4082
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4092 4093
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4109
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4123 4124 4125 4126 4127 4128 4129 4130 4131


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4132
    .. math::
4133 4134

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4135 4136 4137 4138 4139

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4140
        x(Variable|list): The input tensor to l2_normalize layer.
4141
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4142 4143
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4144
        epsilon(float): The epsilon value is used to avoid division by zero, \
4145
            the defalut value is 1e-10.
4146
        name(str|None): A name for this layer(optional). If set None, the layer \
4147
            will be named automatically.
C
caoying03 已提交
4148 4149

    Returns:
4150
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4151 4152

    Examples:
4153

C
caoying03 已提交
4154 4155
        .. code-block:: python

4156 4157 4158 4159
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4160 4161
    """

F
fengjiayi 已提交
4162 4163
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4164 4165
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4166 4167
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4168
    helper.append_op(
4169 4170 4171 4172
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4173
        attrs={
4174 4175
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4176 4177
        })
    return out
4178 4179


S
sneaxiy 已提交
4180
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4181
    """
Y
ying 已提交
4182 4183 4184 4185
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4186

C
chengduoZH 已提交
4187
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4188
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4189

4190 4191 4192 4193 4194
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4195
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4196

C
chengduoZH 已提交
4197
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4198
      performs in the following way.
G
guosheng 已提交
4199

4200
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4201
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4202
        last two dimensions and a batched matrix multiply supporting broadcast
4203
        applies on the two tensors.
G
guosheng 已提交
4204

Y
ying 已提交
4205 4206
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4207
    removed after matrix multiplication.
G
guosheng 已提交
4208 4209 4210

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4211 4212 4213
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4214
        alpha (float): The scale of output. Default 1.0.
4215
        name(str|None): A name for this layer(optional). If set None, the layer
4216
            will be named automatically.
G
guosheng 已提交
4217 4218

    Returns:
4219
        Variable: The product Tensor variable.
G
guosheng 已提交
4220

G
guosheng 已提交
4221 4222 4223
    Examples:
        .. code-block:: python

4224
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4225 4226
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4227

4228 4229
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4230

4231 4232
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4233

4234 4235
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4236 4237 4238 4239

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4240 4241
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4242

Y
ying 已提交
4243
            # x: [M], y: [N]
4244
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4245
    """
Y
ying 已提交
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4258
            y_shape = y_shape + [1]
Y
ying 已提交
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4275
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4276
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4277
    helper.append_op(
4278 4279 4280 4281
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4282 4283 4284
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4285
            'alpha': float(alpha),
S
sneaxiy 已提交
4286
        })
4287
    return out
4288 4289


4290
def topk(input, k, name=None):
Q
qingqing01 已提交
4291 4292 4293 4294
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4295
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4296 4297 4298 4299 4300 4301
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4323 4324 4325
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4326
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4327
                 of input.
4328
        name(str|None): A name for this layer(optional). If set None, the layer
4329
                       will be named automatically.
F
fengjiayi 已提交
4330
                       Default: None
Q
qingqing01 已提交
4331 4332

    Returns:
4333 4334 4335
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4336
        within the last dimension of input.
Q
qingqing01 已提交
4337

F
fengjiayi 已提交
4338 4339
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4340 4341 4342 4343 4344 4345 4346

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4347 4348
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4360
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4361
    """
Y
ying 已提交
4362 4363 4364 4365 4366 4367 4368 4369 4370
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4371

Y
ying 已提交
4372
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4373

4374
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4375 4376
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4377
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4378

4379
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4380 4381
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4382

4383 4384 4385
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4386
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4387
                          the length of reference string.
4388
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4389
                                     calculating edit distance.
4390
        name (str): The name of this layer. It is optional.
4391

W
wanghaoshuang 已提交
4392
    Returns:
W
wanghaoshuang 已提交
4393
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4394 4395 4396 4397

    Examples:
        .. code-block:: python

T
tink2123 已提交
4398 4399
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4400
            cost = fluid.layers.edit_distance(input=x,label=y)
4401
    """
4402
    helper = LayerHelper("edit_distance", **locals())
4403

4404
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4405
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4406 4407
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4408 4409 4410 4411 4412

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4413
            attrs={"tokens": ignored_tokens})
4414 4415 4416 4417 4418
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4419
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4420
            attrs={"tokens": ignored_tokens})
4421 4422
        label = erased_label

4423
    # edit distance op
X
Xin Pan 已提交
4424 4425
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4426 4427 4428 4429
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4430 4431
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4432 4433
        attrs={"normalized": normalized})

4434
    return edit_distance_out, sequence_num
4435 4436 4437 4438 4439


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4440

Y
ying 已提交
4441 4442 4443 4444
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4462
        input.lod = [[4, 4]]
W
whs 已提交
4463 4464
      
        Computation:
4465

W
whs 已提交
4466 4467 4468 4469 4470 4471
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4472 4473 4474 4475 4476

        output.data = [[2],
                       [1],
                       [3]]

4477
        output.lod = [[2, 1]]
4478

W
whs 已提交
4479

4480 4481
    Args:

Y
ying 已提交
4482 4483 4484 4485 4486 4487 4488 4489 4490
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4491
        name (str): The name of this layer. It is optional.
4492 4493

    Returns:
W
whs 已提交
4494 4495 4496 4497
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4498 4499 4500 4501 4502

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4503

4504
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4505
    """
4506
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4507
    _, topk_indices = topk(input, k=1)
4508 4509

    # ctc align op
X
Xin Pan 已提交
4510
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4511 4512 4513
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4514
        outputs={"Output": [ctc_out]},
4515 4516
        attrs={"merge_repeated": True,
               "blank": blank})
4517
    return ctc_out
4518 4519


W
Wu Yi 已提交
4520
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4521
    """
4522 4523
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4524
    to compute Connectionist Temporal Classification (CTC) loss.
4525 4526
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4527 4528 4529
    input tensor.

    Args:
4530
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4531 4532 4533 4534
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4535
       label (Variable): The ground truth of variable-length sequence,
4536 4537 4538
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4539 4540
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4541 4542 4543
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4544
         follewed by a mean_op.
W
Wu Yi 已提交
4545
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4546 4547

    Returns:
4548 4549
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4550 4551

    Examples:
4552

W
wanghaoshuang 已提交
4553
        .. code-block:: python
4554

4555 4556 4557
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4558 4559

    """
F
fengjiayi 已提交
4560
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4561 4562
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4563 4564 4565 4566 4567 4568
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4569 4570 4571 4572 4573
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4574
    return loss_out
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4590 4591 4592
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4593 4594 4595 4596 4597
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4598

4599
            out.lod  = [[0, 1, 3]]
4600 4601 4602 4603

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4604 4605 4606 4607 4608 4609 4610
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4611 4612 4613

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4614 4615

    Returns:
4616

4617 4618 4619 4620 4621
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4622
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4623
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4624 4625
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4626
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4627 4628 4629 4630 4631 4632
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4633 4634


4635 4636 4637 4638
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4639 4640 4641 4642 4643 4644
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4645
        num_neg_samples=None,
4646 4647 4648
        name=None,
        sampler="uniform",
        custom_dist=None,
4649 4650
        seed=0,
        is_sparse=False):
4651 4652 4653 4654 4655 4656 4657
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4658 4659
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4660
            sample is 1.0.
C
chengduo 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4670
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4671 4672
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4673 4674 4675
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4676
        custom_dist (float[]): A float[] with size=num_total_classes.
4677 4678 4679 4680
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4681
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4682

4683
    Returns:
Y
Yibing Liu 已提交
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4711 4712 4713 4714 4715 4716 4717 4718 4719

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4720

4721
    """
Y
Yang Yu 已提交
4722 4723 4724
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4725 4726

    dim = input.shape[1]
Y
Yang Yu 已提交
4727 4728 4729 4730 4731 4732
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4733
    inputs = {}
C
chengduo 已提交
4734 4735 4736 4737 4738 4739 4740
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4741 4742 4743
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4744

4745 4746 4747 4748
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4749 4750 4751 4752 4753 4754 4755

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4808 4809 4810 4811
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4812 4813 4814 4815 4816
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4817 4818
    attrs = {
        'num_total_classes': int(num_total_classes),
4819 4820
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4821 4822
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4823
    }
Y
Yang Yu 已提交
4824 4825 4826

    helper.append_op(
        type='nce',
C
chengduo 已提交
4827
        inputs=inputs,
Y
Yang Yu 已提交
4828 4829 4830 4831 4832 4833
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4834
    return cost / (num_neg_samples + 1)
4835 4836


C
chengduo 已提交
4837 4838
def hsigmoid(input,
             label,
4839
             num_classes,
C
chengduo 已提交
4840 4841
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4842
             name=None,
4843 4844 4845
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4846
             is_sparse=False):
W
weixing02 已提交
4847 4848
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4849
    process of language model. This operator organizes the classes into a
4850 4851
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4852 4853 4854 4855 4856 4857
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4858
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4859
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4860

4861 4862 4863 4864 4865 4866 4867 4868 4869
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4870
    Args:
M
minqiyang 已提交
4871
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4872 4873 4874 4875
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4876 4877 4878
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4890 4891 4892 4893 4894 4895 4896
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4897
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4898 4899
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4900 4901

    Returns:
J
JiabinYang 已提交
4902
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4903 4904 4905 4906 4907

    Examples:

        .. code-block:: python

G
guosheng 已提交
4908 4909 4910
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4911 4912 4913 4914
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4915 4916
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4917
    dim = input.shape[1]
4918
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4919 4920 4921
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4922 4923 4924 4925
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4926 4927
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4928 4929 4930
    else:
        pass

J
JiabinYang 已提交
4931 4932
    weights = None

4933
    if not is_custom:
J
JiabinYang 已提交
4934 4935 4936 4937 4938 4939 4940 4941
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4942
            shape=[num_classes, dim],
J
JiabinYang 已提交
4943 4944
            is_bias=False,
            dtype=input.dtype)
4945 4946 4947
    inputs = {
        "X": input,
        "W": weights,
4948 4949
        "PTable": path_table,
        "PathCode": path_code,
4950 4951
        "Label": label
    }
W
weixing02 已提交
4952
    if helper.bias_attr:
4953
        if not is_custom:
J
JiabinYang 已提交
4954 4955
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4956
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4957 4958 4959 4960 4961 4962
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4963
                shape=[num_classes, 1],
J
JiabinYang 已提交
4964 4965 4966
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4967 4968
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4969
        inputs=inputs,
W
weixing02 已提交
4970 4971
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4972 4973
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4974 4975 4976
    return out


Y
fix ci.  
ying 已提交
4977
def transpose(x, perm, name=None):
Y
ying 已提交
4978 4979 4980 4981 4982 4983 4984
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4985 4986 4987
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4988 4989 4990 4991 4992 4993 4994

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4995
            # use append_batch_size=False to avoid prepending extra
4996
            # batch size in shape
4997
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4998
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4999
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5000 5001
    """

Y
fix ci.  
ying 已提交
5002
    if len(perm) != len(x.shape):
Y
ying 已提交
5003 5004 5005
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5006 5007 5008 5009 5010 5011
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5012 5013

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5014 5015
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5016
    helper.append_op(
5017
        type='transpose2',
Y
fix ci.  
ying 已提交
5018
        inputs={'X': [x]},
5019 5020
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5021 5022
        attrs={'axis': perm})
    return out
5023 5024


5025 5026 5027 5028 5029 5030 5031
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5032
    """
5033 5034 5035 5036 5037 5038 5039
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5068 5069 5070 5071 5072 5073 5074 5075 5076
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5077 5078 5079
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5080 5081 5082 5083 5084
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5112 5113 5114
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5127
            output.dims = {8, 8}
5128

5129
            output.lod = [[4, 4]]
5130

T
Tink_Y 已提交
5131
    Examples:
5132 5133 5134

        .. code-block:: python

5135 5136
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5137 5138

    """
W
wanghaoshuang 已提交
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5149 5150 5151 5152 5153 5154 5155
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5156
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5157
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5158
    helper.append_op(
5159
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5160
    return out
5161 5162


Y
yuyang18 已提交
5163
@templatedoc()
5164
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5165 5166
    """
    ${comment}
5167 5168

    Args:
Y
yuyang18 已提交
5169
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5170 5171
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5172 5173 5174 5175 5176
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5177
        ${out_comment}.
5178 5179

    Examples:
Y
yuyang18 已提交
5180 5181 5182 5183
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5184 5185 5186 5187 5188 5189
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5190
    out = helper.create_variable_for_type_inference(dtype)
5191 5192 5193 5194 5195
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5196
    return helper.append_activation(out)
5197 5198


Y
yuyang18 已提交
5199
@templatedoc()
5200 5201
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5202 5203 5204 5205 5206 5207 5208
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5209 5210

    Args:
Y
yuyang18 已提交
5211 5212
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5213 5214

    Returns:
Y
yuyang18 已提交
5215
        ${out_comment}.
5216 5217
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5218 5219 5220 5221 5222

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5223
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5224 5225 5226 5227 5228 5229
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5230 5231


5232 5233 5234
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5235
                               ignore_index=kIgnoreIndex,
5236 5237
                               numeric_stable_mode=False,
                               return_softmax=False):
5238 5239
    """
    **Softmax With Cross Entropy Operator.**
5240

5241 5242 5243 5244
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5245

5246 5247 5248
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5249

5250 5251 5252
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5253

5254
    The equation is as follows:
5255

5256
    1) Hard label (one-hot label, so every sample has exactly one class)
5257

5258 5259 5260 5261
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5262

5263 5264 5265
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5266

5267 5268 5269 5270
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5271 5272 5273
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5274

S
sneaxiy 已提交
5275 5276 5277 5278 5279 5280 5281 5282
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5283 5284 5285 5286 5287 5288 5289 5290
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5291 5292
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5293
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5294 5295 5296
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5297 5298 5299
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5300
                                    stable algorithm. Default: False
5301
        return_softmax (bool): A flag indicating whether to return the softmax
5302
                               along with the cross entropy loss. Default: False
5303

5304
    Returns:
5305 5306 5307 5308
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5309
                              2-D tensor with shape [N x K].
5310 5311 5312 5313 5314 5315 5316

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5317 5318
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5319 5320
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5321 5322
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5323 5324 5325 5326 5327 5328
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5329 5330 5331 5332 5333
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5334 5335 5336 5337

    if return_softmax:
        return loss, softmax

5338 5339 5340 5341 5342
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5343 5344
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5345
    For each instance, it computes the smooth L1 loss element by element first
5346
    and then sums all the losses. So the shape of ouput Variable is
5347
    [batch_size, 1].
5348

5349 5350
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5351
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5352
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5353
            L1 loss op with same shape as :attr:`x`.
5354
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5355 5356
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5357
            by this tensor element by element.
5358
        outside_weight (Variable|None): A tensor with rank at least 2. This
5359 5360
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5361
            element by element.
5362
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5363 5364
           scalar with default value 1.0.

5365
    Returns:
5366
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5367 5368 5369 5370 5371

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5372 5373
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5374
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5375
            out = fluid.layers.smooth_l1(x=fc, y=label)
5376
    """
5377

5378
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5379 5380
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5393 5394 5395 5396


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5397
    This layer creates the one-hot representations for input indices.
5398 5399

    Args:
Y
Yibing Liu 已提交
5400 5401
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5402 5403

    Returns:
Y
Yibing Liu 已提交
5404
        Variable: The one-hot representations of input.
5405 5406

    Examples:
C
caoying03 已提交
5407
        .. code-block:: python
5408

Y
Yibing Liu 已提交
5409 5410
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5411 5412
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5413
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5414 5415 5416 5417 5418 5419
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5420 5421


Y
Yu Yang 已提交
5422
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5423
    """
Y
yi.wu 已提交
5424 5425 5426
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5427 5428 5429 5430 5431 5432

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5433 5434
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5435 5436 5437 5438 5439 5440

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5441 5442
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5443 5444
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5445 5446 5447 5448 5449
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5450
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5451
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5452 5453
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5454 5455
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5456 5457 5458
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5459 5460


5461
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5462
    """
C
caoying03 已提交
5463 5464
    Gives a new shape to the input Tensor without changing its data.

5465 5466 5467 5468 5469
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5470

5471
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5472

5473 5474 5475 5476
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5477
    2. 0 means the actual dimension value is going to be copied from the
5478 5479 5480 5481
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5482 5483

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5484
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5485
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5486

5487
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5488 5489
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5490 5491
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5492
    dimensions.
C
caoying03 已提交
5493

5494
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5495 5496 5497 5498
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5499 5500

    Args:
5501
        x(variable): The input tensor.
C
caoying03 已提交
5502 5503
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5504 5505 5506 5507 5508
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5509 5510
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5511 5512 5513 5514 5515 5516 5517
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5518
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5519

5520
    Returns:
G
guosheng 已提交
5521 5522 5523 5524
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5525

X
Xin Pan 已提交
5526 5527 5528
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5529 5530
    Examples:
        .. code-block:: python
G
guosheng 已提交
5531

5532
            data = fluid.layers.data(
5533
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5534
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5535
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5536 5537 5538
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5539
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5540 5541 5542 5543 5544
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5545

5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5561
    helper = LayerHelper("reshape2", **locals())
5562 5563
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5564
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5565
    helper.append_op(
5566
        type="reshape2",
X
Xin Pan 已提交
5567
        inputs=inputs,
D
dzhwinter 已提交
5568
        attrs={"shape": shape},
5569 5570
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5571

D
dzhwinter 已提交
5572
    return helper.append_activation(out)
5573

5574

5575
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5576
    """
M
minqiyang 已提交
5577 5578 5579
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5580
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5581

Y
Yibing Liu 已提交
5582 5583
    Examples:
    Case 1:
M
minqiyang 已提交
5584
      Given
Y
Yibing Liu 已提交
5585 5586 5587 5588 5589 5590 5591 5592
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5593
        and
Y
Yibing Liu 已提交
5594 5595 5596
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5597

Y
Yibing Liu 已提交
5598
    Args:
5599
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5600
        axes (list): List of integers, indicating the dimensions to be squeezed.
5601
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5602 5603 5604 5605 5606 5607 5608 5609

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5610
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5611 5612
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5613 5614
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5615
    helper.append_op(
5616
        type="squeeze2",
5617
        inputs={"X": input},
Y
Yibing Liu 已提交
5618
        attrs={"axes": axes},
5619 5620
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5621

5622 5623 5624
    return out


5625
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5626
    """
M
minqiyang 已提交
5627 5628 5629
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5630

M
minqiyang 已提交
5631 5632
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5633
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5634

Y
Yibing Liu 已提交
5635
    Args:
5636
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5637
        axes (list): List of integers, indicating the dimensions to be inserted.
5638
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5639 5640 5641 5642 5643 5644 5645 5646

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5647
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5648 5649
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5650 5651
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5652
    helper.append_op(
5653
        type="unsqueeze2",
5654
        inputs={"X": input},
Y
Yibing Liu 已提交
5655
        attrs={"axes": axes},
5656 5657
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5658

5659 5660
    return out

5661

Y
yangyaming 已提交
5662
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5663
    """
Y
Yibing Liu 已提交
5664
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5665 5666 5667 5668
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5669
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5670 5671 5672 5673 5674 5675

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5676
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5677 5678 5679
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5680
            target_lod: [4, 2]
Y
yangyaming 已提交
5681 5682

            then we get a 1-level LoDTensor:
5683
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5684 5685 5686 5687 5688 5689
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5690
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5691 5692 5693 5694
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5695
                y.data = [[2, 4]]
Y
yangyaming 已提交
5696 5697 5698
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5699
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5700 5701 5702 5703 5704 5705
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5706
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5707 5708 5709 5710
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5711
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5712 5713 5714 5715
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5716
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5717 5718 5719 5720 5721
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5722
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5723
                           from :attr:`y`.
Y
yangyaming 已提交
5724
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5725
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5726 5727

    Returns:
Y
Yibing Liu 已提交
5728
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5729 5730

    Raises:
Y
Yibing Liu 已提交
5731
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5741
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5767
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5796 5797
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5810 5811 5812
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5826 5827 5828 5829


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5830
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5831
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5832

G
guosheng 已提交
5833 5834 5835 5836
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5859
                         The length of :attr:paddings must be
G
guosheng 已提交
5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5870

G
guosheng 已提交
5871 5872 5873 5874 5875 5876
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5877
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5878 5879 5880 5881 5882 5883 5884
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5885 5886


C
chengduo 已提交
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
5918 5919
		And
            pad_value = -1,
C
chengduo 已提交
5920

T
Tink_Y 已提交
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5956
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5957 5958 5959 5960 5961 5962 5963 5964 5965
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5966 5967 5968 5969 5970 5971 5972
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5973 5974
    called label-smoothing regularization (LSR).

5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5998
                              be :math:`(1, class\_num)`.
5999 6000
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6001
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6021
    smooth_label = helper.create_variable_for_type_inference(dtype)
6022 6023 6024 6025 6026 6027 6028
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6029 6030


W
wopeizl 已提交
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6067 6068


J
jerrywgz 已提交
6069 6070 6071 6072 6073 6074
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6075 6076
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6093 6094 6095
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6096 6097 6098 6099 6100 6101
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6102
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6143 6144
        .. code-block:: python

W
whs 已提交
6145 6146 6147 6148
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6149
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6150 6151 6152 6153 6154 6155
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6156 6157


6158 6159 6160 6161
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6162 6163
                 resample='BILINEAR',
                 actual_shape=None):
6164
    """
Q
qiaolongfei 已提交
6165
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6166

6167
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6168 6169 6170
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6171

6172
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6173

6174
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6175

6176
    Args:
6177
        input (Variable): The input tensor of image resize layer,
6178 6179
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6180
        out_shape(list|tuple|Variable|None): Output shape of image resize
6181 6182
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6183
        scale(float|None): The multiplier for the input height or width.
6184 6185 6186
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6187 6188
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6189
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6190
                       currently.
6191
                       Default: 'BILINEAR'
6192 6193 6194
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6195
                                :attr:`out_shape` and :attr:`scale` specifying
6196 6197 6198 6199 6200 6201 6202
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6203 6204
                                constructing stage.
                                Default: None
6205 6206

    Returns:
Q
update  
qiaolongfei 已提交
6207 6208
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6209

6210 6211 6212
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6213
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6214 6215 6216 6217
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6218 6219 6220
    Examples:
        .. code-block:: python

6221
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6222
    """
6223 6224 6225 6226
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6227 6228
    if resample not in resample_methods:
        raise ValueError(
6229
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6230
        )
6231
    resample_type = resample_methods[resample]
6232
    if out_shape is None and scale is None:
6233
        raise ValueError("One of out_shape and scale must not be None.")
6234
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6235
    dtype = helper.input_dtype()
6236 6237 6238 6239

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6240 6241 6242
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6243
    if out_shape is not None:
6244 6245 6246 6247
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6248
            inputs['OutSize'] = out_shape
6249 6250 6251 6252 6253 6254 6255 6256
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6257 6258 6259 6260
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6261 6262 6263 6264 6265
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6266
    out = helper.create_variable_for_type_inference(dtype)
6267
    helper.append_op(
6268
        type='{}_interp'.format(resample_type),
6269
        inputs=inputs,
6270
        outputs={"Out": out},
6271 6272 6273
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6274
    return out
F
stash  
fengjiayi 已提交
6275 6276


6277
@templatedoc(op_type="bilinear_interp")
6278 6279 6280 6281 6282
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6283
    """
6284 6285
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6286 6287
    in priority order.

6288 6289 6290 6291
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6292 6293
    again in the other direction.

6294
    For details of bilinear interpolation, please refer to Wikipedia:
6295
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6296 6297 6298 6299 6300

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6301

Y
yuyang18 已提交
6302 6303 6304 6305 6306
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6307 6308 6309
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6310
                                :attr:`out_shape` and :attr:`scale` specifying
6311 6312 6313 6314 6315 6316 6317
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6318 6319
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6320 6321 6322

    Returns:
        ${out_comment}.
6323 6324 6325 6326 6327

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6328 6329
    """

6330
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6331 6332


6333
@templatedoc(op_type="nearest_interp")
6334 6335 6336 6337 6338
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6339
    """
6340
    Resize input by performing nearest neighbor interpolation in both the
6341 6342
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6343 6344
    out_shape and scale in priority order.

6345
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6346
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6347 6348 6349 6350 6351

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6352

Y
yuyang18 已提交
6353 6354 6355 6356 6357
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6358 6359 6360
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6361
                                :attr:`out_shape` and :attr:`scale` specifying
6362 6363 6364 6365 6366 6367 6368
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6369 6370
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6371 6372 6373

    Returns:
        ${out_comment}.
6374 6375 6376 6377 6378

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6379 6380
    """

6381
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6382 6383 6384 6385


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6386 6387 6388
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6389 6390 6391 6392 6393 6394 6395
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6396
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6397

6398
    Returns:
Q
update  
qiaolongfei 已提交
6399
        Variable: The output is a 4-D tensor of the shape
6400
        (num_batches, channls, out_h, out_w).
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6411 6412 6413
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6414 6415 6416
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6417 6418
def gather(input, index):
    """
Q
qiaolongfei 已提交
6419 6420
    **Gather Layer**

6421
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6422 6423 6424 6425
    of X indexed by `index` and concatenate them together.

    .. math::

6426
        Out = X[Index]
W
whs 已提交
6427 6428 6429 6430 6431 6432 6433


    .. code-block:: text


                Given:

6434 6435
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6446
        input (Variable): The source input with rank>=1.
W
whs 已提交
6447 6448 6449 6450 6451 6452
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6453

W
whs 已提交
6454 6455 6456 6457 6458 6459
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6460
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6461 6462 6463 6464 6465 6466 6467 6468
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6500
    out = helper.create_variable_for_type_inference(dtype)
6501 6502 6503 6504 6505 6506 6507 6508 6509
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6560
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6561 6562 6563 6564 6565 6566 6567 6568 6569
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6583

6584 6585 6586
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6587
    """
F
stash  
fengjiayi 已提交
6588
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6589
    dtype = x.dtype
X
Xin Pan 已提交
6590
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6591
    if seed is None:
6592
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6593
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6594
    if isinstance(seed, int):
F
fengjiayi 已提交
6595 6596 6597 6598 6599
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6600 6601 6602 6603
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6604
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6605 6606
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6607 6608
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6609
    return out
W
whs 已提交
6610 6611


6612
def log(x, name=None):
W
wanghaoshuang 已提交
6613 6614 6615 6616 6617
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6618
        Out = \\ln(x)
W
wanghaoshuang 已提交
6619 6620

    Args:
6621
        x (Variable): Input tensor.
6622 6623
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6624 6625 6626 6627 6628 6629 6630 6631

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6632
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6633 6634
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6635
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6636
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6637
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6638 6639 6640
    return out


6641
def relu(x, name=None):
W
wanghaoshuang 已提交
6642 6643
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6644
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6645 6646 6647 6648
    the tensor elementwise.

    .. math::

6649
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6650 6651

    Args:
6652
        x (Variable): The input tensor.
6653 6654
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6655 6656 6657 6658 6659 6660 6661 6662

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6663
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6664 6665
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6666
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6667
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6668 6669
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6670
    return out
6671 6672


C
chengduo 已提交
6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6714 6715 6716
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6717 6718 6719 6720
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6721
    .. math::
6722 6723

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6724

6725
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6726 6727 6728 6729 6730
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6731
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6732
                           Its shape should be the same as input.
6733
        num_classes (int): The possible number of labels.
W
whs 已提交
6734 6735 6736 6737

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6738
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6739 6740 6741 6742

    Examples:

        .. code-block:: python
6743

W
whs 已提交
6744 6745 6746 6747
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6748 6749 6750
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6751 6752
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6753 6754
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6755
        outputs={
W
whs 已提交
6756 6757 6758
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6759 6760 6761
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
6830
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
6831 6832 6833 6834 6835

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6836
            isinstance(shape, Variable)):
6837 6838 6839 6840 6841
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6842
    out = helper.create_variable_for_type_inference(x.dtype)
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6860 6861


W
whs 已提交
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6879

W
whs 已提交
6880
              out_shape = [2, 3, 5, 5]
6881

W
whs 已提交
6882
          Step 1:
6883

W
whs 已提交
6884 6885 6886
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6887

W
whs 已提交
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6958
            isinstance(out_shape, Variable)):
W
whs 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6980 6981 6982 6983 6984 6985 6986 6987
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6988

6989 6990
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6991

6992 6993 6994 6995
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6996

6997 6998 6999 7000 7001
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7002 7003 7004

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7040
    out = helper.create_variable_for_type_inference("float32")
7041 7042 7043 7044 7045 7046 7047 7048

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7049 7050


M
minqiyang 已提交
7051 7052
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7053
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7054
    which compares left score and right score passed in.
M
minqiyang 已提交
7055
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7056 7057 7058 7059 7060 7061

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7062
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7063 7064
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7065
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7066 7067 7068
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7069
       Variable: The ranking loss.
M
minqiyang 已提交
7070
    Raises:
M
minqiyang 已提交
7071
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7072 7073 7074 7075 7076 7077 7078
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7079
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7080 7081 7082 7083 7084 7085
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7086 7087
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7111
        .. code-block:: text
W
whs 已提交
7112

T
Tink_Y 已提交
7113
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7114

T
Tink_Y 已提交
7115 7116
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7117

T
Tink_Y 已提交
7118
	      Case 0:
M
minqiyang 已提交
7119

T
Tink_Y 已提交
7120 7121 7122
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7123

T
Tink_Y 已提交
7124 7125 7126
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7127

T
Tink_Y 已提交
7128
	      Case 1:
M
minqiyang 已提交
7129

T
Tink_Y 已提交
7130 7131
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7132

T
Tink_Y 已提交
7133 7134 7135
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7136

T
Tink_Y 已提交
7137
	      Case 2:
M
minqiyang 已提交
7138

T
Tink_Y 已提交
7139 7140
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7141

T
Tink_Y 已提交
7142 7143 7144
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7145 7146


W
whs 已提交
7147 7148
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7149
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7173
    out = helper.create_variable_for_type_inference(dtype)
7174 7175 7176 7177 7178 7179 7180 7181 7182
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7183
    helper.append_op(
7184
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7185 7186 7187 7188

    return out


7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7201 7202 7203 7204 7205

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7206 7207
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7208 7209
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7210
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7231 7232 7233 7234 7235

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7236 7237
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7238 7239
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7240
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7261 7262 7263 7264 7265

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7266 7267
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7268 7269
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7270
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7292 7293 7294 7295 7296

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7297
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7298
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7299 7300
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7301
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7324 7325 7326 7327 7328

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7329 7330
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7331 7332
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7333
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7355 7356 7357 7358 7359

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7360 7361
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7362 7363
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7364
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7365 7366 7367 7368 7369 7370 7371 7372
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7373 7374 7375 7376
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7377
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7378 7379 7380

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7381
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7382
          weight (alpha).
J
jerrywgz 已提交
7383
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7384 7385 7386
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7387
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7388
          will be named automatically.
J
jerrywgz 已提交
7389 7390 7391 7392 7393 7394 7395 7396

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7397
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7411
        attr=helper.param_attr,
J
jerrywgz 已提交
7412 7413 7414 7415
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7416
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7417 7418 7419 7420 7421 7422 7423 7424 7425
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7426 7427 7428 7429 7430 7431 7432 7433 7434 7435
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7436
    Returns:
7437
        output(${out_type}): ${out_comment}
7438 7439 7440 7441 7442 7443 7444

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7445 7446
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7447
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7466
    Returns:
7467
        output(${out_type}): ${out_comment}
7468 7469 7470 7471 7472 7473 7474

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7475 7476
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7477
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7495
    Returns:
7496
        output(${out_type}): ${out_comment}
7497 7498 7499 7500 7501 7502 7503

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7504 7505
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7506
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7507 7508 7509 7510 7511 7512 7513 7514
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7528

7529 7530 7531 7532 7533 7534 7535 7536 7537 7538
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7539 7540
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7556
        ValueError: If axis is not in range [0, rank(x)].
7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7573 7574
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7575
    helper.append_op(
7576
        type='flatten2',
7577
        inputs={"X": x},
7578 7579
        outputs={'Out': out,
                 'XShape': x_shape},
7580 7581
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7582 7583


C
chenweihang 已提交
7584
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7585
    """
C
chenweihang 已提交
7586
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7587
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7588 7589
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7590

C
chenweihang 已提交
7591 7592 7593 7594
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7595
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7596 7597 7598 7599 7600 7601
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7602
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7603 7604 7605
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7606 7607 7608
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7620 7621
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7622 7623 7624 7625 7626 7627
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7628
    return out
7629

7630

S
sneaxiy 已提交
7631 7632 7633 7634 7635 7636 7637 7638 7639
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7640

S
sneaxiy 已提交
7641
    .. math::
7642

S
sneaxiy 已提交
7643 7644 7645
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7646
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7647 7648 7649 7650
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7651 7652 7653
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7654 7655
    Returns:
        Variable: The output sequence mask.
7656

S
sneaxiy 已提交
7657 7658
    """

Q
qingqing01 已提交
7659
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7660
    if name is None:
X
Xin Pan 已提交
7661
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7662
    else:
X
Xin Pan 已提交
7663
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7664

Q
qingqing01 已提交
7665 7666 7667
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7668 7669
        outputs={'Y': out},
        attrs={
7670
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7671 7672 7673
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7674 7675


X
Xin Pan 已提交
7676
def stack(x, axis=0):
S
sneaxiy 已提交
7677 7678 7679 7680
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7681 7682 7683 7684 7685 7686 7687

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7688
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7689
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7690 7691

    Args:
7692
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7693
        axis (int|None): The axis along which all inputs are stacked.
7694

S
sneaxiy 已提交
7695 7696
    Returns:
        Variable: The stacked variable.
7697

S
sneaxiy 已提交
7698 7699
    """

X
Xin Pan 已提交
7700 7701 7702 7703 7704 7705
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7706
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7707
    helper.append_op(
S
sneaxiy 已提交
7708 7709
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7710

X
Xin Pan 已提交
7711
    return out
D
dzhwinter 已提交
7712 7713 7714 7715 7716 7717 7718


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7719

D
dzhwinter 已提交
7720 7721 7722
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7723
    raised.
D
dzhwinter 已提交
7724 7725

    Args:
M
minqiyang 已提交
7726
        x (Variable): Input variable.
D
dzhwinter 已提交
7727 7728
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7729

D
dzhwinter 已提交
7730 7731
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7732

D
dzhwinter 已提交
7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7744
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7745 7746 7747 7748 7749 7750 7751 7752

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7765

W
whs 已提交
7766 7767 7768 7769
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7770

W
whs 已提交
7771
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7772

W
whs 已提交
7773
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7774

W
whs 已提交
7775 7776 7777 7778
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7779

W
whs 已提交
7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7796
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7797 7798 7799 7800 7801 7802
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7803 7804


G
fix  
gongweibao 已提交
7805 7806 7807
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7808
@templatedoc()
G
fix  
gongweibao 已提交
7809 7810 7811 7812 7813 7814 7815 7816 7817
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7818
    ${comment}
G
fix  
gongweibao 已提交
7819 7820

    Args:
G
gongweibao 已提交
7821 7822 7823
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7824
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7825 7826 7827
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7828 7829
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7830
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7831

7832 7833 7834 7835 7836
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7837 7838 7839
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7840
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7857 7858


G
gongweibao 已提交
7859
@templatedoc()
X
Xin Pan 已提交
7860
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7861
    """
G
gongweibao 已提交
7862
    ${comment}
G
fix  
gongweibao 已提交
7863 7864

    Args:
G
gongweibao 已提交
7865 7866 7867 7868
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7869 7870 7871
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7872
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7873

7874 7875 7876 7877
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7878 7879 7880
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7881
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7882 7883 7884 7885 7886 7887 7888 7889 7890 7891
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7892
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7893 7894 7895 7896 7897
        })

    return out


G
gongweibao 已提交
7898
@templatedoc()
G
fix  
gongweibao 已提交
7899
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7900
    """
G
gongweibao 已提交
7901
    ${comment}
G
fix  
gongweibao 已提交
7902 7903

    Args:
G
gongweibao 已提交
7904 7905 7906 7907
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7908
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7909 7910

    Returns:
G
gongweibao 已提交
7911
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7912

7913 7914 7915 7916 7917 7918 7919 7920 7921 7922
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7923 7924 7925
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7926
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7938
@templatedoc()
G
fix  
gongweibao 已提交
7939 7940 7941 7942 7943 7944 7945 7946 7947
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7948
    ${comment}
G
fix  
gongweibao 已提交
7949 7950

    Args:
G
gongweibao 已提交
7951 7952
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7953
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7954 7955 7956 7957
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7958
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7959 7960

    Returns:
G
gongweibao 已提交
7961
        out (Variable): ${out_comment}
7962 7963 7964 7965 7966 7967 7968 7969

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7970 7971 7972
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7973
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7992
@templatedoc()
X
Xin Pan 已提交
7993
def sum(x):
G
fix  
gongweibao 已提交
7994
    """
G
gongweibao 已提交
7995
    ${comment}
G
fix  
gongweibao 已提交
7996 7997

    Args:
G
gongweibao 已提交
7998
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7999 8000

    Returns:
G
gongweibao 已提交
8001
        out (Variable): ${out_comment}
8002 8003 8004 8005 8006 8007

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8008 8009 8010
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8011 8012
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8013 8014 8015 8016
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8017
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8018 8019 8020 8021

    return out


G
gongweibao 已提交
8022
@templatedoc()
G
fix  
gongweibao 已提交
8023 8024
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8025
    ${comment}
G
fix  
gongweibao 已提交
8026 8027

    Args:
G
gongweibao 已提交
8028 8029 8030 8031
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8032 8033

    Returns:
G
gongweibao 已提交
8034
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8035

8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8047 8048 8049
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8050 8051
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8063
@templatedoc()
G
fix  
gongweibao 已提交
8064 8065
def shape(input):
    """
G
gongweibao 已提交
8066
    ${comment}
G
fix  
gongweibao 已提交
8067 8068

    Args:
G
gongweibao 已提交
8069
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8070 8071

    Returns:
G
gongweibao 已提交
8072
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8073

8074 8075 8076 8077 8078 8079
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8080 8081 8082
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8083 8084
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8085
    helper.append_op(
G
fix  
gongweibao 已提交
8086
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8087 8088

    return out
G
merge  
gongweibao 已提交
8089 8090


S
sneaxiy 已提交
8091 8092 8093 8094 8095 8096 8097 8098
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8099 8100
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8101
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8102 8103 8104
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8105

S
sneaxiy 已提交
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8117
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8118 8119 8120 8121 8122 8123 8124 8125
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8126
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8127
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8128 8129 8130 8131 8132 8133

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8134
    if name is None:
X
Xin Pan 已提交
8135
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8136 8137 8138
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8139 8140 8141 8142 8143 8144 8145 8146 8147 8148

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8149
    return helper.append_activation(out)
S
sneaxiy 已提交
8150 8151


X
Xin Pan 已提交
8152
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8153 8154 8155
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8156
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8157 8158 8159
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8160
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8161 8162 8163
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8164
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8165 8166 8167
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8168
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8169 8170 8171
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8172
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8173 8174 8175
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8176
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8188 8189
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8190
        ])
M
minqiyang 已提交
8191 8192


8193
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8194 8195
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8196 8197
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8198 8199 8200

    if out is None:
        if name is None:
X
Xin Pan 已提交
8201
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8217
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8229 8230 8231 8232 8233 8234 8235 8236 8237

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8238 8239 8240 8241 8242 8243 8244
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8245
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8257 8258 8259 8260 8261 8262 8263 8264 8265

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8266 8267 8268 8269 8270 8271 8272
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8273
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8285 8286 8287 8288 8289 8290 8291 8292 8293

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8294 8295 8296 8297 8298 8299 8300
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8301
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8302 8303 8304 8305 8306 8307 8308 8309 8310 8311
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8312 8313 8314 8315 8316 8317 8318

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8319 8320 8321 8322
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8338 8339 8340 8341 8342 8343 8344

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8345 8346 8347 8348 8349
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8350 8351 8352 8353
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8377 8378 8379 8380 8381 8382 8383

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8384 8385 8386 8387 8388
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8389 8390 8391 8392
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8393 8394 8395 8396 8397 8398 8399 8400

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8419
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8420 8421 8422 8423 8424 8425 8426 8427 8428 8429
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8472
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8473 8474 8475 8476 8477 8478 8479 8480 8481
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8482 8483
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8484 8485 8486 8487 8488 8489
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8490 8491 8492 8493
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8494 8495 8496 8497 8498 8499
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8500
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8501 8502 8503 8504 8505 8506 8507 8508 8509
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8510
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8511 8512 8513 8514 8515 8516 8517 8518
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8519
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8540
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8541 8542 8543 8544 8545 8546 8547 8548 8549 8550
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8551 8552


J
JiabinYang 已提交
8553
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8554
    """
J
JiabinYang 已提交
8555
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8556 8557 8558

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8559
    The attr blocksize indicates the input block size.
8560 8561

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8562
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8563 8564

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8565
    (but keeping all data)
J
JiabinYang 已提交
8566

J
JiabinYang 已提交
8567
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8568
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8569 8570 8571 8572 8573
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8574
    Args:
J
JiabinYang 已提交
8575
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8576
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8577 8578

    Returns:
J
JiabinYang 已提交
8579
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8580 8581

    Raises:
J
JiabinYang 已提交
8582
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8583 8584 8585 8586 8587 8588

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8589
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8590
                x=data, blocksize=2)
J
JiabinYang 已提交
8591 8592
    """

J
JiabinYang 已提交
8593
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8594

J
JiabinYang 已提交
8595 8596
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8597 8598

    if name is None:
J
JiabinYang 已提交
8599 8600
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8601 8602 8603 8604 8605
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8606
        type="space_to_depth",
J
JiabinYang 已提交
8607
        inputs={"X": x},
J
JiabinYang 已提交
8608
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8609
        outputs={"Out": out})
J
JiabinYang 已提交
8610 8611
    return out

J
JiabinYang 已提交
8612

S
sneaxiy 已提交
8613 8614
@templatedoc()
def sequence_reverse(x, name=None):
8615
    """
S
sneaxiy 已提交
8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8627
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8628 8629 8630 8631 8632 8633 8634 8635 8636 8637
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8638 8639


8640 8641 8642 8643 8644 8645
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8646

8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8666
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8679 8680


B
barrierye 已提交
8681
def similarity_focus(input, axis, indexes, name=None):
8682
    """
B
barrierye 已提交
8683
    SimilarityFocus Operator
B
barrierye 已提交
8684 8685

    Generate a similarity focus mask with the same shape of input using the following method:
8686 8687 8688
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8689
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8690 8691 8692 8693 8694 8695 8696
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8697
       each index.
B
barrierye 已提交
8698 8699 8700 8701
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8751
    Args:
8752
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8753
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8754
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8755
            1, 2 or 3.
B
barrierye 已提交
8756
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8757 8758

    Returns:
8759
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8760
            as the input.
8761

B
barrierye 已提交
8762 8763 8764
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8765 8766
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8779 8780 8781 8782 8783
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8784 8785 8786 8787 8788 8789 8790
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8791 8792


M
minqiyang 已提交
8793 8794
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8795 8796
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8797 8798
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8837
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8838
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8839 8840 8841 8842 8843 8844 8845 8846 8847

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8848 8849
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8850 8851
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8852 8853 8854 8855 8856 8857 8858
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8859 8860


D
dengkaipeng 已提交
8861
@templatedoc()
8862 8863
def grid_sampler(x, grid, name=None):
    """
8864
    This operation samples input X by using bilinear interpolation based on
8865
    flow field grid, which is usually gennerated by affine_grid. The grid of
8866 8867 8868 8869
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8870
    interpolation value of 4 nearest corner points.
8871 8872 8873 8874 8875 8876 8877 8878

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8879
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8909 8910

    Args:
8911 8912 8913
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8914 8915

    Returns:
8916
        out(Variable): Output of shape [N, C, H, W] data samples input X
8917 8918 8919 8920 8921 8922 8923 8924 8925
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8926 8927 8928 8929 8930 8931 8932 8933 8934
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8935
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8936 8937
    ipts = {'X': x, 'Grid': grid}

8938
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8939 8940 8941
    return out


G
gmcather 已提交
8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9036 9037 9038 9039 9040 9041 9042 9043 9044 9045


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9046
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9047

Q
Qiao Longfei 已提交
9048
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9049 9050 9051
    For example:

    .. math::
9052
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9053

Q
Qiao Longfei 已提交
9054
    In this formula:
9055 9056
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9057
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9058
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9059 9060 9061
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9062 9063
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9064 9065 9066
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9067
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9068
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9069
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9070 9071 9072 9073
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9074
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9075 9076 9077 9078

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9079
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9080 9081
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9082
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9083 9084 9085 9086

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9087
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
S
sneaxiy 已提交
9128 9129


S
sneaxiy 已提交
9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196
class PyFuncWrapper(object):
    _register_funcs = []

    def __init__(self, func):
        if func is None or not hasattr(func, '__call__'):
            raise TypeError('func must be a Python function')

        self._func = func
        # find named args using reflection 
        self._named_args = inspect.getargspec(self._func)[0]
        self._id = core.append_python_callable_object_and_return_id(self)
        '''
        Why record self here?

        1. For debug usage. Users can call 
           :code:`py_func.registered_func(idx)` method 
           to find the registered function coresponding
           to :code:`idx`. 

        2. For increasing reference count of self. 
           It seems that to release Python object 
           whose reference count is 1 would cause
           segmentation fault error in C++ side. 
           May be lack of Python GC in C++ side?
        '''
        PyFuncWrapper._register_funcs.append(self)

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
        kwargs = dict()
        idx = 0
        for arg in self._named_args:
            kwargs[arg] = args[idx]
            idx += 1

        ret0 = self._func(*args[idx:], **kwargs)
        if ret0 is None:
            return None

        if not isinstance(ret0, (list, tuple)):
            ret0 = (ret0, )

        ret = []
        for i in six.moves.range(len(ret0)):
            if ret0[i] is None:
                ret.append(None)
                continue

            if isinstance(ret0[i], core.LoDTensor):
                ret.append(ret0[i])
                continue

            if isinstance(ret0[i], np.ndarray):
                r = ret0[i]
            else:
                r = np.array(ret0[i])
S
sneaxiy 已提交
9197

S
sneaxiy 已提交
9198 9199 9200
            t = core.LoDTensor()
            t.set(r, core.CPUPlace())
            ret.append(t)
S
sneaxiy 已提交
9201

S
sneaxiy 已提交
9202
        return tuple(ret)
S
sneaxiy 已提交
9203 9204


S
sneaxiy 已提交
9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
    
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
    :code:`out` and :code:`x` would be infered automatically.

    The orders of inputs of :code:`backward_func` would be: forward input
    :code:`x`, forward output :code:`out` and backward input gradient of
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
            should create :code:`out` beforehand. 
        backward_func (callable|None): backward Python function.
                                       None means no backward. Default None. 
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
            Variables that are not needed in :code:`backward_func` inputs. 
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
            Only useful when :code:`backward_func` is not None. Default None. 

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
    """
S
sneaxiy 已提交
9243
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9244 9245 9246
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9247
        x = [x]
S
sneaxiy 已提交
9248 9249
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9250

S
sneaxiy 已提交
9251 9252 9253
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9254
        out_list = [out]
S
sneaxiy 已提交
9255
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9256
        out_list = out
S
sneaxiy 已提交
9257 9258 9259
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9260

S
sneaxiy 已提交
9261 9262 9263
    fwd_func_id = PyFuncWrapper(func).id
    bwd_func_id = PyFuncWrapper(
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9264 9265

    for each_out in out_list:
S
sneaxiy 已提交
9266 9267
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9268 9269
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9270

S
sneaxiy 已提交
9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9286 9287 9288 9289

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9290 9291
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9292 9293 9294
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9295
        })
S
sneaxiy 已提交
9296
    return out
S
sneaxiy 已提交
9297 9298 9299 9300 9301


# For debug usage
py_func.registered_func = PyFuncWrapper.registered_func
py_func.registered_func_num = PyFuncWrapper.registered_func_num