nn.py 301.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35
    'fc',
    'embedding',
P
peizhilin 已提交
36
    'dynamic_lstm',
X
Xin Pan 已提交
37 38 39 40
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
P
peizhilin 已提交
41
    'crf_decoding',
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
P
peizhilin 已提交
100
    'roi_pool',
J
jerrywgz 已提交
101
    'roi_align',
X
Xin Pan 已提交
102 103 104 105
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
106
    'resize_nearest',
X
Xin Pan 已提交
107 108 109 110 111 112
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
113
    'selu',
X
Xin Pan 已提交
114 115 116
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
117
    'margin_rank_loss',
X
Xin Pan 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
161
    'space_to_depth',
W
whs 已提交
162
    'affine_grid',
S
sneaxiy 已提交
163
    'sequence_reverse',
164
    'affine_channel',
B
barrierye 已提交
165
    'similarity_focus',
M
minqiyang 已提交
166
    'hash',
D
dengkaipeng 已提交
167
    'grid_sampler',
G
gmcather 已提交
168 169
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
170
    'bilinear_tensor_product',
Y
Yu Yang 已提交
171 172
]

P
peizhilin 已提交
173 174 175 176 177 178
# To avoid the api checker complains
if os.name == 'nt':
    __all__.remove('dynamic_lstm')
    __all__.remove('crf_decoding')
    __all__.remove('roi_pool')

Y
Yu Yang 已提交
179 180 181 182 183 184 185

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
186
       is_test=False,
187
       name=None):
Y
Yu Yang 已提交
188
    """
189
    **Fully Connected Layer**
Y
Yu Yang 已提交
190

191 192 193 194 195 196 197 198
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
199
    to the output as well.
C
caoying03 已提交
200

C
caoying03 已提交
201
    This process can be formulated as follows:
202 203 204

    .. math::

205
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
206 207 208

    In the above equation:

C
caoying03 已提交
209 210 211 212
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
213
    * :math:`Act`: The activation function.
C
caoying03 已提交
214
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
215 216

    Args:
R
ranqiu 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
232 233
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
234
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
235
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
236
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
237

238
    Returns:
F
fengjiayi 已提交
239
        Variable: The transformation result.
240 241

    Raises:
C
caoying03 已提交
242
        ValueError: If rank of the input tensor is less than 2.
243 244 245 246

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
247
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
248
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
249
    """
C
caoying03 已提交
250

C
caoying03 已提交
251
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
252 253 254 255

    dtype = helper.input_dtype()

    mul_results = []
256 257
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
258 259 260
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
261

Y
Yu Yang 已提交
262
        w = helper.create_parameter(
263
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
264
        tmp = helper.create_variable_for_type_inference(dtype)
265
        helper.append_op(
266 267 268
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
269
            outputs={"Out": tmp},
M
mozga-intel 已提交
270 271
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
272 273 274 275
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
276
    else:
X
Xin Pan 已提交
277
        pre_bias = helper.create_variable_for_type_inference(dtype)
278
        helper.append_op(
279 280 281
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
282
            attrs={"use_mkldnn": False})
283 284 285 286
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
287 288


289 290 291
def embedding(input,
              size,
              is_sparse=False,
292
              is_distributed=False,
293 294 295
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
296
    """
297 298
    **Embedding Layer**

299
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
300 301
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
302 303 304

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
305 306

    Args:
307 308 309 310 311
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
312
        is_distributed(bool): Whether to run lookup table from remote parameter server.
313 314
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
315
            with zeros whenever lookup encounters it in :attr:`input`. If
316
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
317 318
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
319
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
320

321 322 323
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
324

325 326
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
327

C
chengduoZH 已提交
328
          dict_size = len(dataset.ids)
329
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
330
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
331 332 333 334 335
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
336
    tmp = helper.create_variable_for_type_inference(dtype)
337 338
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
339 340 341 342 343
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
344 345 346 347 348
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
349 350 351
    return tmp


P
peizhilin 已提交
352
if os.name != 'nt':
P
peizhilin 已提交
353

P
peizhilin 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    @templatedoc(op_type="lstm")
    def dynamic_lstm(input,
                     size,
                     h_0=None,
                     c_0=None,
                     param_attr=None,
                     bias_attr=None,
                     use_peepholes=True,
                     is_reverse=False,
                     gate_activation='sigmoid',
                     cell_activation='tanh',
                     candidate_activation='tanh',
                     dtype='float32',
                     name=None):
        """
        ${comment}

        Args:
            input (Variable): ${input_comment}
            size (int): 4 * hidden size.
            h_0(Variable): The initial hidden state is an optional input, default is zero.
                           This is a tensor with shape (N x D), where N is the
                           batch size and D is the hidden size.
            c_0(Variable): The initial cell state is an optional input, default is zero.
                           This is a tensor with shape (N x D), where N is the
                           batch size. `h_0` and `c_0` can be NULL but only at the same time.
            param_attr(ParamAttr|None): The parameter attribute for the learnable
                                   hidden-hidden weights.

                                   - Weights = {:math:`W_{ch}, W_{ih}, \
                                                    W_{fh}, W_{oh}`}
                                   - The shape is (D x 4D), where D is the hidden
                                     size.

                                   If it is set to None or one attribute of ParamAttr,
                                   dynamic_lstm will create ParamAttr as param_attr.
                                   If the Initializer of the param_attr is not set, the
                                   parameter is initialized with Xavier. Default: None.
            bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                                  weights, which contains two parts, input-hidden
                                  bias weights and peephole connections weights if
                                  setting `use_peepholes` to `True`.

                                  1. `use_peepholes = False`
                                     - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                     - The shape is (1 x 4D).
                                  2. `use_peepholes = True`
                                     - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                     W_{fc}, W_{oc}`}.
                                     - The shape is (1 x 7D).

                                  If it is set to None or one attribute of ParamAttr,
                                  dynamic_lstm will create ParamAttr as bias_attr.
                                  If the Initializer of the bias_attr is not set,
                                  the bias is initialized zero. Default: None.
            use_peepholes (bool): ${use_peepholes_comment}
            is_reverse (bool): ${is_reverse_comment}
            gate_activation (str): ${gate_activation_comment}
            cell_activation (str): ${cell_activation_comment}
            candidate_activation (str): ${candidate_activation_comment}
            dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
            name (str|None): A name for this layer(optional). If set None, the layer
                             will be named automatically.

        Returns:
            tuple: The hidden state, and cell state of LSTM. The shape of both \
            is (T x D), and lod is the same with the `input`.

        Examples:
            .. code-block:: python

                hidden_dim = 512
                forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                               bias_attr=False)
                forward, _ = fluid.layers.dynamic_lstm(
                    input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
        """
        assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
        helper = LayerHelper('lstm', **locals())
        size = size // 4
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
        bias_size = [1, 7 * size]
        if not use_peepholes:
            bias_size[1] = 4 * size
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
441

P
peizhilin 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455
        hidden = helper.create_variable_for_type_inference(dtype)
        cell = helper.create_variable_for_type_inference(dtype)
        batch_gate = helper.create_variable_for_type_inference(dtype)
        batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
        inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
        batch_size = input.shape[0]
        if h_0:
            assert h_0.shape == (batch_size, size), \
                'The shape of h0 should be (batch_size, %d)' % size
            inputs['H0'] = h_0
        if c_0:
            assert c_0.shape == (batch_size, size), \
                'The shape of c0 should be (batch_size, %d)' % size
            inputs['C0'] = c_0
Y
Yu Yang 已提交
456

P
peizhilin 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
        helper.append_op(
            type='lstm',
            inputs=inputs,
            outputs={
                'Hidden': hidden,
                'Cell': cell,
                'BatchGate': batch_gate,
                'BatchCellPreAct': batch_cell_pre_act
            },
            attrs={
                'use_peepholes': use_peepholes,
                'is_reverse': is_reverse,
                'gate_activation': gate_activation,
                'cell_activation': cell_activation,
                'candidate_activation': candidate_activation
            })
        return hidden, cell
Y
Yu Yang 已提交
474 475


Y
Yibing Liu 已提交
476 477 478 479 480 481 482 483 484 485 486
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
487 488
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
489 490 491
    """
    **Dynamic LSTMP Layer**

492 493 494 495 496 497
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
498 499 500 501 502

    The formula is as follows:

    .. math::

503
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
504

505
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
506

507
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
508

509
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
510

511
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
512

513
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
514

515
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
516

Y
Yibing Liu 已提交
517 518 519 520 521 522
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
523
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
524
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
525
          bias vector).
Y
Yibing Liu 已提交
526 527 528
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
529
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
530
    * :math:`h`: The hidden state.
531
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
532 533
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
534
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
535
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
536
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
537 538
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
539 540 541 542

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
543

Y
Yibing Liu 已提交
544 545 546 547 548 549 550 551 552 553 554 555
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
556
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
557 558
                               hidden-hidden weight and projection weight.

559 560
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
561 562
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
563 564
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
565
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
566 567 568 569 570

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
571
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
572 573 574 575 576 577
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
578
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
579 580 581
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
582
                                - The shape is (1 x 7D).
C
chengduo 已提交
583 584 585 586 587

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
588 589 590 591 592 593 594 595 596
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
597
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
598 599
                              default "tanh".
        proj_activation(str): The activation for projection output.
600
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
601 602
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
603 604
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
605 606

    Returns:
607 608 609 610
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
611 612

    Examples:
613

Y
Yibing Liu 已提交
614 615
        .. code-block:: python

616 617 618 619
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
620
            hidden_dim, proj_dim = 512, 256
621
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
622
                                     act=None, bias_attr=None)
623 624 625
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
626 627 628 629
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
630
    """
631

C
chengduo 已提交
632
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
633
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
634
    size = size // 4
Y
Yibing Liu 已提交
635 636 637 638 639 640 641 642 643 644
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
645 646 647 648 649 650
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
679 680 681 682 683 684 685 686 687
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
688
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
689

690
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
691
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
692

G
guosheng 已提交
693 694 695 696 697 698 699 700 701
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
702

G
guosheng 已提交
703
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
704

G
guosheng 已提交
705
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
706 707
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
708 709 710 711
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
712
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
713 714

    Args:
715 716
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
717
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
718
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
719 720
            is the hidden size.
        size(int): The dimension of the gru cell.
721
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
722 723
            hidden-hidden weight matrix. Note:

724
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
725
              :math:`D` is the hidden size.
726
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
727
              The first part are weights of the update gate and reset gate with
728
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
729
              candidate hidden state with shape :math:`(D \\times D)`.
730 731 732 733 734 735 736 737 738 739 740 741

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
742
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
743 744 745
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
746
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
747
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
748 749 750 751
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
752 753

    Returns:
G
guosheng 已提交
754
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
755
            and sequence length is the same with the input.
756

G
guosheng 已提交
757
    Examples:
758

G
guosheng 已提交
759 760
        .. code-block:: python

761 762 763 764
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
765
            hidden_dim = 512
766
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
767 768 769 770 771 772 773 774 775 776
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
777
    batch_size = input.shape[0]
G
guosheng 已提交
778
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
779
    if h_0:
G
guosheng 已提交
780
        assert h_0.shape == (
Y
Yancey 已提交
781 782 783
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
784

X
Xin Pan 已提交
785 786 787 788
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
807 808 809
def gru_unit(input,
             hidden,
             size,
810 811
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
812
             activation='tanh',
813
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
814
    """
815
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
816

817 818
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
819

820
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
821

822
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
823

824
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
825 826

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
827 828 829
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
830 831
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

832 833
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
834 835 836
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
837 838 839

    Args:
        input (Variable): The fc transformed input value of current step.
840
        hidden (Variable): The hidden value of gru unit from previous step.
841
        size (integer): The input dimension value.
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
863 864 865 866
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
867

868 869 870 871 872 873
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
874

875
             # assuming we have x_t_data and prev_hidden of size=10
876
             x_t = fluid.layers.fc(input=x_t_data, size=30)
877 878
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
879 880 881 882 883 884 885 886 887 888 889 890

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
891
    size = size // 3
Y
Yu Yang 已提交
892 893

    # create weight
894 895
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
896

X
Xin Pan 已提交
897 898 899
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
900
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
901
    # create bias
902
    if helper.bias_attr:
Y
Yu Yang 已提交
903 904 905
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
906
        inputs['Bias'] = bias
Y
Yu Yang 已提交
907 908 909

    helper.append_op(
        type='gru_unit',
910
        inputs=inputs,
Y
Yu Yang 已提交
911 912 913 914 915 916
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
917 918
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
919 920 921 922 923
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
924
@templatedoc()
925
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
926 927 928 929 930 931 932
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
933
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
934 935 936 937
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
938 939 940
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
941 942

    """
Y
Yu Yang 已提交
943 944 945 946 947 948
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
949 950 951 952 953 954 955 956
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


P
peizhilin 已提交
972
if os.name != 'nt':
P
peizhilin 已提交
973

P
peizhilin 已提交
974 975 976 977
    @templatedoc()
    def crf_decoding(input, param_attr, label=None):
        """
        ${comment}
Y
yuyang18 已提交
978

P
peizhilin 已提交
979 980
        Args:
            input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
981

P
peizhilin 已提交
982
            param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
983

P
peizhilin 已提交
984
            label(${label_type}): ${label_comment}
Y
yuyang18 已提交
985

P
peizhilin 已提交
986 987
        Returns:
            Variable: ${viterbi_path_comment}
988

P
peizhilin 已提交
989 990
        Examples:
            .. code-block:: python
Y
yi.wu 已提交
991

P
peizhilin 已提交
992 993 994 995 996 997 998 999 1000
               crf_decode = layers.crf_decoding(
                    input=hidden, param_attr=ParamAttr(name="crfw"))
        """
        helper = LayerHelper('crf_decoding', **locals())
        transition = helper.get_parameter(param_attr.name)
        viterbi_path = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(
            type='crf_decoding',
P
peizhilin 已提交
1001 1002 1003 1004 1005
            inputs={
                "Emission": [input],
                "Transition": transition,
                "Label": label
            },
P
peizhilin 已提交
1006
            outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1007

P
peizhilin 已提交
1008
        return viterbi_path
Y
Yu Yang 已提交
1009 1010


Y
yi.wu 已提交
1011
@templatedoc()
F
fengjiayi 已提交
1012
def cos_sim(X, Y):
Y
Yu Yang 已提交
1013
    """
Y
yi.wu 已提交
1014 1015 1016
    ${comment}

    Args:
1017 1018
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1019

Y
yi.wu 已提交
1020
    Returns:
1021
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1022
    """
F
fengjiayi 已提交
1023
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1024 1025 1026
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1037 1038 1039 1040 1041
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1042
            dropout_implementation="downgrade_in_infer"):
1043 1044 1045 1046 1047
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1048
    training. The dropout operator randomly sets (according to the given dropout
1049 1050 1051 1052
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1053 1054
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1055 1056 1057 1058 1059 1060 1061
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1076

1077 1078

    Returns:
1079
        Variable: A tensor variable is the shape with `x`.
1080 1081

    Examples:
1082

1083 1084
        .. code-block:: python

1085 1086
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1087 1088
    """

F
fengjiayi 已提交
1089
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1090 1091 1092
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1093 1094 1095 1096

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1097 1098 1099 1100 1101
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1102 1103 1104 1105
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1106 1107
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1108
        })
1109 1110 1111
    return out


1112
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1113
    """
Y
Yibing Liu 已提交
1114 1115
    **Cross Entropy Layer**

1116 1117 1118
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1119 1120

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1121
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1122

Y
Yibing Liu 已提交
1123
        .. math::
Y
yangyaming 已提交
1124

Y
Yibing Liu 已提交
1125 1126 1127
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1128 1129
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1130 1131 1132 1133 1134

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1135
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1136 1137 1138
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1139 1140
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1141
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1142

Y
Yibing Liu 已提交
1143
    Args:
Y
yangyaming 已提交
1144
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1145 1146 1147 1148
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1149
        label (Variable|list): the ground truth which is a 2-D tensor. When
1150 1151 1152 1153
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1154
        soft_label (bool): a flag indicating whether to
1155
                                           interpretate the given labels as soft
1156
                                           labels. Default: `False`.
M
minqiyang 已提交
1157 1158
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1159
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1160 1161 1162 1163 1164

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1165 1166 1167 1168 1169
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1170 1171 1172 1173 1174 1175

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1176
    """
F
fengjiayi 已提交
1177
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1178
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1179 1180 1181 1182 1183
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1184 1185
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1186 1187 1188
    return out


F
fengjiayi 已提交
1189
def square_error_cost(input, label):
Y
Yu Yang 已提交
1190
    """
1191 1192
    **Square error cost layer**

1193 1194
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1209 1210
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1211 1212

    Returns:
G
guosheng 已提交
1213
        Variable: The tensor variable storing the element-wise squared error \
1214
                  difference of input and label.
1215 1216 1217 1218 1219 1220 1221 1222

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1223
    """
F
fengjiayi 已提交
1224
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1225
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1226 1227 1228 1229 1230 1231
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1232
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1233
    helper.append_op(
F
fengjiayi 已提交
1234 1235
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1236 1237 1238
    return square_out


Y
yi.wu 已提交
1239
@templatedoc()
Y
Yu Yang 已提交
1240 1241 1242 1243
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1244
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1245
    """
Y
yi.wu 已提交
1246
    **Chunk Evaluator**
Y
yi.wu 已提交
1247

Y
yangyaming 已提交
1248
    This function computes and outputs the precision, recall and
1249
    F1-score of chunk detection.
Y
yi.wu 已提交
1250

Y
yi.wu 已提交
1251 1252 1253 1254 1255 1256 1257 1258
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1259

Y
yi.wu 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1285

Y
yi.wu 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1310
    Args:
1311 1312 1313 1314 1315
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1316

Y
yi.wu 已提交
1317
    Returns:
Y
update  
yi.wu 已提交
1318 1319 1320
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1321

Y
yi.wu 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1334
    """
F
fengjiayi 已提交
1335
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1336 1337

    # prepare output
X
Xin Pan 已提交
1338 1339 1340 1341 1342 1343 1344
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1345 1346 1347 1348 1349 1350 1351 1352

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1353 1354 1355 1356
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1357 1358 1359
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1360 1361
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1362
        })
1363 1364
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1365 1366


1367
@templatedoc()
Y
Yu Yang 已提交
1368 1369 1370 1371 1372 1373 1374
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1375 1376
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1377 1378 1379 1380
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1381 1382 1383 1384 1385 1386 1387

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1401

1402 1403
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1404 1405 1406 1407 1408 1409 1410
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1411
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1422
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1423 1424 1425 1426 1427 1428
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1429
def sequence_softmax(input, use_cudnn=False, name=None):
1430 1431 1432
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1433
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1450 1451 1452
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1465 1466
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1467
    softmax_out = helper.create_variable_for_type_inference(dtype)
1468 1469 1470 1471 1472 1473 1474 1475
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1476
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1477
    """
1478
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1479
    has the same shape as the input.
Q
qiaolongfei 已提交
1480

1481 1482 1483 1484 1485 1486
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1487
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1488 1489 1490 1491 1492 1493 1494

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1495
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1496 1497 1498 1499 1500 1501 1502 1503

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1504 1505 1506
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1519 1520
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1521
    softmax_out = helper.create_variable_for_type_inference(dtype)
1522 1523 1524 1525 1526 1527 1528 1529
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1530 1531 1532
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1533 1534
           stride=1,
           padding=0,
1535
           dilation=1,
Y
Yu Yang 已提交
1536 1537 1538
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1539
           use_cudnn=True,
1540 1541
           act=None,
           name=None):
Y
Yu Yang 已提交
1542
    """
C
chengduoZH 已提交
1543
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1544 1545
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1546
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1547 1548 1549 1550 1551 1552 1553
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1554 1555 1556
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1557

1558
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1559

C
chengduoZH 已提交
1560 1561
    .. math::

C
refine  
chengduoZH 已提交
1562
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1563

T
tensor-tang 已提交
1564
    Where:
C
chengduoZH 已提交
1565

1566 1567 1568 1569 1570
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1571
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1572 1573 1574

    Example:

1575 1576
        - Input:

W
weixing02 已提交
1577
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1578

W
weixing02 已提交
1579
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1580

1581
        - Output:
T
tensor-tang 已提交
1582

W
weixing02 已提交
1583
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1584

C
chengduoZH 已提交
1585
        Where
1586 1587

        .. math::
C
chengduoZH 已提交
1588

W
weixing02 已提交
1589 1590
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1591 1592

    Args:
1593
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1594
        num_filters(int): The number of filter. It is as same as the output
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1623 1624
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1625 1626
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1627
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1628
            will be named automatically. Default: None
C
chengduoZH 已提交
1629 1630

    Returns:
G
guosheng 已提交
1631
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1632 1633
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1634
    Raises:
1635 1636
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1637

C
chengduoZH 已提交
1638 1639 1640
    Examples:
        .. code-block:: python

1641 1642
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1643 1644 1645
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1646
    assert param_attr is not False, "param_attr should not be False here."
1647
    l_type = 'conv2d'
X
xzl 已提交
1648 1649
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1650
        l_type = 'depthwise_conv2d'
1651 1652 1653 1654

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1655 1656 1657 1658 1659
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1660
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1661

C
chengduoZH 已提交
1662 1663 1664
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1665
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1666

C
chengduoZH 已提交
1667 1668
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1669 1670

    input_shape = input.shape
M
minqiyang 已提交
1671
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1672 1673

    def _get_default_param_initializer():
C
chengduo 已提交
1674 1675
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1676 1677 1678 1679 1680 1681 1682 1683
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1684
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1685

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1700
    helper.append_op(
1701
        type=l_type,
Y
Yu Yang 已提交
1702 1703 1704 1705 1706
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1707 1708 1709
        attrs={
            'strides': stride,
            'paddings': padding,
1710
            'dilations': dilation,
C
chengduoZH 已提交
1711
            'groups': groups,
1712
            'use_cudnn': use_cudnn,
1713
            'use_mkldnn': False,
C
chengduoZH 已提交
1714
        })
Y
Yu Yang 已提交
1715 1716 1717 1718 1719 1720

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1738 1739 1740 1741 1742 1743
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1753 1754
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1755 1756 1757
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1758
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1784
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1785 1786
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1787
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1788 1789
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1790
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1791 1792
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1793
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1794 1795 1796 1797 1798 1799
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1810 1811
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1812 1813
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1814
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1815
            will be named automatically. Default: None.
C
chengduoZH 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1828 1829
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1830 1831 1832
    """

    l_type = 'conv3d'
C
chengduo 已提交
1833
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1844
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1858 1859 1860
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1861 1862 1863 1864 1865 1866 1867 1868
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1869
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1884
            'use_mkldnn': False
C
chengduoZH 已提交
1885 1886
        })

1887
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1888 1889 1890 1891

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1892
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1893
    """
Y
yangyaming 已提交
1894 1895 1896
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1908
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1909 1910 1911 1912 1913
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1914
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1915 1916 1917 1918 1919 1920 1921

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1922 1923
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1924

L
Luo Tao 已提交
1925 1926
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1927
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1928
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1929
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1930 1931 1932 1933 1934 1935 1936

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1937

Y
yangyaming 已提交
1938
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1939 1940 1941 1942 1943
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1944 1945
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1946
    """
F
fengjiayi 已提交
1947
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1948
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1949 1950
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1951 1952 1953 1954 1955 1956

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1957 1958
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1959

Y
yangyaming 已提交
1960 1961 1962 1963 1964
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1965 1966 1967
    return pool_out


C
add doc  
chengduoZH 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1987
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1988 1989 1990 1991 1992
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1993
def sequence_first_step(input):
L
Luo Tao 已提交
1994
    """
L
Luo Tao 已提交
1995
    This function gets the first step of sequence.
L
Luo Tao 已提交
1996 1997 1998 1999

    .. code-block:: text

       x is a 1-level LoDTensor:
2000
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2001 2002 2003 2004 2005
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2006
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2007
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2008

L
Luo Tao 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2018

Y
yangyaming 已提交
2019
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2020 2021 2022
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2023 2024 2025
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2026
def sequence_last_step(input):
L
Luo Tao 已提交
2027
    """
L
Luo Tao 已提交
2028
    This function gets the last step of sequence.
L
Luo Tao 已提交
2029 2030 2031 2032

    .. code-block:: text

       x is a 1-level LoDTensor:
2033
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2034 2035 2036 2037 2038
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2039
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2040
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2041

L
Luo Tao 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2051

Y
yangyaming 已提交
2052
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2053 2054 2055
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2056 2057 2058
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2059 2060 2061 2062
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2063
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2064 2065 2066 2067 2068
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2069

Y
Yibing Liu 已提交
2070 2071
	- Case:

2072
            Given the input Variable **input**:
2073

2074 2075 2076
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2077

2078
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2079

2080
            the output Variable will be
2081

2082 2083 2084
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2085 2086

    NOTE: The first dimension size of **input**, **offset** and **length**
2087
          should be equal. The **offset** should start from 0.
2088

Y
Yibing Liu 已提交
2089
    Args:
2090
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2091
                         sequences.
Y
Yibing Liu 已提交
2092 2093 2094 2095 2096 2097
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2098
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2109
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2110 2111 2112 2113
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2114
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2129
@templatedoc()
Y
Yu Yang 已提交
2130
def pool2d(input,
C
chengduoZH 已提交
2131 2132
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2133 2134
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2135
           global_pooling=False,
C
chengduoZH 已提交
2136
           use_cudnn=True,
2137
           ceil_mode=False,
2138 2139
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2140
    """
F
fengjiayi 已提交
2141
    ${comment}
2142 2143

    Args:
2144 2145 2146
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2147
                          feature, and W is the width of the feature.
2148
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2149
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2150
        pool_type: ${pooling_type_comment}
2151 2152
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2153 2154 2155
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2156
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2157
                        layer will be named automatically.
2158 2159
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
F
fengjiayi 已提交
2160

2161
    Returns:
F
fengjiayi 已提交
2162
        Variable: The pooling result.
F
fengjiayi 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2176 2177 2178 2179
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2180
                            global_pooling=False)
Y
Yu Yang 已提交
2181 2182 2183 2184 2185
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2186

C
chengduoZH 已提交
2187 2188 2189 2190 2191
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2192 2193 2194 2195
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2196 2197
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2198

C
Add doc  
chengduoZH 已提交
2199
    l_type = 'pool2d'
2200 2201

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2202
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2203
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2204 2205

    helper.append_op(
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2217 2218
            "use_mkldnn": False,
            "exclusive": exclusive,
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2232 2233
           name=None,
           exclusive=True):
2234 2235
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2236
    pooling configurations mentioned in input parameters.
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2249 2250
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
2251

2252
    Returns:
2253
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2254 2255 2256 2257 2258
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2259

C
chengduoZH 已提交
2260 2261 2262 2263 2264
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2265 2266 2267
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2268

C
chengduoZH 已提交
2269 2270
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2271

2272 2273
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2274
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2275
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2276 2277

    helper.append_op(
2278
        type=l_type,
Y
Yu Yang 已提交
2279 2280 2281 2282 2283 2284 2285
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2286
            "paddings": pool_padding,
2287
            "use_cudnn": use_cudnn,
2288
            "ceil_mode": ceil_mode,
2289 2290
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2303
               data_layout='NCHW',
Y
Yang Yang 已提交
2304
               in_place=False,
2305 2306
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2307
               moving_variance_name=None,
2308 2309
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2310
    """
Q
qiaolongfei 已提交
2311 2312 2313 2314
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2315

Q
qiaolongfei 已提交
2316
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2317

Q
qiaolongfei 已提交
2318 2319
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2320 2321 2322
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2335 2336

    Args:
Q
qiaolongfei 已提交
2337
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2338 2339 2340 2341
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2342 2343 2344 2345 2346 2347 2348 2349
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2350
        data_layout(string, default NCHW): NCHW|NHWC
2351
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2352 2353 2354 2355
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2356
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2357
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2358 2359

    Returns:
Q
qiaolongfei 已提交
2360
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2361 2362 2363 2364 2365 2366 2367

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2368
    """
C
chengduo 已提交
2369
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2392
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2393

2394 2395
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2396 2397 2398
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2399
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2400
        shape=param_shape,
2401 2402 2403 2404 2405 2406 2407
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2408
            trainable=False,
W
wanghaoshuang 已提交
2409
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2410
        shape=param_shape,
2411 2412
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2413 2414 2415 2416 2417 2418

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2419 2420 2421 2422
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2423

X
Xin Pan 已提交
2424 2425
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2443 2444 2445 2446
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2447
            "use_mkldnn": False,
2448
            "fuse_with_relu": fuse_with_relu
2449
        })
Y
Yu Yang 已提交
2450 2451 2452 2453

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2454
@templatedoc()
G
guosheng 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2465
    ${comment}
G
guosheng 已提交
2466 2467 2468

    The formula is as follows:

Y
yuyang18 已提交
2469
    ..  math::
G
guosheng 已提交
2470 2471 2472 2473 2474 2475 2476

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2477 2478 2479 2480 2481 2482 2483 2484
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2485

G
guosheng 已提交
2486 2487
    Args:
        input(Variable): The input tensor variable.
2488
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2489
            normalization. Default True.
2490
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2491 2492
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2493
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2494
            Default 1.
2495
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2496
            division by zero. Default 1e-05.
G
guosheng 已提交
2497
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2498 2499
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2500 2501
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2502
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2503 2504
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2505
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2506
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2507
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2508 2509 2510
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2511 2512

    Returns:
Y
yuyang18 已提交
2513
        ${y_comment}
G
guosheng 已提交
2514 2515 2516

    Examples:

Y
yuyang18 已提交
2517 2518 2519
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2535
    if shift:
G
guosheng 已提交
2536 2537 2538 2539 2540 2541
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2542 2543 2544 2545 2546
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2562 2563 2564 2565
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2566 2567 2568
                     padding=0,
                     stride=1,
                     dilation=1,
2569
                     groups=None,
C
caoying03 已提交
2570
                     param_attr=None,
2571
                     bias_attr=None,
C
chengduoZH 已提交
2572
                     use_cudnn=True,
2573
                     act=None,
C
caoying03 已提交
2574
                     name=None):
Y
Yu Yang 已提交
2575
    """
2576 2577 2578 2579 2580 2581 2582 2583
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2584 2585
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2586 2587 2588
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2589 2590 2591 2592 2593

    For each input :math:`X`, the equation is:

    .. math::

2594
        Out = \sigma (W \\ast X + b)
2595

2596
    Where:
2597 2598 2599

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2600 2601 2602 2603
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2604

2605 2606 2607 2608
    Example:

        - Input:

2609
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2610

2611
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2612 2613 2614

        - Output:

2615
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2616 2617

        Where
Y
Yu Yang 已提交
2618

2619 2620
        .. math::

2621 2622 2623 2624
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2625 2626

    Args:
2627 2628 2629 2630
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2631 2632 2633 2634
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2663
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2664 2665 2666
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2667
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2668
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2669 2670

    Returns:
2671
        Variable: The tensor variable storing the convolution transpose result.
2672 2673

    Raises:
2674 2675
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2676 2677 2678 2679

    Examples:
       .. code-block:: python

2680 2681
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2682
    """
C
chengduo 已提交
2683
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2684 2685 2686 2687 2688 2689 2690 2691
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2692 2693 2694
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2695 2696 2697
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2698

C
chengduoZH 已提交
2699 2700
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2701

Y
Yu Yang 已提交
2702 2703 2704 2705 2706
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2707

Y
Yu Yang 已提交
2708 2709
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2710

C
chengduoZH 已提交
2711
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2712
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2713
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2714
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2715
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2716 2717 2718
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2719

2720 2721 2722 2723 2724 2725 2726
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2727
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2728
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2729

Y
Yu Yang 已提交
2730 2731 2732
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2733
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2734
    helper.append_op(
2735
        type=op_type,
Y
Yu Yang 已提交
2736 2737
        inputs={'Input': [input],
                'Filter': [img_filter]},
2738
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2739
        attrs={
2740
            'output_size': output_size,
2741 2742 2743 2744 2745
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2746 2747
        })

2748 2749 2750
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2751 2752


2753
def conv3d_transpose(input,
Y
Yu Yang 已提交
2754 2755 2756
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2757 2758 2759
                     padding=0,
                     stride=1,
                     dilation=1,
2760
                     groups=None,
C
caoying03 已提交
2761
                     param_attr=None,
2762
                     bias_attr=None,
C
chengduoZH 已提交
2763
                     use_cudnn=True,
2764
                     act=None,
C
caoying03 已提交
2765
                     name=None):
Y
Yu Yang 已提交
2766
    """
2767
    **Convlution3D transpose layer**
2768

2769
    The convolution3D transpose layer calculates the output based on the input,
2770
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2771 2772 2773 2774 2775 2776
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2777 2778 2779
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2780 2781 2782 2783 2784

    For each input :math:`X`, the equation is:

    .. math::

2785
        Out = \sigma (W \\ast X + b)
2786 2787 2788

    In the above equation:

2789 2790
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2791 2792 2793 2794
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2795

2796 2797 2798 2799
    Example:

        - Input:

2800
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2801

2802
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2803 2804 2805

        - Output:

2806
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2807 2808

        Where
Y
Yu Yang 已提交
2809

2810 2811
        .. math::

2812 2813 2814
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2815 2816

    Args:
2817
        input(Variable): The input image with [N, C, D, H, W] format.
2818 2819 2820
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2821
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2822 2823
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2824
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2825 2826 2827
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2828 2829
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2830
        stride(int|tuple): The stride size. If stride is a tuple, it must
2831 2832
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2833
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2834 2835 2836
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2837 2838 2839 2840 2841
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2842 2843 2844 2845 2846 2847 2848 2849 2850
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2851 2852
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2853 2854
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2855 2856
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2857 2858

    Returns:
2859
        Variable: The tensor variable storing the convolution transpose result.
2860 2861

    Raises:
2862 2863
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2864 2865 2866 2867

    Examples:
       .. code-block:: python

2868 2869
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2870
    """
C
chengduo 已提交
2871
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2872 2873
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2874
    if not isinstance(input, Variable):
2875
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2876 2877
    input_channel = input.shape[1]

2878 2879 2880
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2881

C
chengduoZH 已提交
2882 2883 2884
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2885 2886 2887 2888 2889 2890
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2891 2892 2893
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2894

2895
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2896
                         padding[0] - 1) // dilation[0] + 1
2897
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2898
                         padding[1] - 1) // dilation[1] + 1
2899
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2900
                         padding[2] - 1) // dilation[2] + 1
2901
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2902
    else:
2903 2904
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2905

2906
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2907
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2908 2909 2910
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2911
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2912
    helper.append_op(
2913
        type=l_type,
Y
Yu Yang 已提交
2914 2915
        inputs={'Input': [input],
                'Filter': [img_filter]},
2916
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2917 2918 2919 2920
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2921
            'groups': groups,
C
chengduoZH 已提交
2922 2923
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2924

2925 2926
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2927
    return out
Y
yangyaming 已提交
2928 2929


Y
yangyaming 已提交
2930
def sequence_expand(x, y, ref_level=-1, name=None):
2931
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2932 2933 2934 2935
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2936 2937 2938 2939 2940

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2941
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2942
                x.data = [[a], [b], [c], [d]]
2943 2944 2945
                x.dims = [4, 1]

            y is a LoDTensor:
2946 2947
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2948

Y
yangyaming 已提交
2949
            ref_level: 0
2950

Y
yangyaming 已提交
2951
            then output is a 1-level LoDTensor:
2952
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2953
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2954 2955 2956 2957
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2958
                x.data = [[a], [b], [c]]
2959 2960 2961
                x.dims = [3, 1]

            y is a LoDTensor:
2962
                y.lod = [[2, 0, 3]]
2963

Y
yangyaming 已提交
2964
            ref_level: -1
2965

Y
yangyaming 已提交
2966 2967 2968
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2969 2970 2971
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2972 2973
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2974
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2975
                        will be named automatically.
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2986
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2987
    """
Y
yangyaming 已提交
2988
    helper = LayerHelper('sequence_expand', input=x, **locals())
2989
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2990
    tmp = helper.create_variable_for_type_inference(dtype)
2991
    helper.append_op(
Y
yangyaming 已提交
2992 2993 2994 2995 2996
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2997
    return tmp
2998 2999


C
chengduo 已提交
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3056
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3057 3058 3059 3060 3061 3062 3063 3064
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3065
@templatedoc()
3066
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3067 3068 3069 3070 3071
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3072 3073 3074
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3075
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3076 3077 3078 3079
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3080 3081 3082
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3083

F
fengjiayi 已提交
3084
    Returns:
M
minqiyang 已提交
3085
        Variable: The padded sequence batch and the original lengths before
3086
                  padding. All sequences has the same length.
M
minqiyang 已提交
3087

F
fengjiayi 已提交
3088 3089 3090 3091 3092 3093 3094
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3095
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3096
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3097 3098 3099 3100 3101
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3102 3103
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3104 3105 3106 3107

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3108 3109 3110 3111 3112 3113
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3114 3115
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3116
        attrs={'padded_length': maxlen})
3117
    return out, length
F
fengjiayi 已提交
3118 3119


3120
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3121
    """
3122
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3123

3124 3125
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3126 3127 3128 3129 3130 3131 3132 3133 3134
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3135 3136 3137
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3138
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3139 3140 3141 3142 3143 3144

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3145
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3146 3147 3148 3149 3150 3151

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3152 3153
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3168
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3180 3181 3182 3183 3184 3185 3186 3187 3188
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3189 3190
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3191 3192 3193

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3194 3195

    This layer does the search in beams for one time step. Specifically, it
3196 3197 3198 3199 3200 3201
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3202

3203 3204 3205 3206 3207 3208 3209 3210
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3211

3212
    Args:
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3238

3239
    Returns:
3240 3241
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3242 3243 3244 3245

    Examples:
        .. code-block:: python

3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3263 3264 3265 3266
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3267 3268 3269
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3270 3271 3272 3273 3274

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3275
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3293 3294 3295 3296 3297 3298 3299
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3300

3301 3302 3303 3304 3305 3306 3307 3308 3309
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3310

3311 3312 3313 3314 3315 3316
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3317

3318 3319 3320 3321 3322 3323 3324 3325
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3326 3327
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3343 3344 3345 3346
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3347
              param_attr=None,
C
caoying03 已提交
3348 3349
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3350 3351 3352 3353
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3354
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3355

3356
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3357

3358
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3359

3360
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3361 3362 3363

            h_t & = o_t tanh(c_t)

3364 3365 3366 3367 3368 3369
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3370 3371 3372

        .. math::

3373
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3374 3375 3376 3377 3378 3379 3380 3381

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3382
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3383 3384

    Args:
Y
yangyaming 已提交
3385 3386 3387 3388 3389 3390
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3391
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3404 3405
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3406 3407

    Returns:
Y
yangyaming 已提交
3408
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3409 3410

    Raises:
3411 3412 3413 3414
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3415 3416 3417 3418 3419 3420

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3421
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3422
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3423
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3440
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3441 3442 3443 3444
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3445 3446
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3447 3448 3449
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3450
    size = cell_t_prev.shape[1]
3451
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3452 3453
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3454
                param_attr=param_attr,
3455
                bias_attr=bias_attr)
Y
yangyaming 已提交
3456
    dtype = x_t.dtype
X
Xin Pan 已提交
3457 3458
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3459 3460 3461 3462 3463 3464 3465 3466 3467

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3468
    return h, c
G
guosheng 已提交
3469 3470


C
caoying03 已提交
3471
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3472
    """
Y
yangyaming 已提交
3473
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3474 3475 3476

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3477
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3478 3479
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3480 3481
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3482
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3483
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3484
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3485 3486
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3487 3488 3489

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3490

G
guosheng 已提交
3491 3492 3493 3494 3495 3496
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3497
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3498 3499 3500 3501
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3502 3503 3504 3505

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3506
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3507 3508 3509
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3510 3511
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3512
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3513 3514
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3515 3516 3517 3518 3519
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3520
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3521 3522 3523 3524
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3525 3526


C
caoying03 已提交
3527
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3528
    """
Y
Yibing Liu 已提交
3529
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3530 3531 3532

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3533 3534 3535
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3536
            must be in the range :math:`[-rank(input), rank(input))`. If
3537
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3538
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3539 3540
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3541
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3542
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3543
                       will be named automatically.
G
guosheng 已提交
3544 3545

    Returns:
Y
Yibing Liu 已提交
3546
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3547

G
guosheng 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3558 3559
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3560 3561 3562 3563 3564 3565 3566

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3567 3568
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3569
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3570 3571
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3572 3573 3574 3575 3576
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3577
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3578 3579 3580 3581
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3582 3583


C
caoying03 已提交
3584
def reduce_max(input, dim=None, keep_dim=False, name=None):
3585
    """
Y
yangyaming 已提交
3586
    Computes the maximum of tensor elements over the given dimension.
3587 3588 3589

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3590
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3591 3592 3593
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3594
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3595 3596
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3597
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3598 3599
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3600 3601 3602

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3603

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3615 3616 3617 3618 3619 3620 3621

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3622 3623
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3624
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3625 3626
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3627 3628 3629 3630 3631
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3632
            'dim': dim if dim != None else [0],
3633 3634 3635 3636 3637 3638
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3639
def reduce_min(input, dim=None, keep_dim=False, name=None):
3640
    """
Y
yangyaming 已提交
3641
    Computes the minimum of tensor elements over the given dimension.
3642 3643 3644

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3645
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3646 3647 3648
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3649
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3650 3651
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3652
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3653 3654
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3655 3656 3657

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3658

3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3670 3671 3672 3673 3674 3675 3676

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3677 3678
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3679
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3680 3681
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3682 3683 3684 3685 3686
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3687
            'dim': dim if dim != None else [0],
3688 3689 3690 3691
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3692 3693


3694 3695 3696 3697 3698 3699
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3700
        dim (list|int|None): The dimensions along which the product is performed. If
3701 3702
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3703 3704
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3705 3706 3707
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3708
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3709
            layer will be named automatically.
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3724
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3725
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3726 3727 3728 3729 3730 3731 3732

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3733 3734
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3735
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3736 3737
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3738 3739 3740 3741 3742
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3743
            'dim': dim if dim != None else [0],
3744 3745 3746 3747 3748 3749
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3750
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3751
    """
C
caoying03 已提交
3752
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3753 3754 3755

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3756 3757 3758 3759 3760
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3761
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3762
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3763
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3764 3765
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3766 3767

    Returns:
D
dzhwinter 已提交
3768
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3778 3779
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3795
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3818
    .. math::
3819 3820

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3821 3822 3823 3824 3825

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3826
        x(Variable|list): The input tensor to l2_normalize layer.
3827
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3828 3829
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3830
        epsilon(float): The epsilon value is used to avoid division by zero, \
3831
            the defalut value is 1e-10.
3832
        name(str|None): A name for this layer(optional). If set None, the layer \
3833
            will be named automatically.
C
caoying03 已提交
3834 3835

    Returns:
3836
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3837 3838

    Examples:
3839

C
caoying03 已提交
3840 3841
        .. code-block:: python

3842 3843 3844 3845
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3846 3847
    """

F
fengjiayi 已提交
3848 3849
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3850 3851
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3852 3853
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3854
    helper.append_op(
3855 3856 3857 3858
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3859
        attrs={
3860 3861
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3862 3863
        })
    return out
3864 3865


S
sneaxiy 已提交
3866
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3867
    """
Y
ying 已提交
3868 3869 3870 3871
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3872

C
chengduoZH 已提交
3873
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3874
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3875

3876 3877 3878 3879 3880
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3881
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3882

C
chengduoZH 已提交
3883
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3884
      performs in the following way.
G
guosheng 已提交
3885

3886
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3887
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3888
        last two dimensions and a batched matrix multiply supporting broadcast
3889
        applies on the two tensors.
G
guosheng 已提交
3890

Y
ying 已提交
3891 3892
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3893
    removed after matrix multiplication.
G
guosheng 已提交
3894 3895 3896

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3897 3898 3899
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3900
        alpha (float): The scale of output. Default 1.0.
3901
        name(str|None): A name for this layer(optional). If set None, the layer
3902
            will be named automatically.
G
guosheng 已提交
3903 3904

    Returns:
3905
        Variable: The product Tensor variable.
G
guosheng 已提交
3906

G
guosheng 已提交
3907 3908 3909
    Examples:
        .. code-block:: python

3910
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3911 3912
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3913

3914 3915
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3916

3917 3918
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3919

3920 3921
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3922 3923 3924 3925

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3926 3927
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3928

Y
ying 已提交
3929
            # x: [M], y: [N]
3930
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3931
    """
Y
ying 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3944
            y_shape = y_shape + [1]
Y
ying 已提交
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3961
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3962
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3963
    helper.append_op(
3964 3965 3966 3967
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3968 3969 3970
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3971
            'alpha': float(alpha),
S
sneaxiy 已提交
3972
        })
3973
    return out
3974 3975


3976
def topk(input, k, name=None):
Q
qingqing01 已提交
3977 3978 3979 3980
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3981
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3982 3983 3984 3985 3986 3987
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4009 4010 4011
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4012
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4013
                 of input.
4014
        name(str|None): A name for this layer(optional). If set None, the layer
4015
                       will be named automatically.
F
fengjiayi 已提交
4016
                       Default: None
Q
qingqing01 已提交
4017 4018

    Returns:
4019 4020 4021
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4022
        within the last dimension of input.
Q
qingqing01 已提交
4023

F
fengjiayi 已提交
4024 4025
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4026 4027 4028 4029 4030 4031 4032

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4033 4034
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4046
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4047
    """
Y
ying 已提交
4048 4049 4050 4051 4052 4053 4054 4055 4056
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4057

Y
ying 已提交
4058
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4059

4060
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4061 4062
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4063
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4064

4065
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4066 4067
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4068

4069 4070 4071
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4072
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4073
                          the length of reference string.
4074
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4075
                                     calculating edit distance.
4076
        name (str): The name of this layer. It is optional.
4077

W
wanghaoshuang 已提交
4078
    Returns:
W
wanghaoshuang 已提交
4079
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4080 4081 4082 4083

    Examples:
        .. code-block:: python

T
tink2123 已提交
4084 4085
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4086
            cost = fluid.layers.edit_distance(input=x,label=y)
4087
    """
4088
    helper = LayerHelper("edit_distance", **locals())
4089

4090
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4091
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4092 4093
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4094 4095 4096 4097 4098

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4099
            attrs={"tokens": ignored_tokens})
4100 4101 4102 4103 4104
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4105
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4106
            attrs={"tokens": ignored_tokens})
4107 4108
        label = erased_label

4109
    # edit distance op
X
Xin Pan 已提交
4110 4111
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4112 4113 4114 4115
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4116 4117
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4118 4119
        attrs={"normalized": normalized})

4120
    return edit_distance_out, sequence_num
4121 4122 4123 4124 4125


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4126

Y
ying 已提交
4127 4128 4129 4130
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4148
        input.lod = [[4, 4]]
4149 4150 4151 4152 4153 4154 4155

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4156
        output.lod = [[2, 1]]
4157 4158 4159

    Args:

Y
ying 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4169
        name (str): The name of this layer. It is optional.
4170 4171

    Returns:
4172
        Variable: CTC greedy decode result. If all the sequences in result were
4173
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4174 4175 4176 4177 4178

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4179

4180
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4181
    """
4182
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4183
    _, topk_indices = topk(input, k=1)
4184 4185

    # ctc align op
X
Xin Pan 已提交
4186
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4187 4188 4189
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4190
        outputs={"Output": [ctc_out]},
4191 4192
        attrs={"merge_repeated": True,
               "blank": blank})
4193
    return ctc_out
4194 4195


F
fengjiayi 已提交
4196
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4197
    """
4198 4199
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4200
    to compute Connectionist Temporal Classification (CTC) loss.
4201 4202
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4203 4204 4205
    input tensor.

    Args:
4206
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4207 4208 4209 4210
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4211
       label (Variable): The ground truth of variable-length sequence,
4212 4213 4214
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4215 4216
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4217 4218 4219
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4220
         follewed by a mean_op.
W
wanghaoshuang 已提交
4221 4222

    Returns:
4223 4224
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4225 4226

    Examples:
4227

W
wanghaoshuang 已提交
4228
        .. code-block:: python
4229

4230 4231 4232
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4233 4234

    """
F
fengjiayi 已提交
4235
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4236 4237
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4262 4263 4264
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4265 4266 4267 4268 4269
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4270

4271
            out.lod  = [[0, 1, 3]]
4272 4273 4274 4275

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4276 4277 4278 4279 4280 4281 4282
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4283 4284 4285

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4286 4287

    Returns:
4288

4289 4290 4291 4292 4293
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4294
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4295
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4296 4297
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4298
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4299 4300 4301 4302 4303 4304
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4305 4306


4307 4308 4309 4310
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4311 4312 4313 4314 4315 4316
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4317 4318
        num_neg_samples=None,
        name=None):
4319 4320 4321 4322 4323 4324 4325
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4326 4327
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4328
            sample is 1.0.
C
chengduo 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4338
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4339 4340
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4341

4342
    Returns:
Y
Yibing Liu 已提交
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4370
    """
Y
Yang Yu 已提交
4371 4372 4373
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4374 4375

    dim = input.shape[1]
Y
Yang Yu 已提交
4376 4377 4378 4379 4380 4381
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4395 4396 4397
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4398

Y
Yang Yu 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4408 4409 4410

    helper.append_op(
        type='nce',
C
chengduo 已提交
4411
        inputs=inputs,
Y
Yang Yu 已提交
4412 4413 4414 4415 4416 4417
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4418
    return cost / (num_neg_samples + 1)
4419 4420


C
chengduo 已提交
4421 4422 4423 4424 4425 4426
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4427 4428
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4429
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4430 4431 4432 4433 4434 4435 4436 4437 4438
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4439

W
weixing02 已提交
4440
    Args:
M
minqiyang 已提交
4441
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4442 4443 4444 4445 4446
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4458 4459 4460 4461 4462 4463 4464 4465

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4466 4467 4468
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4469 4470 4471 4472
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4473 4474
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4475 4476
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4477
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4478 4479 4480 4481 4482
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4483 4484 4485 4486 4487 4488 4489 4490
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4491 4492
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4493
        inputs=inputs,
W
weixing02 已提交
4494 4495 4496 4497 4498 4499
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4500
def transpose(x, perm, name=None):
Y
ying 已提交
4501 4502 4503 4504 4505 4506 4507
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4508 4509 4510
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4511 4512 4513 4514 4515 4516 4517

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4518 4519 4520 4521
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4522
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4523 4524
    """

Y
fix ci.  
ying 已提交
4525
    if len(perm) != len(x.shape):
Y
ying 已提交
4526 4527 4528
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4529 4530 4531 4532 4533 4534
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4535 4536

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4537 4538
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4539
    helper.append_op(
4540
        type='transpose2',
Y
fix ci.  
ying 已提交
4541
        inputs={'X': [x]},
4542 4543
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4544 4545
        attrs={'axis': perm})
    return out
4546 4547


4548 4549 4550 4551 4552 4553 4554
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4555
    """
4556 4557 4558 4559 4560 4561 4562
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4591 4592 4593 4594 4595 4596 4597 4598 4599
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4600 4601 4602
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4603 4604 4605 4606 4607
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4635 4636 4637
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4650
            output.dims = {8, 8}
4651

4652
            output.lod = [[4, 4]]
4653

D
dzhwinter 已提交
4654
     Examples:
4655 4656 4657

        .. code-block:: python

4658 4659
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4660 4661

    """
W
wanghaoshuang 已提交
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4672 4673 4674 4675 4676 4677 4678
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4679
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4680
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4681
    helper.append_op(
4682
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4683
    return out
4684 4685


Y
yuyang18 已提交
4686
@templatedoc()
4687
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4688 4689
    """
    ${comment}
4690 4691

    Args:
Y
yuyang18 已提交
4692
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4693 4694
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4695 4696 4697 4698 4699
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4700
        ${out_comment}.
4701 4702

    Examples:
Y
yuyang18 已提交
4703 4704 4705 4706
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4707 4708 4709 4710 4711 4712
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4713
    out = helper.create_variable_for_type_inference(dtype)
4714 4715 4716 4717 4718
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4719
    return helper.append_activation(out)
4720 4721


Y
yuyang18 已提交
4722
@templatedoc()
4723 4724
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4725 4726 4727 4728 4729 4730 4731
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4732 4733

    Args:
Y
yuyang18 已提交
4734 4735
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4736 4737

    Returns:
Y
yuyang18 已提交
4738
        ${out_comment}.
4739 4740
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4741 4742 4743 4744 4745

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4746
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4747 4748 4749 4750 4751 4752
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4753 4754


4755 4756 4757
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4758
                               ignore_index=-100,
4759 4760
                               numeric_stable_mode=False,
                               return_softmax=False):
4761 4762
    """
    **Softmax With Cross Entropy Operator.**
4763

4764 4765 4766 4767
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4768

4769 4770 4771
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4772

4773 4774 4775
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4776

4777
    The equation is as follows:
4778

4779
    1) Hard label (one-hot label, so every sample has exactly one class)
4780

4781 4782 4783 4784
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4785

4786 4787 4788
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4789

4790 4791 4792 4793
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
        
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4806 4807 4808 4809 4810 4811 4812 4813
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4814 4815
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4816
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4817 4818 4819 4820 4821 4822 4823
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
                                    When soft_label is True or CPU is used, 
                                    the algorithm is always numerically stable. 
                                    Note that the speed may be slower when use 
                                    stable algorithm. Default: False
4824 4825
        return_softmax (bool): A flag indicating whether to return the softmax 
                               along with the cross entropy loss. Default: False
4826

4827
    Returns:
4828 4829 4830 4831 4832
        Variable or Tuple of two Variables: Return the cross entropy loss if 
                              `return_softmax` is False, otherwise the tuple 
                              (loss, softmax), where the cross entropy loss is 
                              a 2-D tensor with shape [N x 1], and softmax is a 
                              2-D tensor with shape [N x K].
4833 4834 4835 4836 4837 4838 4839

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4840 4841
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4842 4843
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4844 4845
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4846 4847 4848 4849 4850 4851
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4852 4853 4854 4855 4856
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4857 4858 4859 4860

    if return_softmax:
        return loss, softmax

4861 4862 4863 4864 4865
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4866 4867
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4868
    For each instance, it computes the smooth L1 loss element by element first
4869
    and then sums all the losses. So the shape of ouput Variable is
4870
    [batch_size, 1].
4871

4872 4873
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4874
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4875
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4876
            L1 loss op with same shape as :attr:`x`.
4877
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4878 4879
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4880
            by this tensor element by element.
4881
        outside_weight (Variable|None): A tensor with rank at least 2. This
4882 4883
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4884
            element by element.
4885
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4886 4887
           scalar with default value 1.0.

4888
    Returns:
4889
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4890 4891 4892 4893 4894

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4895 4896
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4897
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4898
            out = fluid.layers.smooth_l1(x=fc, y=label)
4899
    """
4900

4901
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4902 4903
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4916 4917 4918 4919


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4920
    This layer creates the one-hot representations for input indices.
4921 4922

    Args:
Y
Yibing Liu 已提交
4923 4924
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4925 4926

    Returns:
Y
Yibing Liu 已提交
4927
        Variable: The one-hot representations of input.
4928 4929

    Examples:
C
caoying03 已提交
4930
        .. code-block:: python
4931

Y
Yibing Liu 已提交
4932 4933
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4934 4935
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4936
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4937 4938 4939 4940 4941 4942
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4943 4944


Y
Yu Yang 已提交
4945
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4946
    """
Y
yi.wu 已提交
4947 4948 4949
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4950 4951 4952 4953 4954 4955

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4956 4957
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4958 4959 4960 4961 4962 4963

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4964 4965
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4966 4967
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4968 4969 4970 4971 4972
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4973
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4974
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4975 4976
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4977 4978
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4979 4980 4981
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4982 4983


4984
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4985
    """
C
caoying03 已提交
4986 4987
    Gives a new shape to the input Tensor without changing its data.

4988 4989 4990 4991 4992
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4993

4994
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4995

4996 4997 4998 4999
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5000
    2. 0 means the actual dimension value is going to be copied from the
5001 5002 5003 5004
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5005 5006

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5007
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5008
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5009

5010
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5011 5012
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5013 5014
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5015
    dimensions.
C
caoying03 已提交
5016

5017
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5018 5019 5020 5021
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5022 5023

    Args:
5024
        x(variable): The input tensor.
C
caoying03 已提交
5025 5026
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5027 5028 5029 5030 5031
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5032 5033
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5034 5035 5036 5037 5038 5039 5040
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5041
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5042

5043
    Returns:
G
guosheng 已提交
5044 5045 5046 5047
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5048

X
Xin Pan 已提交
5049 5050 5051
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5052 5053
    Examples:
        .. code-block:: python
G
guosheng 已提交
5054

5055
            data = fluid.layers.data(
5056
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5057
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5058
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5059 5060 5061
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5062
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5063 5064 5065 5066 5067
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5068

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5084
    helper = LayerHelper("reshape2", **locals())
5085 5086
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5087
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5088
    helper.append_op(
5089
        type="reshape2",
X
Xin Pan 已提交
5090
        inputs=inputs,
D
dzhwinter 已提交
5091
        attrs={"shape": shape},
5092 5093
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5094

D
dzhwinter 已提交
5095
    return helper.append_activation(out)
5096

5097

5098
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5099
    """
M
minqiyang 已提交
5100 5101 5102
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5103
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5104

Y
Yibing Liu 已提交
5105 5106
    Examples:
    Case 1:
M
minqiyang 已提交
5107
      Given
Y
Yibing Liu 已提交
5108 5109 5110 5111 5112 5113 5114 5115
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5116
        and
Y
Yibing Liu 已提交
5117 5118 5119
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5120

Y
Yibing Liu 已提交
5121
    Args:
5122
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5123
        axes (list): List of integers, indicating the dimensions to be squeezed.
5124
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5125 5126 5127 5128 5129 5130 5131 5132

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5133
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5134 5135
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5136 5137
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5138
    helper.append_op(
5139
        type="squeeze2",
5140
        inputs={"X": input},
Y
Yibing Liu 已提交
5141
        attrs={"axes": axes},
5142 5143
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5144

5145 5146 5147
    return out


5148
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5149
    """
M
minqiyang 已提交
5150 5151 5152
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5153

M
minqiyang 已提交
5154 5155
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5156
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5157

Y
Yibing Liu 已提交
5158
    Args:
5159
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5160
        axes (list): List of integers, indicating the dimensions to be inserted.
5161
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5162 5163 5164 5165 5166 5167 5168 5169

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5170
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5171 5172
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5173 5174
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5175
    helper.append_op(
5176
        type="unsqueeze2",
5177
        inputs={"X": input},
Y
Yibing Liu 已提交
5178
        attrs={"axes": axes},
5179 5180
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5181

5182 5183
    return out

5184

Y
yangyaming 已提交
5185
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5186
    """
Y
Yibing Liu 已提交
5187
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5188 5189 5190 5191
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5192
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5193 5194 5195 5196 5197 5198

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5199
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5200 5201 5202
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5203
            target_lod: [4, 2]
Y
yangyaming 已提交
5204 5205

            then we get a 1-level LoDTensor:
5206
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5207 5208 5209 5210 5211 5212
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5213
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5214 5215 5216 5217
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5218
                y.data = [[2, 4]]
Y
yangyaming 已提交
5219 5220 5221
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5222
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5223 5224 5225 5226 5227 5228
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5229
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5230 5231 5232 5233
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5234
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5235 5236 5237 5238
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5239
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5240 5241 5242 5243 5244
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5245
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5246
                           from :attr:`y`.
Y
yangyaming 已提交
5247
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5248
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5249 5250

    Returns:
Y
Yibing Liu 已提交
5251
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5252 5253

    Raises:
Y
Yibing Liu 已提交
5254
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5264
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5290
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5319 5320
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5333 5334 5335
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5349 5350 5351 5352


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5353
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5354
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5355

G
guosheng 已提交
5356 5357 5358 5359
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5382
                         The length of :attr:paddings must be
G
guosheng 已提交
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5393

G
guosheng 已提交
5394 5395 5396 5397 5398 5399
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5400
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5401 5402 5403 5404 5405 5406 5407
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5408 5409


C
chengduo 已提交
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5480
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5481 5482 5483 5484 5485 5486 5487 5488 5489
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5490 5491 5492 5493 5494 5495 5496
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5497 5498
    called label-smoothing regularization (LSR).

5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5522
                              be :math:`(1, class\_num)`.
5523 5524
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5525
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5545
    smooth_label = helper.create_variable_for_type_inference(dtype)
5546 5547 5548 5549 5550 5551 5552
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5553 5554


P
peizhilin 已提交
5555
if os.name != 'nt':
P
peizhilin 已提交
5556

P
peizhilin 已提交
5557
    @templatedoc()
P
peizhilin 已提交
5558 5559 5560 5561 5562
    def roi_pool(input,
                 rois,
                 pooled_height=1,
                 pooled_width=1,
                 spatial_scale=1.0):
P
peizhilin 已提交
5563 5564
        """
        ${comment}
5565

P
peizhilin 已提交
5566 5567 5568 5569 5570 5571
        Args:
            input (Variable): ${x_comment}
            rois (Variable): ROIs (Regions of Interest) to pool over.
            pooled_height (integer): ${pooled_height_comment} Default: 1
            pooled_width (integer): ${pooled_width_comment} Default: 1
            spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5572

P
peizhilin 已提交
5573 5574
        Returns:
            Variable: ${out_comment}.
5575

P
peizhilin 已提交
5576 5577
        Examples:
            .. code-block:: python
5578

P
peizhilin 已提交
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
                pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
        """
        helper = LayerHelper('roi_pool', **locals())
        dtype = helper.input_dtype()
        pool_out = helper.create_variable_for_type_inference(dtype)
        argmaxes = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type="roi_pool",
            inputs={"X": input,
                    "ROIs": rois},
            outputs={"Out": pool_out,
                     "Argmax": argmaxes},
            attrs={
                "pooled_height": pooled_height,
                "pooled_width": pooled_width,
                "spatial_scale": spatial_scale
            })
        return pool_out
W
whs 已提交
5597 5598


J
jerrywgz 已提交
5599 5600 5601 5602 5603 5604
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5605 5606
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5623 5624 5625
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5626 5627 5628 5629 5630 5631
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5632
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5673 5674
        .. code-block:: python

W
whs 已提交
5675 5676 5677 5678
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5679
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5680 5681 5682 5683 5684 5685
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5686 5687


5688 5689 5690 5691
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5692 5693
                 resample='BILINEAR',
                 actual_shape=None):
5694
    """
Q
qiaolongfei 已提交
5695
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5696

5697
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5698 5699 5700
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5701

5702
        'BILINEAR' : Bilinear interpolation
5703
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5704

5705
    Args:
5706
        input (Variable): The input tensor of image resize layer,
5707 5708
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5709
        out_shape(list|tuple|Variable|None): Output shape of image resize
5710 5711
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5712
        scale(float|None): The multiplier for the input height or width.
5713 5714 5715
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5716 5717
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5718 5719
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST' 
                       currently.
5720
                       Default: 'BILINEAR'
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
5734 5735

    Returns:
Q
update  
qiaolongfei 已提交
5736 5737
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5738

5739 5740 5741 5742 5743 5744 5745 5746
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
        ValueError: The 'resample' of image_resize can only be 'BILINEAR' 
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5747 5748 5749
    Examples:
        .. code-block:: python

5750
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5751
    """
5752 5753 5754 5755
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5756 5757
    if resample not in resample_methods:
        raise ValueError(
5758
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5759
        )
5760
    if out_shape is None and scale is None:
5761
        raise ValueError("One of out_shape and scale must not be None.")
5762
    helper = LayerHelper('interpolate', **locals())
5763
    dtype = helper.input_dtype()
5764 5765 5766 5767

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5768 5769 5770
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5771
    if out_shape is not None:
5772 5773 5774 5775
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
5776
            inputs['OutSize'] = out_shape
5777 5778 5779 5780 5781 5782 5783 5784
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
5785 5786 5787 5788
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5789 5790 5791 5792 5793
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
5794
    out = helper.create_variable_for_type_inference(dtype)
5795
    helper.append_op(
5796
        type='interpolate',
5797
        inputs=inputs,
5798
        outputs={"Out": out},
5799 5800 5801 5802 5803
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_methods[resample]
        })
5804
    return out
F
stash  
fengjiayi 已提交
5805 5806


5807
@templatedoc(op_type="interpolate")
5808 5809 5810 5811 5812
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
5813
    """
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
    Resize input by performing bilinear interpolation based on given 
    output shape which specified by actual_shape, out_shape and scale 
    in priority order.

    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5826 5827 5828 5829 5830

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5831

Y
yuyang18 已提交
5832 5833 5834 5835 5836
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5850 5851 5852

    Returns:
        ${out_comment}.
5853 5854
    """

5855
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
5856 5857


5858
@templatedoc(op_type="interpolate")
5859 5860 5861 5862 5863
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
5864
    """
5865 5866 5867 5868 5869 5870 5871
    Resize input by performing nearest neighbor interpolation in both the
    3rd dimention(in height direction) and the 4th dimention(in width 
    direction) based on given output shape which specified by actual_shape, 
    out_shape and scale in priority order.

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5872 5873 5874 5875 5876

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5877

Y
yuyang18 已提交
5878 5879 5880 5881 5882
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5896 5897 5898

    Returns:
        ${out_comment}.
5899 5900
    """

5901
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
5902 5903 5904 5905


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5906 5907 5908
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5909 5910 5911 5912 5913 5914 5915
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5916
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5917

5918
    Returns:
Q
update  
qiaolongfei 已提交
5919
        Variable: The output is a 4-D tensor of the shape
5920
        (num_batches, channls, out_h, out_w).
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5931 5932 5933
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5934 5935 5936
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5937 5938
def gather(input, index):
    """
Q
qiaolongfei 已提交
5939 5940
    **Gather Layer**

5941
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5942 5943 5944 5945
    of X indexed by `index` and concatenate them together.

    .. math::

5946
        Out = X[Index]
W
whs 已提交
5947 5948 5949 5950 5951 5952 5953


    .. code-block:: text


                Given:

5954 5955
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5966
        input (Variable): The source input with rank>=1.
W
whs 已提交
5967 5968 5969 5970 5971 5972
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5973

W
whs 已提交
5974 5975 5976 5977 5978 5979
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5980
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5981 5982 5983 5984 5985 5986 5987 5988
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6020
    out = helper.create_variable_for_type_inference(dtype)
6021 6022 6023 6024 6025 6026 6027 6028 6029
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6080
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6081 6082 6083 6084 6085 6086 6087 6088 6089
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6103

6104 6105 6106
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6107
    """
F
stash  
fengjiayi 已提交
6108
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6109
    dtype = x.dtype
X
Xin Pan 已提交
6110
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6111
    if seed is None:
6112
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6113
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6114
    if isinstance(seed, int):
F
fengjiayi 已提交
6115 6116 6117 6118 6119
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6120 6121 6122 6123
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6124
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6125 6126
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6127 6128
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6129
    return out
W
whs 已提交
6130 6131


6132
def log(x, name=None):
W
wanghaoshuang 已提交
6133 6134 6135 6136 6137
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6138
        Out = \\ln(x)
W
wanghaoshuang 已提交
6139 6140

    Args:
6141
        x (Variable): Input tensor.
6142 6143
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6144 6145 6146 6147 6148 6149 6150 6151

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6152
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6153 6154
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6155
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6156
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6157
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6158 6159 6160
    return out


6161
def relu(x, name=None):
W
wanghaoshuang 已提交
6162 6163
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6164
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6165 6166 6167 6168
    the tensor elementwise.

    .. math::

6169
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6170 6171

    Args:
6172
        x (Variable): The input tensor.
6173 6174
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6175 6176 6177 6178 6179 6180 6181 6182

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6183
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6184 6185
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6186
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6187
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6188
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6189
    return out
6190 6191


C
chengduo 已提交
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6233 6234 6235
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6236 6237 6238 6239
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6240
    .. math::
6241 6242

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6243

6244
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6245 6246 6247 6248 6249
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6250
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6251
                           Its shape should be the same as input.
6252
        num_classes (int): The possible number of labels.
W
whs 已提交
6253 6254 6255 6256

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6257
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6258 6259 6260 6261

    Examples:

        .. code-block:: python
6262

W
whs 已提交
6263 6264 6265 6266
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6267 6268 6269
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6270 6271
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6272 6273
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6274
        outputs={
W
whs 已提交
6275 6276 6277
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6278 6279 6280
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6355
                    isinstance(shape, Variable)):
6356 6357 6358 6359 6360
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6361
    out = helper.create_variable_for_type_inference(x.dtype)
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6379 6380


W
whs 已提交
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6499 6500 6501 6502 6503 6504 6505 6506
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6507

6508 6509
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6510

6511 6512 6513 6514
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6515

6516 6517 6518 6519 6520
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6521 6522 6523

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6559
    out = helper.create_variable_for_type_inference("float32")
6560 6561 6562 6563 6564 6565 6566 6567

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6568 6569


M
minqiyang 已提交
6570 6571
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6572
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6573
    which compares left score and right score passed in.
M
minqiyang 已提交
6574
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6575 6576 6577 6578 6579 6580

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6581
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6582 6583
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6584
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6585 6586 6587
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6588
       Variable: The ranking loss.
M
minqiyang 已提交
6589
    Raises:
M
minqiyang 已提交
6590
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6591 6592 6593 6594 6595 6596 6597
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6598
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6599 6600 6601 6602 6603 6604
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6605 6606
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6632

W
whs 已提交
6633 6634
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6635

W
whs 已提交
6636
      Case 0:
M
minqiyang 已提交
6637

W
whs 已提交
6638 6639 6640
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6641

W
whs 已提交
6642 6643 6644
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6645

W
whs 已提交
6646
      Case 1:
M
minqiyang 已提交
6647

W
whs 已提交
6648 6649
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6650

W
whs 已提交
6651 6652 6653
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6654

W
whs 已提交
6655
      Case 2:
M
minqiyang 已提交
6656

W
whs 已提交
6657 6658
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6659

W
whs 已提交
6660 6661 6662
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6663 6664


W
whs 已提交
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6691
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6720
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6743
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6766
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6790
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6815
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6839
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6840 6841 6842 6843 6844 6845 6846 6847
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6862
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6863
                        will be named automatically.
J
jerrywgz 已提交
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
6886
        attr=helper.param_attr,
J
jerrywgz 已提交
6887 6888 6889 6890
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6891
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6892 6893 6894 6895 6896 6897 6898 6899 6900
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6915
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6938
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6960
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6961 6962 6963 6964 6965 6966 6967 6968
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6982

6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6993 6994
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7010
        ValueError: If axis is not in range [0, rank(x)].
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7027 7028
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7029
    helper.append_op(
7030
        type='flatten2',
7031
        inputs={"X": x},
7032 7033
        outputs={'Out': out,
                 'XShape': x_shape},
7034 7035
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7036 7037


C
chenweihang 已提交
7038
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7039
    """
C
chenweihang 已提交
7040
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7041
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7042 7043
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7044

C
chenweihang 已提交
7045 7046 7047 7048
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7049
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7050 7051 7052 7053 7054 7055
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7056
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7057 7058 7059
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7060 7061 7062
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7074 7075
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7076 7077 7078 7079 7080 7081
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7082
    return out
7083

7084

S
sneaxiy 已提交
7085 7086 7087 7088 7089 7090 7091 7092 7093
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7094

S
sneaxiy 已提交
7095
    .. math::
7096

S
sneaxiy 已提交
7097 7098 7099
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7100
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7101 7102 7103 7104
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7105 7106 7107
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7108 7109
    Returns:
        Variable: The output sequence mask.
7110

S
sneaxiy 已提交
7111 7112
    """

Q
qingqing01 已提交
7113
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7114
    if name is None:
X
Xin Pan 已提交
7115
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7116
    else:
X
Xin Pan 已提交
7117
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7118

Q
qingqing01 已提交
7119 7120 7121
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7122 7123
        outputs={'Y': out},
        attrs={
7124
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7125 7126 7127
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7128 7129


X
Xin Pan 已提交
7130
def stack(x, axis=0):
S
sneaxiy 已提交
7131 7132 7133 7134
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7135 7136 7137 7138 7139 7140 7141

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7142
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7143
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7144 7145

    Args:
7146
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7147
        axis (int|None): The axis along which all inputs are stacked.
7148

S
sneaxiy 已提交
7149 7150
    Returns:
        Variable: The stacked variable.
7151

S
sneaxiy 已提交
7152 7153
    """

X
Xin Pan 已提交
7154 7155 7156 7157 7158 7159
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7160
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7161
    helper.append_op(
S
sneaxiy 已提交
7162 7163
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7164

X
Xin Pan 已提交
7165
    return out
D
dzhwinter 已提交
7166 7167 7168 7169 7170 7171 7172


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7173

D
dzhwinter 已提交
7174 7175 7176
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7177
    raised.
D
dzhwinter 已提交
7178 7179

    Args:
M
minqiyang 已提交
7180
        x (Variable): Input variable.
D
dzhwinter 已提交
7181 7182
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7183

D
dzhwinter 已提交
7184 7185
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7186

D
dzhwinter 已提交
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7198
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7199 7200 7201 7202 7203 7204 7205 7206

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7219

W
whs 已提交
7220 7221 7222 7223
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7224

W
whs 已提交
7225
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7226

W
whs 已提交
7227
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7228

W
whs 已提交
7229 7230 7231 7232
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7233

W
whs 已提交
7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7250
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7251 7252 7253 7254 7255 7256
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7257 7258


G
fix  
gongweibao 已提交
7259 7260 7261
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7262
@templatedoc()
G
fix  
gongweibao 已提交
7263 7264 7265 7266 7267 7268 7269 7270 7271
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7272
    ${comment}
G
fix  
gongweibao 已提交
7273 7274

    Args:
G
gongweibao 已提交
7275 7276 7277
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7278
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7279 7280 7281
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7282 7283
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7284
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7285 7286 7287 7288

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7289
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7306 7307


G
gongweibao 已提交
7308
@templatedoc()
X
Xin Pan 已提交
7309
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7310
    """
G
gongweibao 已提交
7311
    ${comment}
G
fix  
gongweibao 已提交
7312 7313

    Args:
G
gongweibao 已提交
7314 7315 7316 7317
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7318 7319 7320
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7321
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7322 7323 7324 7325

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7326
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7337
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7338 7339 7340 7341 7342
        })

    return out


G
gongweibao 已提交
7343
@templatedoc()
G
fix  
gongweibao 已提交
7344
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7345
    """
G
gongweibao 已提交
7346
    ${comment}
G
fix  
gongweibao 已提交
7347 7348

    Args:
G
gongweibao 已提交
7349 7350 7351 7352
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7353
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7354 7355

    Returns:
G
gongweibao 已提交
7356
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7357 7358 7359 7360

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7361
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7373
@templatedoc()
G
fix  
gongweibao 已提交
7374 7375 7376 7377 7378 7379 7380 7381 7382
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7383
    ${comment}
G
fix  
gongweibao 已提交
7384 7385

    Args:
G
gongweibao 已提交
7386 7387
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7388
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7389 7390 7391 7392
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7393
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7394 7395

    Returns:
G
gongweibao 已提交
7396
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7397 7398 7399
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7400
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7419
@templatedoc()
X
Xin Pan 已提交
7420
def sum(x):
G
fix  
gongweibao 已提交
7421
    """
G
gongweibao 已提交
7422
    ${comment}
G
fix  
gongweibao 已提交
7423 7424

    Args:
G
gongweibao 已提交
7425
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7426 7427

    Returns:
G
gongweibao 已提交
7428
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7429 7430 7431
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7432 7433
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7434 7435 7436 7437
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7438
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7439 7440 7441 7442

    return out


G
gongweibao 已提交
7443
@templatedoc()
G
fix  
gongweibao 已提交
7444 7445
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7446
    ${comment}
G
fix  
gongweibao 已提交
7447 7448

    Args:
G
gongweibao 已提交
7449 7450 7451 7452
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7453 7454

    Returns:
G
gongweibao 已提交
7455
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7456 7457 7458 7459

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7460 7461
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7473
@templatedoc()
G
fix  
gongweibao 已提交
7474 7475
def shape(input):
    """
G
gongweibao 已提交
7476
    ${comment}
G
fix  
gongweibao 已提交
7477 7478

    Args:
G
gongweibao 已提交
7479
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7480 7481

    Returns:
G
gongweibao 已提交
7482
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7483 7484 7485 7486

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7487 7488
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7489
    helper.append_op(
G
fix  
gongweibao 已提交
7490
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7491 7492

    return out
G
merge  
gongweibao 已提交
7493 7494


S
sneaxiy 已提交
7495 7496 7497 7498 7499 7500 7501 7502
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7503 7504
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7505
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7506 7507 7508
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7509

S
sneaxiy 已提交
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7521
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7522 7523 7524 7525 7526 7527 7528 7529
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7530
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7531
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7532 7533 7534 7535 7536 7537

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7538
    if name is None:
X
Xin Pan 已提交
7539
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7540 7541 7542
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7543 7544 7545 7546 7547 7548 7549 7550 7551 7552

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7553
    return helper.append_activation(out)
S
sneaxiy 已提交
7554 7555


X
Xin Pan 已提交
7556
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7557 7558 7559
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7560
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7561 7562 7563
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7564
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7565 7566 7567
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7568
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7569 7570 7571
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7572
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7573 7574 7575
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7576
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7577 7578 7579
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7580
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7592 7593
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7594
        ])
M
minqiyang 已提交
7595 7596


7597
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7598 7599
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7600 7601
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7602 7603 7604

    if out is None:
        if name is None:
X
Xin Pan 已提交
7605
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7621
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7640
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7659
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7678
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7713 7714 7715 7716
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7745 7746 7747 7748
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7749 7750 7751 7752 7753 7754 7755 7756

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7775
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7805
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7806 7807 7808 7809 7810 7811 7812 7813 7814
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7815 7816
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7839
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7869
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7870 7871 7872 7873 7874 7875 7876 7877 7878 7879
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7880 7881


J
JiabinYang 已提交
7882
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
7883
    """
J
JiabinYang 已提交
7884
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
J
JiabinYang 已提交
7885
    
J
JiabinYang 已提交
7886
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the 
J
JiabinYang 已提交
7887
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension. 
J
JiabinYang 已提交
7888
    The attr blocksize indicates the input block size.
J
JiabinYang 已提交
7889 7890
    
    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according 
J
JiabinYang 已提交
7891
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
7892 7893 7894
    
    space_to_depth is used to This operation is useful for resizing the activations between convolutions 
    (but keeping all data)
J
JiabinYang 已提交
7895

J
JiabinYang 已提交
7896 7897 7898 7899 7900 7901 7902
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The depth of the output tensor is block_size * block_size * input channel 
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
7903
    Args:
J
JiabinYang 已提交
7904
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
7905
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
7906 7907

    Returns:
J
JiabinYang 已提交
7908
        Variable: The output LoDtensor.
J
JiabinYang 已提交
7909 7910

    Raises:
J
JiabinYang 已提交
7911
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
7912 7913 7914 7915 7916 7917

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
7918
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
7919
                x=data, blocksize=2)
J
JiabinYang 已提交
7920 7921
    """

J
JiabinYang 已提交
7922
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
7923

J
JiabinYang 已提交
7924 7925
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
7926 7927

    if name is None:
J
JiabinYang 已提交
7928 7929
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
7930 7931 7932 7933 7934
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
7935
        type="space_to_depth",
J
JiabinYang 已提交
7936
        inputs={"X": x},
J
JiabinYang 已提交
7937
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
7938
        outputs={"Out": out})
J
JiabinYang 已提交
7939 7940
    return out

J
JiabinYang 已提交
7941

S
sneaxiy 已提交
7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7956
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7957 7958 7959 7960 7961 7962 7963 7964 7965 7966
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7967 7968


7969 7970 7971 7972 7973 7974
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7975

7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7995
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8008 8009


B
barrierye 已提交
8010 8011
def similarity_focus(input, axis, indexes, name=None):
    """  
B
barrierye 已提交
8012
    SimilarityFocus Operator
B
barrierye 已提交
8013 8014

    Generate a similarity focus mask with the same shape of input using the following method:
B
barrierye 已提交
8015
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding 
B
barrierye 已提交
8016
       to the axis according to the indexes. For example, if axis=1 and indexes=[a], 
B
barrierye 已提交
8017
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X 
B
barrierye 已提交
8018 8019 8020 8021
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
    2. For each index, find the largest numbers in the tensor T, so that the same 
       row and same column has at most one number(what it means is that if the 
       largest number has been found in the i-th row and the j-th column, then 
B
barrierye 已提交
8022 8023 8024
       the numbers in the i-th row or j-th column will be skipped. And then the 
       next largest number will be selected from the remaining numbers. Obviously 
       there will be min(B, C) numbers), and mark the corresponding position of the 
B
barrierye 已提交
8025 8026
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for 
       each index.
B
barrierye 已提交
8027 8028 8029 8030
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8080 8081 8082
    Args:
        input(Variable): The input tensor variable(default float). It should 
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8083
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8084
            1, 2 or 3.
B
barrierye 已提交
8085
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8086 8087 8088 8089 8090 8091 8092 8093

    Returns:
        Variable: A tensor variable with the same shape and same type 
            as the input.
        
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8094 8095
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8108 8109 8110 8111 8112
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8113 8114 8115 8116 8117 8118 8119
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8120 8121


M
minqiyang 已提交
8122 8123
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8124 8125
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8126 8127
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8166
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8167
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8168 8169 8170 8171 8172 8173 8174 8175 8176

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8177 8178
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8179 8180
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8181 8182 8183 8184 8185 8186 8187
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8188 8189


D
dengkaipeng 已提交
8190
@templatedoc()
8191 8192
def grid_sampler(x, grid, name=None):
    """
8193 8194 8195 8196 8197 8198 8199
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8238 8239

    Args:
8240 8241 8242
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8243 8244

    Returns:
8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8255 8256 8257 8258 8259 8260 8261 8262 8263
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8264
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8265 8266
    ipts = {'X': x, 'Grid': grid}

8267
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8268 8269 8270
    return out


G
gmcather 已提交
8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8365 8366 8367 8368 8369 8370 8371 8372 8373 8374


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8375
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8376

Q
Qiao Longfei 已提交
8377
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8378 8379 8380
    For example:

    .. math::
8381
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8382

Q
Qiao Longfei 已提交
8383
    In this formula:
8384 8385
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8386
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8387
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8388 8389 8390
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8391 8392
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8393 8394 8395
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8396
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8397
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8398
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8399 8400 8401 8402
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8403
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8404 8405 8406 8407

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8408
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8409 8410
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8411
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8412 8413 8414 8415

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8416
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)