nn.py 315.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35
    'fc',
    'embedding',
P
peizhilin 已提交
36
    'dynamic_lstm',
X
Xin Pan 已提交
37 38 39 40
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
P
peizhilin 已提交
41
    'crf_decoding',
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
P
peizhilin 已提交
101
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
L
liuhongyu 已提交
172
    'cudnn_lstm',
Y
Yu Yang 已提交
173 174 175 176 177 178 179 180 181
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
182
       is_test=False,
183
       name=None):
Y
Yu Yang 已提交
184
    """
185
    **Fully Connected Layer**
Y
Yu Yang 已提交
186

187 188 189 190 191 192 193 194
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
195
    to the output as well.
C
caoying03 已提交
196

C
caoying03 已提交
197
    This process can be formulated as follows:
198 199 200

    .. math::

201
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
202 203 204

    In the above equation:

C
caoying03 已提交
205 206 207 208
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
209
    * :math:`Act`: The activation function.
C
caoying03 已提交
210
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
211 212

    Args:
R
ranqiu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
228 229
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
230
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
231
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
232
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
233

234
    Returns:
F
fengjiayi 已提交
235
        Variable: The transformation result.
236 237

    Raises:
C
caoying03 已提交
238
        ValueError: If rank of the input tensor is less than 2.
239 240 241 242

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
243
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
244
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
245
    """
C
caoying03 已提交
246

C
caoying03 已提交
247
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
248 249 250 251

    dtype = helper.input_dtype()

    mul_results = []
252 253
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
254 255 256
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
257

Y
Yu Yang 已提交
258
        w = helper.create_parameter(
259
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
260
        tmp = helper.create_variable_for_type_inference(dtype)
261
        helper.append_op(
262 263 264
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
265
            outputs={"Out": tmp},
M
mozga-intel 已提交
266 267
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
268 269 270 271
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
272
    else:
X
Xin Pan 已提交
273
        pre_bias = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
278
            attrs={"use_mkldnn": False})
279 280 281 282
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
283 284


285 286 287
def embedding(input,
              size,
              is_sparse=False,
288
              is_distributed=False,
289 290 291
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
292
    """
293 294
    **Embedding Layer**

295
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
296 297
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
298 299 300

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
301 302

    Args:
303 304 305 306 307
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
308
        is_distributed(bool): Whether to run lookup table from remote parameter server.
309 310
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
311
            with zeros whenever lookup encounters it in :attr:`input`. If
312
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
313 314
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
315
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
316

317 318 319
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
320

321 322
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
323

C
chengduoZH 已提交
324
          dict_size = len(dataset.ids)
325
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
326
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
327 328 329 330 331
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
332
    tmp = helper.create_variable_for_type_inference(dtype)
333 334
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
335 336 337 338 339
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
340 341 342 343 344
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
345 346 347
    return tmp


W
wopeizl 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
P
peizhilin 已提交
364

W
wopeizl 已提交
365 366 367 368 369 370 371 372 373 374 375
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
376

W
wopeizl 已提交
377 378 379 380
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
381

W
wopeizl 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
468 469


L
liuhongyu 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
def cudnn_lstm(input,
               init_h,
               init_c,
               batch_size,
               max_len,
               dropout_prob,
               input_size,
               hidden_size,
               num_layers,
               is_bidirec=False,
               dtype='float32',
               is_test=False,
               name=None,
               default_initializer=None,
               fix_seed=False,
               seed=0):
    """
    CUDNN LSTM implementation

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

    it = sigmoid(Wi X xt + Ri X ht-1 + bWi + bRi)
    ft = sigmoid(Wf X xt + Rf X ht-1 + bWf + bRf)
    ot = sigmoid(Wo X xt + Ro X ht-1 + bWo + bRo)
    c't = tanh(Wc X xt + Rc X ht-1 + bWc + bRc)
    ct = ft * ct-1 + it * c't
    ht = ot * tanh(ct)

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication
    and tanh is the hyperbolic tangent function. it, ft, ot, c't represent the input, forget, output and new gates respectively.


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        batch_size (int): total distance numer of the batch
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        dropout_prob(float): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
        input_size (int): hidden size of the input tensor
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
        is_bidirec (bool): If it is bidirectional
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used

P
phlrain 已提交
528 529 530
        fix_seed(bool): If it's True, fix seed will used for dropout in LSTM
        seed(int): If fix_seed is True, dropout seed in LSTM will use this seed 

L
liuhongyu 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

            rnn_out, last_h, last_c = layers.cudnn_lstm( input, init_h, init_c, batch_size, \
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'batch_size': batch_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'fix_seed': fix_seed,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
624 625 626 627 628 629 630 631 632 633 634
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
635 636
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
637 638 639
    """
    **Dynamic LSTMP Layer**

640 641 642 643 644 645
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
646 647 648 649 650

    The formula is as follows:

    .. math::

651
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
652

653
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
654

655
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
656

657
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
658

659
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
660

661
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
662

663
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
664

Y
Yibing Liu 已提交
665 666 667 668 669 670
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
671
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
672
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
673
          bias vector).
Y
Yibing Liu 已提交
674 675 676
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
677
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
678
    * :math:`h`: The hidden state.
679
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
680 681
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
682
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
683
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
684
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
685 686
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
687 688 689 690

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
691

Y
Yibing Liu 已提交
692 693 694 695 696 697 698 699 700 701 702 703
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
704
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
705 706
                               hidden-hidden weight and projection weight.

707 708
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
709 710
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
711 712
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
713
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
714 715 716 717 718

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
719
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
720 721 722 723 724 725
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
726
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
727 728 729
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
730
                                - The shape is (1 x 7D).
C
chengduo 已提交
731 732 733 734 735

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
736 737 738 739 740 741 742 743 744
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
745
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
746 747
                              default "tanh".
        proj_activation(str): The activation for projection output.
748
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
749 750
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
751 752
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
753 754

    Returns:
755 756 757 758
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
759 760

    Examples:
761

Y
Yibing Liu 已提交
762 763
        .. code-block:: python

764 765 766 767
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
768
            hidden_dim, proj_dim = 512, 256
769
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
770
                                     act=None, bias_attr=None)
771 772 773
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
774 775 776 777
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
778
    """
779

C
chengduo 已提交
780
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
781
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
782
    size = size // 4
Y
Yibing Liu 已提交
783 784 785 786 787 788 789 790 791 792
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
793 794 795 796 797 798
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
827 828 829 830 831 832 833 834 835
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
836
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
837

838
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
839
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
840

G
guosheng 已提交
841 842 843 844 845 846 847 848 849
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
850

G
guosheng 已提交
851
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
852

G
guosheng 已提交
853
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
854 855
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
856 857 858 859
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
860
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
861 862

    Args:
863 864
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
865
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
866
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
867 868
            is the hidden size.
        size(int): The dimension of the gru cell.
869
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
870 871
            hidden-hidden weight matrix. Note:

872
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
873
              :math:`D` is the hidden size.
874
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
875
              The first part are weights of the update gate and reset gate with
876
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
877
              candidate hidden state with shape :math:`(D \\times D)`.
878 879 880 881 882

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
883
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
884
            the bias in the update gate, reset gate and candidate calculations.
885 886 887
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
888 889
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
890
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
891 892 893
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
894
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
895
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
896 897 898 899
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
900 901

    Returns:
G
guosheng 已提交
902
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
903
            and sequence length is the same with the input.
904

G
guosheng 已提交
905
    Examples:
906

G
guosheng 已提交
907 908
        .. code-block:: python

909 910 911 912
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
913
            hidden_dim = 512
914
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
915 916 917 918 919 920 921 922 923 924
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
925
    batch_size = input.shape[0]
G
guosheng 已提交
926
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
927
    if h_0:
G
guosheng 已提交
928
        assert h_0.shape == (
Y
Yancey 已提交
929 930 931
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
932

X
Xin Pan 已提交
933 934 935 936
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
955 956 957
def gru_unit(input,
             hidden,
             size,
958 959
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
960
             activation='tanh',
961
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
962
    """
963
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
964

965 966
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
967

968
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
969

970
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
971

972
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
973 974

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
975 976 977
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
978 979
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

980 981
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
982 983 984
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
985 986 987

    Args:
        input (Variable): The fc transformed input value of current step.
988
        hidden (Variable): The hidden value of gru unit from previous step.
989
        size (integer): The input dimension value.
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1004
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1005
            the bias in the update gate, reset gate and candidate calculations.
1006 1007 1008
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1009 1010
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1011 1012 1013 1014
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1015

1016 1017 1018 1019 1020 1021
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1022

1023
             # assuming we have x_t_data and prev_hidden of size=10
1024
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1025 1026
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1039
    size = size // 3
Y
Yu Yang 已提交
1040 1041

    # create weight
1042 1043
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1044

X
Xin Pan 已提交
1045 1046 1047
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1048
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1049
    # create bias
1050
    if helper.bias_attr:
Y
Yu Yang 已提交
1051 1052 1053
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1054
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1055 1056 1057

    helper.append_op(
        type='gru_unit',
1058
        inputs=inputs,
Y
Yu Yang 已提交
1059 1060 1061 1062 1063 1064
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1065 1066
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1067 1068 1069 1070 1071
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1072
@templatedoc()
1073
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1074 1075 1076 1077 1078 1079 1080
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1081
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1082 1083 1084 1085
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1086 1087 1088
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1089 1090

    """
Y
Yu Yang 已提交
1091 1092 1093 1094 1095 1096
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1097 1098 1099 1100 1101 1102 1103 1104
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1120 1121 1122 1123
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yuyang18 已提交
1124

W
wopeizl 已提交
1125 1126
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1127

W
wopeizl 已提交
1128
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
1129

W
wopeizl 已提交
1130
        label(${label_type}): ${label_comment}
Y
yuyang18 已提交
1131

W
wopeizl 已提交
1132 1133
    Returns:
        Variable: ${viterbi_path_comment}
1134

W
wopeizl 已提交
1135 1136
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1137

W
wopeizl 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
P
peizhilin 已提交
1148
                "Transition": transition,
W
wopeizl 已提交
1149 1150
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1151

W
wopeizl 已提交
1152
    return viterbi_path
Y
Yu Yang 已提交
1153 1154


Y
yi.wu 已提交
1155
@templatedoc()
F
fengjiayi 已提交
1156
def cos_sim(X, Y):
Y
Yu Yang 已提交
1157
    """
Y
yi.wu 已提交
1158 1159 1160
    ${comment}

    Args:
1161 1162
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1163

Y
yi.wu 已提交
1164
    Returns:
1165
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1166
    """
F
fengjiayi 已提交
1167
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1168 1169 1170
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1181 1182 1183 1184 1185
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1186
            dropout_implementation="downgrade_in_infer"):
1187 1188 1189 1190 1191
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1192
    training. The dropout operator randomly sets (according to the given dropout
1193 1194 1195 1196
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1197 1198
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1199 1200 1201 1202 1203 1204 1205
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1217
                                           dropout op can be removed from the program.
P
phlrain 已提交
1218
                                           the program will be efficient
1219

P
phlrain 已提交
1220

1221 1222

    Returns:
1223
        Variable: A tensor variable is the shape with `x`.
1224 1225

    Examples:
1226

1227 1228
        .. code-block:: python

1229 1230
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1231 1232
    """

F
fengjiayi 已提交
1233
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1234 1235 1236
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1237 1238 1239 1240

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1241 1242 1243 1244 1245
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1246 1247 1248 1249
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1250 1251
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1252
        })
1253 1254 1255
    return out


1256
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1257
    """
Y
Yibing Liu 已提交
1258 1259
    **Cross Entropy Layer**

1260 1261 1262
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1263 1264

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1265
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1266

Y
Yibing Liu 已提交
1267
        .. math::
Y
yangyaming 已提交
1268

Y
Yibing Liu 已提交
1269 1270 1271
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1272 1273
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1274 1275 1276 1277 1278

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1279
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1280 1281 1282
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1283 1284
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1285
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1286

Y
Yibing Liu 已提交
1287
    Args:
Y
yangyaming 已提交
1288
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1289 1290 1291 1292
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1293
        label (Variable|list): the ground truth which is a 2-D tensor. When
1294 1295 1296 1297
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1298
        soft_label (bool): a flag indicating whether to
1299
                                           interpretate the given labels as soft
1300
                                           labels. Default: `False`.
M
minqiyang 已提交
1301 1302
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1303
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1304 1305 1306 1307 1308

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1309 1310 1311 1312 1313
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1314 1315 1316 1317 1318 1319

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1320
    """
F
fengjiayi 已提交
1321
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1322
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1323 1324 1325 1326 1327
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1328 1329
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1330 1331 1332
    return out


F
fengjiayi 已提交
1333
def square_error_cost(input, label):
Y
Yu Yang 已提交
1334
    """
1335 1336
    **Square error cost layer**

1337 1338
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1353 1354
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1355 1356

    Returns:
G
guosheng 已提交
1357
        Variable: The tensor variable storing the element-wise squared error \
1358
                  difference of input and label.
1359 1360 1361 1362 1363 1364 1365 1366

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1367
    """
F
fengjiayi 已提交
1368
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1369
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1370 1371 1372 1373 1374 1375
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1376
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1377
    helper.append_op(
F
fengjiayi 已提交
1378 1379
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1380 1381 1382
    return square_out


Y
yi.wu 已提交
1383
@templatedoc()
Y
Yu Yang 已提交
1384 1385 1386 1387
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1388
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1389
    """
Y
yi.wu 已提交
1390
    **Chunk Evaluator**
Y
yi.wu 已提交
1391

Y
yangyaming 已提交
1392
    This function computes and outputs the precision, recall and
1393
    F1-score of chunk detection.
Y
yi.wu 已提交
1394

Y
yi.wu 已提交
1395 1396 1397 1398 1399 1400 1401 1402
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1403

Y
yi.wu 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1429

Y
yi.wu 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1454
    Args:
1455 1456 1457 1458 1459
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1460

Y
yi.wu 已提交
1461
    Returns:
Y
update  
yi.wu 已提交
1462 1463 1464
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1465

Y
yi.wu 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1478
    """
F
fengjiayi 已提交
1479
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1480 1481

    # prepare output
X
Xin Pan 已提交
1482 1483 1484 1485 1486 1487 1488
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1489 1490 1491 1492 1493 1494 1495 1496

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1497 1498 1499 1500
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1501 1502 1503
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1504 1505
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1506
        })
1507 1508
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1509 1510


1511
@templatedoc()
Y
Yu Yang 已提交
1512 1513 1514 1515 1516 1517 1518
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1519 1520
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1521 1522 1523 1524
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1525 1526 1527 1528 1529 1530 1531

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1545

1546 1547
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1548 1549 1550 1551 1552 1553 1554
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1555
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1566
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1567 1568 1569 1570 1571 1572
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1573
def sequence_softmax(input, use_cudnn=False, name=None):
1574 1575 1576
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1577
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1594 1595 1596
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1597

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1609 1610
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1611
    softmax_out = helper.create_variable_for_type_inference(dtype)
1612 1613 1614 1615 1616 1617 1618 1619
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1620
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1621
    """
1622
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1623
    has the same shape as the input.
Q
qiaolongfei 已提交
1624

1625 1626 1627 1628 1629 1630
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1631
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1632 1633 1634 1635 1636 1637 1638

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1639
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1640 1641 1642 1643 1644 1645 1646 1647

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1648 1649 1650
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1663 1664
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1665
    softmax_out = helper.create_variable_for_type_inference(dtype)
1666 1667 1668 1669 1670 1671 1672 1673
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1674 1675 1676
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1677 1678
           stride=1,
           padding=0,
1679
           dilation=1,
Y
Yu Yang 已提交
1680 1681 1682
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1683
           use_cudnn=True,
1684 1685
           act=None,
           name=None):
Y
Yu Yang 已提交
1686
    """
C
chengduoZH 已提交
1687
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1688 1689
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1690
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1691 1692 1693 1694 1695 1696 1697
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1698 1699 1700
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1701

1702
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1703

C
chengduoZH 已提交
1704 1705
    .. math::

C
refine  
chengduoZH 已提交
1706
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1707

T
tensor-tang 已提交
1708
    Where:
C
chengduoZH 已提交
1709

1710 1711 1712 1713 1714
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1715
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1716 1717 1718

    Example:

1719 1720
        - Input:

W
weixing02 已提交
1721
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1722

W
weixing02 已提交
1723
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1724

1725
        - Output:
T
tensor-tang 已提交
1726

W
weixing02 已提交
1727
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1728

C
chengduoZH 已提交
1729
        Where
1730 1731

        .. math::
C
chengduoZH 已提交
1732

W
weixing02 已提交
1733 1734
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1735 1736

    Args:
1737
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1738
        num_filters(int): The number of filter. It is as same as the output
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1767 1768
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1769 1770
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1771
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1772
            will be named automatically. Default: None
C
chengduoZH 已提交
1773 1774

    Returns:
G
guosheng 已提交
1775
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1776 1777
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1778
    Raises:
1779 1780
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1781

C
chengduoZH 已提交
1782 1783 1784
    Examples:
        .. code-block:: python

1785 1786
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1787 1788 1789
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1790
    assert param_attr is not False, "param_attr should not be False here."
1791
    l_type = 'conv2d'
X
xzl 已提交
1792 1793
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1794
        l_type = 'depthwise_conv2d'
1795 1796 1797 1798

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1799 1800 1801 1802 1803
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1804
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1805

C
chengduoZH 已提交
1806 1807 1808
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1809
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1810

C
chengduoZH 已提交
1811 1812
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1813 1814

    input_shape = input.shape
M
minqiyang 已提交
1815
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1816 1817

    def _get_default_param_initializer():
C
chengduo 已提交
1818 1819
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1820 1821 1822 1823 1824 1825 1826 1827
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1828
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1829

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1844
    helper.append_op(
1845
        type=l_type,
Y
Yu Yang 已提交
1846 1847 1848 1849 1850
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1851 1852 1853
        attrs={
            'strides': stride,
            'paddings': padding,
1854
            'dilations': dilation,
C
chengduoZH 已提交
1855
            'groups': groups,
1856
            'use_cudnn': use_cudnn,
1857
            'use_mkldnn': False,
C
chengduoZH 已提交
1858
        })
Y
Yu Yang 已提交
1859 1860 1861 1862 1863 1864

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1882 1883 1884 1885 1886 1887
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1897 1898
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1899 1900 1901
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1902
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1928
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1929 1930
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1931
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1932 1933
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1934
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1935 1936
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1937
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1938 1939 1940 1941 1942 1943
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1954 1955
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1956 1957
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1958
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1959
            will be named automatically. Default: None.
C
chengduoZH 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1972 1973
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1974 1975 1976
    """

    l_type = 'conv3d'
C
chengduo 已提交
1977
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1988
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2002 2003 2004
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2005 2006 2007 2008 2009 2010 2011 2012
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2013
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2028
            'use_mkldnn': False
C
chengduoZH 已提交
2029 2030
        })

2031
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2032 2033 2034 2035

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2036
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2037
    """
Y
yangyaming 已提交
2038 2039 2040
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2052
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2053 2054 2055 2056 2057
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2058
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2059 2060 2061 2062 2063 2064 2065

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2066 2067
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2068

L
Luo Tao 已提交
2069 2070
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2071
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2072
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2073
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2074 2075 2076 2077 2078 2079 2080

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2081

Y
yangyaming 已提交
2082
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2083 2084 2085 2086 2087
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2088 2089
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2090
    """
F
fengjiayi 已提交
2091
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2092
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2093 2094
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2095 2096 2097 2098 2099 2100

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2101 2102
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2103

Y
yangyaming 已提交
2104 2105 2106 2107 2108
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2109 2110 2111
    return pool_out


C
add doc  
chengduoZH 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2131
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2132 2133 2134 2135 2136
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2137
def sequence_first_step(input):
L
Luo Tao 已提交
2138
    """
L
Luo Tao 已提交
2139
    This function gets the first step of sequence.
L
Luo Tao 已提交
2140 2141 2142 2143

    .. code-block:: text

       x is a 1-level LoDTensor:
2144
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2145 2146 2147 2148 2149
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2150
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2151
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2152

L
Luo Tao 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2162

Y
yangyaming 已提交
2163
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2164 2165 2166
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2167 2168 2169
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2170
def sequence_last_step(input):
L
Luo Tao 已提交
2171
    """
L
Luo Tao 已提交
2172
    This function gets the last step of sequence.
L
Luo Tao 已提交
2173 2174 2175 2176

    .. code-block:: text

       x is a 1-level LoDTensor:
2177
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2178 2179 2180 2181 2182
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2183
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2184
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2185

L
Luo Tao 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2195

Y
yangyaming 已提交
2196
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2197 2198 2199
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2200 2201 2202
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2203 2204 2205 2206
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2207
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2208 2209 2210 2211 2212
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2213

Y
Yibing Liu 已提交
2214 2215
	- Case:

2216
            Given the input Variable **input**:
2217

2218 2219 2220
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2221

2222
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2223

2224
            the output Variable will be
2225

2226 2227 2228
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2229 2230

    NOTE: The first dimension size of **input**, **offset** and **length**
2231
          should be equal. The **offset** should start from 0.
2232

Y
Yibing Liu 已提交
2233
    Args:
2234
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2235
                         sequences.
Y
Yibing Liu 已提交
2236 2237 2238 2239 2240 2241
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2242
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2253
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2254 2255 2256 2257
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2258
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2273
@templatedoc()
Y
Yu Yang 已提交
2274
def pool2d(input,
C
chengduoZH 已提交
2275 2276
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2277 2278
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2279
           global_pooling=False,
C
chengduoZH 已提交
2280
           use_cudnn=True,
2281
           ceil_mode=False,
2282 2283
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2284
    """
F
fengjiayi 已提交
2285
    ${comment}
2286 2287

    Args:
2288 2289 2290
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2291
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2292
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2293 2294
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2295
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2296 2297 2298 2299 2300 2301
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2302 2303 2304
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2305
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2306
                        layer will be named automatically.
2307
        exclusive (bool): Whether to exclude padding points in average pooling
2308
                          mode, default is true
F
fengjiayi 已提交
2309

2310
    Returns:
F
fengjiayi 已提交
2311
        Variable: The pooling result.
F
fengjiayi 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2325 2326 2327 2328
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2329
                            global_pooling=False)
Y
Yu Yang 已提交
2330 2331 2332 2333 2334
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2335

C
chengduoZH 已提交
2336 2337 2338 2339 2340
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2341 2342 2343 2344
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2345 2346
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2347

C
Add doc  
chengduoZH 已提交
2348
    l_type = 'pool2d'
2349 2350

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2351
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2352
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2353 2354

    helper.append_op(
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2366 2367
            "use_mkldnn": False,
            "exclusive": exclusive,
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2381 2382
           name=None,
           exclusive=True):
2383 2384
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2385
    pooling configurations mentioned in input parameters.
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2398
        exclusive (bool): Whether to exclude padding points in average pooling
2399
                          mode, default is true
2400

2401
    Returns:
2402
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2403 2404 2405 2406 2407
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2408

C
chengduoZH 已提交
2409 2410 2411 2412 2413
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2414 2415 2416
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2417

C
chengduoZH 已提交
2418 2419
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2420

2421 2422
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2423
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2424
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2425 2426

    helper.append_op(
2427
        type=l_type,
Y
Yu Yang 已提交
2428 2429 2430 2431 2432 2433 2434
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2435
            "paddings": pool_padding,
2436
            "use_cudnn": use_cudnn,
2437
            "ceil_mode": ceil_mode,
2438 2439
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2452
               data_layout='NCHW',
Y
Yang Yang 已提交
2453
               in_place=False,
2454 2455
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2456
               moving_variance_name=None,
2457 2458
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2459
    """
Q
qiaolongfei 已提交
2460 2461 2462 2463
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2464

Q
qiaolongfei 已提交
2465
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2466

Q
qiaolongfei 已提交
2467 2468
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2469 2470 2471
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2484 2485

    Args:
Q
qiaolongfei 已提交
2486
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2487 2488 2489 2490
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2491 2492 2493 2494 2495 2496 2497 2498
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2499
        data_layout(string, default NCHW): NCHW|NHWC
2500
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2501 2502 2503 2504
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2505
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2506
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2507 2508

    Returns:
Q
qiaolongfei 已提交
2509
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2510 2511 2512 2513 2514 2515 2516

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2517
    """
C
chengduo 已提交
2518
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2541
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2542

2543 2544
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2545 2546 2547
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2548
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2549
        shape=param_shape,
2550 2551 2552 2553 2554 2555 2556
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2557
            trainable=False,
W
wanghaoshuang 已提交
2558
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2559
        shape=param_shape,
2560 2561
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2562 2563 2564 2565 2566 2567

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2568 2569 2570 2571
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2572

X
Xin Pan 已提交
2573 2574
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2592 2593 2594 2595
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2596
            "use_mkldnn": False,
2597
            "fuse_with_relu": fuse_with_relu
2598
        })
Y
Yu Yang 已提交
2599 2600 2601 2602

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2603
@templatedoc()
G
guosheng 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2614
    ${comment}
G
guosheng 已提交
2615 2616 2617

    The formula is as follows:

Y
yuyang18 已提交
2618
    ..  math::
G
guosheng 已提交
2619 2620 2621 2622 2623 2624 2625

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2626 2627 2628 2629 2630 2631 2632 2633
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2634

G
guosheng 已提交
2635 2636
    Args:
        input(Variable): The input tensor variable.
2637
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2638
            normalization. Default True.
2639
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2640 2641
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2642
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2643
            Default 1.
2644
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2645
            division by zero. Default 1e-05.
G
guosheng 已提交
2646
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2647 2648
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2649 2650
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2651
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2652 2653
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2654
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2655
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2656
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2657 2658 2659
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2660 2661

    Returns:
Y
yuyang18 已提交
2662
        ${y_comment}
G
guosheng 已提交
2663 2664 2665

    Examples:

Y
yuyang18 已提交
2666 2667 2668
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2684
    if shift:
G
guosheng 已提交
2685 2686 2687 2688 2689 2690
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2691 2692 2693 2694 2695
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2789 2790 2791 2792
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2793 2794 2795
                     padding=0,
                     stride=1,
                     dilation=1,
2796
                     groups=None,
C
caoying03 已提交
2797
                     param_attr=None,
2798
                     bias_attr=None,
C
chengduoZH 已提交
2799
                     use_cudnn=True,
2800
                     act=None,
C
caoying03 已提交
2801
                     name=None):
Y
Yu Yang 已提交
2802
    """
2803 2804 2805 2806 2807 2808 2809 2810
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2811 2812
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2813 2814 2815
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2816 2817 2818 2819 2820

    For each input :math:`X`, the equation is:

    .. math::

2821
        Out = \sigma (W \\ast X + b)
2822

2823
    Where:
2824 2825 2826

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2827 2828 2829 2830
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2831

2832 2833 2834 2835
    Example:

        - Input:

2836
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2837

2838
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2839 2840 2841

        - Output:

2842
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2843 2844

        Where
Y
Yu Yang 已提交
2845

2846 2847
        .. math::

2848 2849 2850 2851
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2852 2853

    Args:
2854 2855 2856 2857
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2858 2859 2860 2861
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2890
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2891 2892 2893
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2894
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2895
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2896 2897

    Returns:
2898
        Variable: The tensor variable storing the convolution transpose result.
2899 2900

    Raises:
2901 2902
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2903 2904 2905 2906

    Examples:
       .. code-block:: python

2907 2908
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2909
    """
C
chengduo 已提交
2910
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2911 2912 2913 2914 2915 2916 2917 2918
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2919 2920 2921
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2922 2923 2924
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2925

C
chengduoZH 已提交
2926 2927
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2928

Y
Yu Yang 已提交
2929 2930 2931 2932 2933
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2934

Y
Yu Yang 已提交
2935 2936
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2937

C
chengduoZH 已提交
2938
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2939
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2940
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2941
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2942
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2943 2944 2945
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2946

2947 2948 2949 2950 2951 2952 2953
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2954
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2955
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2956

Y
Yu Yang 已提交
2957 2958 2959
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2960
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2961
    helper.append_op(
2962
        type=op_type,
Y
Yu Yang 已提交
2963 2964
        inputs={'Input': [input],
                'Filter': [img_filter]},
2965
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2966
        attrs={
2967
            'output_size': output_size,
2968 2969 2970 2971 2972
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2973 2974
        })

2975 2976 2977
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2978 2979


2980
def conv3d_transpose(input,
Y
Yu Yang 已提交
2981 2982 2983
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2984 2985 2986
                     padding=0,
                     stride=1,
                     dilation=1,
2987
                     groups=None,
C
caoying03 已提交
2988
                     param_attr=None,
2989
                     bias_attr=None,
C
chengduoZH 已提交
2990
                     use_cudnn=True,
2991
                     act=None,
C
caoying03 已提交
2992
                     name=None):
Y
Yu Yang 已提交
2993
    """
2994
    **Convlution3D transpose layer**
2995

2996
    The convolution3D transpose layer calculates the output based on the input,
2997
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2998 2999 3000 3001 3002 3003
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3004 3005 3006
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3007 3008 3009 3010 3011

    For each input :math:`X`, the equation is:

    .. math::

3012
        Out = \sigma (W \\ast X + b)
3013 3014 3015

    In the above equation:

3016 3017
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3018 3019 3020 3021
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3022

3023 3024 3025 3026
    Example:

        - Input:

3027
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3028

3029
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3030 3031 3032

        - Output:

3033
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3034 3035

        Where
Y
Yu Yang 已提交
3036

3037 3038
        .. math::

3039 3040 3041
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3042 3043

    Args:
3044
        input(Variable): The input image with [N, C, D, H, W] format.
3045 3046 3047
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3048
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3049 3050
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3051
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3052 3053 3054
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3055 3056
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3057
        stride(int|tuple): The stride size. If stride is a tuple, it must
3058 3059
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3060
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3061 3062 3063
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3064 3065 3066 3067 3068
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3078 3079
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3080 3081
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3082 3083
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3084 3085

    Returns:
3086
        Variable: The tensor variable storing the convolution transpose result.
3087 3088

    Raises:
3089 3090
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3091 3092 3093 3094

    Examples:
       .. code-block:: python

3095 3096
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3097
    """
C
chengduo 已提交
3098
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3099 3100
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3101
    if not isinstance(input, Variable):
3102
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3103 3104
    input_channel = input.shape[1]

3105 3106 3107
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3108

C
chengduoZH 已提交
3109 3110 3111
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3112 3113 3114 3115 3116 3117
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3118 3119 3120
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3121

3122
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3123
                         padding[0] - 1) // dilation[0] + 1
3124
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3125
                         padding[1] - 1) // dilation[1] + 1
3126
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3127
                         padding[2] - 1) // dilation[2] + 1
3128
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3129
    else:
3130 3131
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3132

3133
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3134
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3135 3136 3137
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3138
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3139
    helper.append_op(
3140
        type=l_type,
Y
Yu Yang 已提交
3141 3142
        inputs={'Input': [input],
                'Filter': [img_filter]},
3143
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3144 3145 3146 3147
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3148
            'groups': groups,
C
chengduoZH 已提交
3149 3150
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3151

3152 3153
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3154
    return out
Y
yangyaming 已提交
3155 3156


Y
yangyaming 已提交
3157
def sequence_expand(x, y, ref_level=-1, name=None):
3158
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3159 3160 3161 3162
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3163 3164 3165 3166 3167

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3168
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3169
                x.data = [[a], [b], [c], [d]]
3170 3171 3172
                x.dims = [4, 1]

            y is a LoDTensor:
3173 3174
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3175

Y
yangyaming 已提交
3176
            ref_level: 0
3177

Y
yangyaming 已提交
3178
            then output is a 1-level LoDTensor:
3179
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3180
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3181 3182 3183 3184
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3185
                x.data = [[a], [b], [c]]
3186 3187 3188
                x.dims = [3, 1]

            y is a LoDTensor:
3189
                y.lod = [[2, 0, 3]]
3190

Y
yangyaming 已提交
3191
            ref_level: -1
3192

Y
yangyaming 已提交
3193 3194 3195
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3196 3197 3198
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3199 3200
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3201
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3202
                        will be named automatically.
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3213
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3214
    """
Y
yangyaming 已提交
3215
    helper = LayerHelper('sequence_expand', input=x, **locals())
3216
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3217
    tmp = helper.create_variable_for_type_inference(dtype)
3218
    helper.append_op(
Y
yangyaming 已提交
3219 3220 3221 3222 3223
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3224
    return tmp
3225 3226


C
chengduo 已提交
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3283
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3284 3285 3286 3287 3288 3289 3290 3291
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3292
@templatedoc()
3293
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3294 3295 3296 3297 3298
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3299 3300 3301
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3302
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3303 3304 3305 3306
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3307 3308 3309
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3310

F
fengjiayi 已提交
3311
    Returns:
M
minqiyang 已提交
3312
        Variable: The padded sequence batch and the original lengths before
3313
                  padding. All sequences has the same length.
M
minqiyang 已提交
3314

F
fengjiayi 已提交
3315 3316 3317 3318 3319 3320 3321
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3322
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3323
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3324 3325 3326 3327 3328
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3329 3330
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3331 3332 3333 3334

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3335 3336 3337 3338 3339 3340
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3341 3342
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3343
        attrs={'padded_length': maxlen})
3344
    return out, length
F
fengjiayi 已提交
3345 3346


3347
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3348
    """
3349
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3350

3351 3352
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3353 3354 3355 3356 3357 3358 3359 3360 3361
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3362 3363 3364
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3365
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3366 3367 3368 3369 3370 3371

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3372
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3373 3374 3375 3376 3377 3378

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3379 3380
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3395
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3407 3408 3409 3410 3411 3412 3413 3414 3415
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3416 3417
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3418 3419 3420

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3421 3422

    This layer does the search in beams for one time step. Specifically, it
3423 3424 3425 3426 3427 3428
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3429

3430 3431 3432 3433 3434 3435 3436 3437
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3438

3439
    Args:
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3465

3466
    Returns:
3467 3468
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3469 3470 3471 3472

    Examples:
        .. code-block:: python

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3490 3491 3492 3493
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3494 3495 3496
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3497 3498 3499 3500 3501

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3502
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3520 3521 3522 3523 3524 3525 3526
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3527

3528 3529 3530 3531 3532 3533 3534 3535 3536
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3537

3538 3539 3540 3541 3542 3543
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3544

3545 3546 3547 3548 3549 3550 3551 3552
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3553 3554
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3570 3571 3572 3573
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3574
              param_attr=None,
C
caoying03 已提交
3575 3576
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3577 3578 3579 3580
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3581
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3582

3583
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3584

3585
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3586

3587
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3588 3589 3590

            h_t & = o_t tanh(c_t)

3591 3592 3593 3594 3595 3596
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3597 3598 3599

        .. math::

3600
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3601 3602 3603 3604 3605 3606 3607 3608

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3609
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3610 3611

    Args:
Y
yangyaming 已提交
3612 3613 3614 3615 3616 3617
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3618
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3631 3632
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3633 3634

    Returns:
Y
yangyaming 已提交
3635
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3636 3637

    Raises:
3638 3639 3640 3641
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3642 3643 3644 3645 3646 3647

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3648
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3649
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3650
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3667
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3668 3669 3670 3671
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3672 3673
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3674 3675 3676
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3677
    size = cell_t_prev.shape[1]
3678
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3679 3680
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3681
                param_attr=param_attr,
3682
                bias_attr=bias_attr)
Y
yangyaming 已提交
3683
    dtype = x_t.dtype
X
Xin Pan 已提交
3684 3685
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3695
    return h, c
G
guosheng 已提交
3696 3697


C
caoying03 已提交
3698
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3699
    """
Y
yangyaming 已提交
3700
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3701 3702 3703

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3704
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3705 3706
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3707 3708
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3709
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3710
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3711
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3712 3713
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3714 3715 3716

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3717

G
guosheng 已提交
3718 3719 3720 3721 3722 3723
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3724
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3725 3726 3727 3728
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3729 3730 3731 3732

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3733
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3734 3735 3736
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3737 3738
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3739
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3740 3741
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3742 3743 3744 3745 3746
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3747
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3748 3749 3750 3751
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3752 3753


C
caoying03 已提交
3754
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3755
    """
Y
Yibing Liu 已提交
3756
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3757 3758 3759

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3760 3761 3762
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3763
            must be in the range :math:`[-rank(input), rank(input))`. If
3764
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3765
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3766 3767
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3768
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3769
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3770
                       will be named automatically.
G
guosheng 已提交
3771 3772

    Returns:
Y
Yibing Liu 已提交
3773
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3774

G
guosheng 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3785 3786
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3787 3788 3789 3790 3791 3792 3793

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3794 3795
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3796
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3797 3798
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3799 3800 3801 3802 3803
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3804
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3805 3806 3807 3808
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3809 3810


C
caoying03 已提交
3811
def reduce_max(input, dim=None, keep_dim=False, name=None):
3812
    """
Y
yangyaming 已提交
3813
    Computes the maximum of tensor elements over the given dimension.
3814 3815 3816

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3817
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3818 3819 3820
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3821
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3822 3823
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3824
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3825 3826
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3827 3828 3829

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3830

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3842 3843 3844 3845 3846 3847 3848

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3849 3850
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3851
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3852 3853
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3854 3855 3856 3857 3858
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3859
            'dim': dim if dim != None else [0],
3860 3861 3862 3863 3864 3865
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3866
def reduce_min(input, dim=None, keep_dim=False, name=None):
3867
    """
Y
yangyaming 已提交
3868
    Computes the minimum of tensor elements over the given dimension.
3869 3870 3871

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3872
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3873 3874 3875
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3876
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3877 3878
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3879
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3880 3881
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3882 3883 3884

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3885

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3897 3898 3899 3900 3901 3902 3903

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3904 3905
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3906
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3907 3908
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3909 3910 3911 3912 3913
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3914
            'dim': dim if dim != None else [0],
3915 3916 3917 3918
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3919 3920


3921 3922 3923 3924 3925 3926
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3927
        dim (list|int|None): The dimensions along which the product is performed. If
3928 3929
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3930 3931
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3932 3933 3934
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3935
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3936
            layer will be named automatically.
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3951
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3952
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3953 3954 3955 3956 3957 3958 3959

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3960 3961
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3962
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3963 3964
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3965 3966 3967 3968 3969
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3970
            'dim': dim if dim != None else [0],
3971 3972 3973 3974 3975 3976
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3977
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3978
    """
C
caoying03 已提交
3979
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3980 3981 3982

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3983 3984 3985 3986 3987
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3988
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3989
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3990
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3991 3992
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3993 3994

    Returns:
D
dzhwinter 已提交
3995
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3996 3997 3998 3999 4000 4001 4002 4003 4004

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4005 4006
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4022
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4045
    .. math::
4046 4047

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4048 4049 4050 4051 4052

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4053
        x(Variable|list): The input tensor to l2_normalize layer.
4054
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4055 4056
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4057
        epsilon(float): The epsilon value is used to avoid division by zero, \
4058
            the defalut value is 1e-10.
4059
        name(str|None): A name for this layer(optional). If set None, the layer \
4060
            will be named automatically.
C
caoying03 已提交
4061 4062

    Returns:
4063
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4064 4065

    Examples:
4066

C
caoying03 已提交
4067 4068
        .. code-block:: python

4069 4070 4071 4072
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4073 4074
    """

F
fengjiayi 已提交
4075 4076
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4077 4078
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4079 4080
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4081
    helper.append_op(
4082 4083 4084 4085
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4086
        attrs={
4087 4088
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4089 4090
        })
    return out
4091 4092


S
sneaxiy 已提交
4093
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4094
    """
Y
ying 已提交
4095 4096 4097 4098
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4099

C
chengduoZH 已提交
4100
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4101
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4102

4103 4104 4105 4106 4107
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4108
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4109

C
chengduoZH 已提交
4110
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4111
      performs in the following way.
G
guosheng 已提交
4112

4113
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4114
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4115
        last two dimensions and a batched matrix multiply supporting broadcast
4116
        applies on the two tensors.
G
guosheng 已提交
4117

Y
ying 已提交
4118 4119
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4120
    removed after matrix multiplication.
G
guosheng 已提交
4121 4122 4123

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4124 4125 4126
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4127
        alpha (float): The scale of output. Default 1.0.
4128
        name(str|None): A name for this layer(optional). If set None, the layer
4129
            will be named automatically.
G
guosheng 已提交
4130 4131

    Returns:
4132
        Variable: The product Tensor variable.
G
guosheng 已提交
4133

G
guosheng 已提交
4134 4135 4136
    Examples:
        .. code-block:: python

4137
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4138 4139
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4140

4141 4142
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4143

4144 4145
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4146

4147 4148
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4149 4150 4151 4152

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4153 4154
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4155

Y
ying 已提交
4156
            # x: [M], y: [N]
4157
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4158
    """
Y
ying 已提交
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4171
            y_shape = y_shape + [1]
Y
ying 已提交
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4188
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4189
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4190
    helper.append_op(
4191 4192 4193 4194
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4195 4196 4197
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4198
            'alpha': float(alpha),
S
sneaxiy 已提交
4199
        })
4200
    return out
4201 4202


4203
def topk(input, k, name=None):
Q
qingqing01 已提交
4204 4205 4206 4207
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4208
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4209 4210 4211 4212 4213 4214
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4236 4237 4238
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4239
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4240
                 of input.
4241
        name(str|None): A name for this layer(optional). If set None, the layer
4242
                       will be named automatically.
F
fengjiayi 已提交
4243
                       Default: None
Q
qingqing01 已提交
4244 4245

    Returns:
4246 4247 4248
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4249
        within the last dimension of input.
Q
qingqing01 已提交
4250

F
fengjiayi 已提交
4251 4252
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4253 4254 4255 4256 4257 4258 4259

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4260 4261
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4273
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4274
    """
Y
ying 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4284

Y
ying 已提交
4285
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4286

4287
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4288 4289
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4290
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4291

4292
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4293 4294
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4295

4296 4297 4298
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4299
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4300
                          the length of reference string.
4301
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4302
                                     calculating edit distance.
4303
        name (str): The name of this layer. It is optional.
4304

W
wanghaoshuang 已提交
4305
    Returns:
W
wanghaoshuang 已提交
4306
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4307 4308 4309 4310

    Examples:
        .. code-block:: python

T
tink2123 已提交
4311 4312
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4313
            cost = fluid.layers.edit_distance(input=x,label=y)
4314
    """
4315
    helper = LayerHelper("edit_distance", **locals())
4316

4317
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4318
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4319 4320
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4321 4322 4323 4324 4325

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4326
            attrs={"tokens": ignored_tokens})
4327 4328 4329 4330 4331
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4332
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4333
            attrs={"tokens": ignored_tokens})
4334 4335
        label = erased_label

4336
    # edit distance op
X
Xin Pan 已提交
4337 4338
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4339 4340 4341 4342
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4343 4344
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4345 4346
        attrs={"normalized": normalized})

4347
    return edit_distance_out, sequence_num
4348 4349 4350 4351 4352


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4353

Y
ying 已提交
4354 4355 4356 4357
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4375
        input.lod = [[4, 4]]
4376 4377 4378 4379 4380 4381 4382

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4383
        output.lod = [[2, 1]]
4384 4385 4386

    Args:

Y
ying 已提交
4387 4388 4389 4390 4391 4392 4393 4394 4395
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4396
        name (str): The name of this layer. It is optional.
4397 4398

    Returns:
4399
        Variable: CTC greedy decode result. If all the sequences in result were
4400
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4401 4402 4403 4404 4405

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4406

4407
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4408
    """
4409
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4410
    _, topk_indices = topk(input, k=1)
4411 4412

    # ctc align op
X
Xin Pan 已提交
4413
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4414 4415 4416
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4417
        outputs={"Output": [ctc_out]},
4418 4419
        attrs={"merge_repeated": True,
               "blank": blank})
4420
    return ctc_out
4421 4422


W
Wu Yi 已提交
4423
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4424
    """
4425 4426
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4427
    to compute Connectionist Temporal Classification (CTC) loss.
4428 4429
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4430 4431 4432
    input tensor.

    Args:
4433
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4434 4435 4436 4437
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4438
       label (Variable): The ground truth of variable-length sequence,
4439 4440 4441
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4442 4443
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4444 4445 4446
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4447
         follewed by a mean_op.
W
Wu Yi 已提交
4448
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4449 4450

    Returns:
4451 4452
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4453 4454

    Examples:
4455

W
wanghaoshuang 已提交
4456
        .. code-block:: python
4457

4458 4459 4460
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4461 4462

    """
F
fengjiayi 已提交
4463
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4464 4465
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4466 4467 4468 4469 4470 4471
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4472 4473 4474 4475 4476
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4477
    return loss_out
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4493 4494 4495
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4496 4497 4498 4499 4500
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4501

4502
            out.lod  = [[0, 1, 3]]
4503 4504 4505 4506

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4507 4508 4509 4510 4511 4512 4513
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4514 4515 4516

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4517 4518

    Returns:
4519

4520 4521 4522 4523 4524
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4525
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4526
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4527 4528
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4529
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4530 4531 4532 4533 4534 4535
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4536 4537


4538 4539 4540 4541
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4542 4543 4544 4545 4546 4547
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4548
        num_neg_samples=None,
4549 4550 4551 4552
        name=None,
        sampler="uniform",
        custom_dist=None,
        seed=0):
4553 4554 4555 4556 4557 4558 4559
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4560 4561
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4562
            sample is 1.0.
C
chengduo 已提交
4563 4564 4565 4566 4567 4568 4569 4570 4571
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4572
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4573 4574
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4575 4576 4577
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4578
        custom_dist (Variable): A tensor with shape [num_total_classes].
4579 4580 4581 4582
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
F
fengjiayi 已提交
4583

4584
    Returns:
Y
Yibing Liu 已提交
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4612 4613 4614 4615 4616 4617 4618 4619 4620

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4621

4622
    """
Y
Yang Yu 已提交
4623 4624 4625
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4626 4627

    dim = input.shape[1]
Y
Yang Yu 已提交
4628 4629 4630 4631 4632 4633
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4647 4648 4649
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4650

Y
Yang Yu 已提交
4651 4652 4653 4654 4655
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'Bias': b,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
        assert isinstance(custom_dist, Variable)
        inputs['CustomDistribution'] = custom_dist
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

Y
Yang Yu 已提交
4676 4677
    attrs = {
        'num_total_classes': int(num_total_classes),
4678 4679 4680
        'num_neg_samples': num_neg_samples,
        'seed': seed,
        'sampler': sampler
Y
Yang Yu 已提交
4681
    }
Y
Yang Yu 已提交
4682 4683 4684

    helper.append_op(
        type='nce',
C
chengduo 已提交
4685
        inputs=inputs,
Y
Yang Yu 已提交
4686 4687 4688 4689 4690 4691
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4692
    return cost / (num_neg_samples + 1)
4693 4694


C
chengduo 已提交
4695 4696 4697 4698 4699 4700
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4701 4702
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4703
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4704 4705 4706 4707 4708 4709 4710 4711 4712
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4713

W
weixing02 已提交
4714
    Args:
M
minqiyang 已提交
4715
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4716 4717 4718 4719 4720
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4732 4733 4734 4735 4736 4737 4738 4739

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4740 4741 4742
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4743 4744 4745 4746
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4747 4748
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4749 4750
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4751
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4752 4753 4754 4755 4756
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4757 4758 4759 4760 4761 4762 4763 4764
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4765 4766
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4767
        inputs=inputs,
W
weixing02 已提交
4768 4769 4770 4771 4772 4773
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4774
def transpose(x, perm, name=None):
Y
ying 已提交
4775 4776 4777 4778 4779 4780 4781
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4782 4783 4784
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4785 4786 4787 4788 4789 4790 4791

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4792
            # use append_batch_size=False to avoid prepending extra
4793
            # batch size in shape
4794
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4795
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4796
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4797 4798
    """

Y
fix ci.  
ying 已提交
4799
    if len(perm) != len(x.shape):
Y
ying 已提交
4800 4801 4802
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4803 4804 4805 4806 4807 4808
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4809 4810

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4811 4812
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4813
    helper.append_op(
4814
        type='transpose2',
Y
fix ci.  
ying 已提交
4815
        inputs={'X': [x]},
4816 4817
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4818 4819
        attrs={'axis': perm})
    return out
4820 4821


4822 4823 4824 4825 4826 4827 4828
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4829
    """
4830 4831 4832 4833 4834 4835 4836
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4865 4866 4867 4868 4869 4870 4871 4872 4873
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4874 4875 4876
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4877 4878 4879 4880 4881
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4909 4910 4911
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4924
            output.dims = {8, 8}
4925

4926
            output.lod = [[4, 4]]
4927

D
dzhwinter 已提交
4928
     Examples:
4929 4930 4931

        .. code-block:: python

4932 4933
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4934 4935

    """
W
wanghaoshuang 已提交
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4946 4947 4948 4949 4950 4951 4952
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4953
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4954
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4955
    helper.append_op(
4956
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4957
    return out
4958 4959


Y
yuyang18 已提交
4960
@templatedoc()
4961
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4962 4963
    """
    ${comment}
4964 4965

    Args:
Y
yuyang18 已提交
4966
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4967 4968
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4969 4970 4971 4972 4973
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4974
        ${out_comment}.
4975 4976

    Examples:
Y
yuyang18 已提交
4977 4978 4979 4980
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4981 4982 4983 4984 4985 4986
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4987
    out = helper.create_variable_for_type_inference(dtype)
4988 4989 4990 4991 4992
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4993
    return helper.append_activation(out)
4994 4995


Y
yuyang18 已提交
4996
@templatedoc()
4997 4998
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4999 5000 5001 5002 5003 5004 5005
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5006 5007

    Args:
Y
yuyang18 已提交
5008 5009
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5010 5011

    Returns:
Y
yuyang18 已提交
5012
        ${out_comment}.
5013 5014
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5015 5016 5017 5018 5019

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5020
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5021 5022 5023 5024 5025 5026
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5027 5028


5029 5030 5031
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
5032
                               ignore_index=-100,
5033 5034
                               numeric_stable_mode=False,
                               return_softmax=False):
5035 5036
    """
    **Softmax With Cross Entropy Operator.**
5037

5038 5039 5040 5041
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5042

5043 5044 5045
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5046

5047 5048 5049
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5050

5051
    The equation is as follows:
5052

5053
    1) Hard label (one-hot label, so every sample has exactly one class)
5054

5055 5056 5057 5058
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5059

5060 5061 5062
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5063

5064 5065 5066 5067
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5068 5069 5070
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5071

S
sneaxiy 已提交
5072 5073 5074 5075 5076 5077 5078 5079
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5080 5081 5082 5083 5084 5085 5086 5087
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5088 5089
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5090
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5091 5092 5093
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5094 5095 5096
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5097
                                    stable algorithm. Default: False
5098
        return_softmax (bool): A flag indicating whether to return the softmax
5099
                               along with the cross entropy loss. Default: False
5100

5101
    Returns:
5102 5103 5104 5105
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5106
                              2-D tensor with shape [N x K].
5107 5108 5109 5110 5111 5112 5113

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5114 5115
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5116 5117
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5118 5119
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5120 5121 5122 5123 5124 5125
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5126 5127 5128 5129 5130
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5131 5132 5133 5134

    if return_softmax:
        return loss, softmax

5135 5136 5137 5138 5139
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5140 5141
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5142
    For each instance, it computes the smooth L1 loss element by element first
5143
    and then sums all the losses. So the shape of ouput Variable is
5144
    [batch_size, 1].
5145

5146 5147
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5148
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5149
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5150
            L1 loss op with same shape as :attr:`x`.
5151
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5152 5153
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5154
            by this tensor element by element.
5155
        outside_weight (Variable|None): A tensor with rank at least 2. This
5156 5157
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5158
            element by element.
5159
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5160 5161
           scalar with default value 1.0.

5162
    Returns:
5163
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5164 5165 5166 5167 5168

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5169 5170
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5171
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5172
            out = fluid.layers.smooth_l1(x=fc, y=label)
5173
    """
5174

5175
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5176 5177
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5190 5191 5192 5193


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5194
    This layer creates the one-hot representations for input indices.
5195 5196

    Args:
Y
Yibing Liu 已提交
5197 5198
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5199 5200

    Returns:
Y
Yibing Liu 已提交
5201
        Variable: The one-hot representations of input.
5202 5203

    Examples:
C
caoying03 已提交
5204
        .. code-block:: python
5205

Y
Yibing Liu 已提交
5206 5207
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5208 5209
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5210
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5211 5212 5213 5214 5215 5216
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5217 5218


Y
Yu Yang 已提交
5219
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5220
    """
Y
yi.wu 已提交
5221 5222 5223
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5224 5225 5226 5227 5228 5229

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5230 5231
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5232 5233 5234 5235 5236 5237

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5238 5239
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5240 5241
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5242 5243 5244 5245 5246
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5247
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5248
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5249 5250
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5251 5252
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5253 5254 5255
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5256 5257


5258
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5259
    """
C
caoying03 已提交
5260 5261
    Gives a new shape to the input Tensor without changing its data.

5262 5263 5264 5265 5266
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5267

5268
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5269

5270 5271 5272 5273
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5274
    2. 0 means the actual dimension value is going to be copied from the
5275 5276 5277 5278
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5279 5280

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5281
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5282
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5283

5284
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5285 5286
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5287 5288
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5289
    dimensions.
C
caoying03 已提交
5290

5291
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5292 5293 5294 5295
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5296 5297

    Args:
5298
        x(variable): The input tensor.
C
caoying03 已提交
5299 5300
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5301 5302 5303 5304 5305
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5306 5307
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5308 5309 5310 5311 5312 5313 5314
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5315
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5316

5317
    Returns:
G
guosheng 已提交
5318 5319 5320 5321
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5322

X
Xin Pan 已提交
5323 5324 5325
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5326 5327
    Examples:
        .. code-block:: python
G
guosheng 已提交
5328

5329
            data = fluid.layers.data(
5330
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5331
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5332
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5333 5334 5335
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5336
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5337 5338 5339 5340 5341
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5342

5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5358
    helper = LayerHelper("reshape2", **locals())
5359 5360
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5361
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5362
    helper.append_op(
5363
        type="reshape2",
X
Xin Pan 已提交
5364
        inputs=inputs,
D
dzhwinter 已提交
5365
        attrs={"shape": shape},
5366 5367
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5368

D
dzhwinter 已提交
5369
    return helper.append_activation(out)
5370

5371

5372
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5373
    """
M
minqiyang 已提交
5374 5375 5376
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5377
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5378

Y
Yibing Liu 已提交
5379 5380
    Examples:
    Case 1:
M
minqiyang 已提交
5381
      Given
Y
Yibing Liu 已提交
5382 5383 5384 5385 5386 5387 5388 5389
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5390
        and
Y
Yibing Liu 已提交
5391 5392 5393
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5394

Y
Yibing Liu 已提交
5395
    Args:
5396
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5397
        axes (list): List of integers, indicating the dimensions to be squeezed.
5398
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5399 5400 5401 5402 5403 5404 5405 5406

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5407
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5408 5409
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5410 5411
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5412
    helper.append_op(
5413
        type="squeeze2",
5414
        inputs={"X": input},
Y
Yibing Liu 已提交
5415
        attrs={"axes": axes},
5416 5417
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5418

5419 5420 5421
    return out


5422
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5423
    """
M
minqiyang 已提交
5424 5425 5426
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5427

M
minqiyang 已提交
5428 5429
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5430
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5431

Y
Yibing Liu 已提交
5432
    Args:
5433
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5434
        axes (list): List of integers, indicating the dimensions to be inserted.
5435
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5436 5437 5438 5439 5440 5441 5442 5443

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5444
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5445 5446
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5447 5448
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5449
    helper.append_op(
5450
        type="unsqueeze2",
5451
        inputs={"X": input},
Y
Yibing Liu 已提交
5452
        attrs={"axes": axes},
5453 5454
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5455

5456 5457
    return out

5458

Y
yangyaming 已提交
5459
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5460
    """
Y
Yibing Liu 已提交
5461
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5462 5463 5464 5465
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5466
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5467 5468 5469 5470 5471 5472

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5473
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5474 5475 5476
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5477
            target_lod: [4, 2]
Y
yangyaming 已提交
5478 5479

            then we get a 1-level LoDTensor:
5480
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5481 5482 5483 5484 5485 5486
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5487
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5488 5489 5490 5491
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5492
                y.data = [[2, 4]]
Y
yangyaming 已提交
5493 5494 5495
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5496
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5497 5498 5499 5500 5501 5502
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5503
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5504 5505 5506 5507
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5508
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5509 5510 5511 5512
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5513
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5514 5515 5516 5517 5518
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5519
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5520
                           from :attr:`y`.
Y
yangyaming 已提交
5521
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5522
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5523 5524

    Returns:
Y
Yibing Liu 已提交
5525
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5526 5527

    Raises:
Y
Yibing Liu 已提交
5528
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5529 5530 5531 5532 5533 5534 5535 5536 5537

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5538
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5564
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5593 5594
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5607 5608 5609
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5623 5624 5625 5626


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5627
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5628
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5629

G
guosheng 已提交
5630 5631 5632 5633
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5656
                         The length of :attr:paddings must be
G
guosheng 已提交
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5667

G
guosheng 已提交
5668 5669 5670 5671 5672 5673
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5674
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5675 5676 5677 5678 5679 5680 5681
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5682 5683


C
chengduo 已提交
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5754
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5755 5756 5757 5758 5759 5760 5761 5762 5763
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5764 5765 5766 5767 5768 5769 5770
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5771 5772
    called label-smoothing regularization (LSR).

5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5796
                              be :math:`(1, class\_num)`.
5797 5798
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5799
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5819
    smooth_label = helper.create_variable_for_type_inference(dtype)
5820 5821 5822 5823 5824 5825 5826
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5827 5828


W
wopeizl 已提交
5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5865 5866


J
jerrywgz 已提交
5867 5868 5869 5870 5871 5872
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5873 5874
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5891 5892 5893
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5894 5895 5896 5897 5898 5899
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5900
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5941 5942
        .. code-block:: python

W
whs 已提交
5943 5944 5945 5946
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5947
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5948 5949 5950 5951 5952 5953
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5954 5955


5956 5957 5958 5959
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5960 5961
                 resample='BILINEAR',
                 actual_shape=None):
5962
    """
Q
qiaolongfei 已提交
5963
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5964

5965
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5966 5967 5968
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5969

5970
        'BILINEAR' : Bilinear interpolation
5971
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5972

5973
    Args:
5974
        input (Variable): The input tensor of image resize layer,
5975 5976
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5977
        out_shape(list|tuple|Variable|None): Output shape of image resize
5978 5979
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5980
        scale(float|None): The multiplier for the input height or width.
5981 5982 5983
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5984 5985
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5986
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
5987
                       currently.
5988
                       Default: 'BILINEAR'
5989 5990 5991
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5992
                                :attr:`out_shape` and :attr:`scale` specifying
5993 5994 5995 5996 5997 5998 5999
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6000 6001
                                constructing stage.
                                Default: None
6002 6003

    Returns:
Q
update  
qiaolongfei 已提交
6004 6005
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6006

6007 6008 6009
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6010
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6011 6012 6013 6014
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6015 6016 6017
    Examples:
        .. code-block:: python

6018
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6019
    """
6020 6021 6022 6023
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6024 6025
    if resample not in resample_methods:
        raise ValueError(
6026
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6027
        )
6028
    resample_type = resample_methods[resample]
6029
    if out_shape is None and scale is None:
6030
        raise ValueError("One of out_shape and scale must not be None.")
6031
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6032
    dtype = helper.input_dtype()
6033 6034 6035 6036

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6037 6038 6039
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6040
    if out_shape is not None:
6041 6042 6043 6044
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6045
            inputs['OutSize'] = out_shape
6046 6047 6048 6049 6050 6051 6052 6053
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6054 6055 6056 6057
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6058 6059 6060 6061 6062
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6063
    out = helper.create_variable_for_type_inference(dtype)
6064
    helper.append_op(
6065
        type='{}_interp'.format(resample_type),
6066
        inputs=inputs,
6067
        outputs={"Out": out},
6068 6069 6070
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6071
    return out
F
stash  
fengjiayi 已提交
6072 6073


6074
@templatedoc(op_type="bilinear_interp")
6075 6076 6077 6078 6079
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6080
    """
6081 6082
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6083 6084
    in priority order.

6085 6086 6087 6088
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6089 6090
    again in the other direction.

6091
    For details of bilinear interpolation, please refer to Wikipedia:
6092
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6093 6094 6095 6096 6097

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6098

Y
yuyang18 已提交
6099 6100 6101 6102 6103
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6104 6105 6106
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6107
                                :attr:`out_shape` and :attr:`scale` specifying
6108 6109 6110 6111 6112 6113 6114
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6115 6116
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6117 6118 6119

    Returns:
        ${out_comment}.
6120 6121 6122 6123 6124

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6125 6126
    """

6127
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6128 6129


6130
@templatedoc(op_type="nearest_interp")
6131 6132 6133 6134 6135
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6136
    """
6137
    Resize input by performing nearest neighbor interpolation in both the
6138 6139
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6140 6141
    out_shape and scale in priority order.

6142
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6143
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6144 6145 6146 6147 6148

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6149

Y
yuyang18 已提交
6150 6151 6152 6153 6154
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6155 6156 6157
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6158
                                :attr:`out_shape` and :attr:`scale` specifying
6159 6160 6161 6162 6163 6164 6165
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6166 6167
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6168 6169 6170

    Returns:
        ${out_comment}.
6171 6172 6173 6174 6175

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6176 6177
    """

6178
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6179 6180 6181 6182


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6183 6184 6185
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6186 6187 6188 6189 6190 6191 6192
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6193
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6194

6195
    Returns:
Q
update  
qiaolongfei 已提交
6196
        Variable: The output is a 4-D tensor of the shape
6197
        (num_batches, channls, out_h, out_w).
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6208 6209 6210
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6211 6212 6213
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6214 6215
def gather(input, index):
    """
Q
qiaolongfei 已提交
6216 6217
    **Gather Layer**

6218
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6219 6220 6221 6222
    of X indexed by `index` and concatenate them together.

    .. math::

6223
        Out = X[Index]
W
whs 已提交
6224 6225 6226 6227 6228 6229 6230


    .. code-block:: text


                Given:

6231 6232
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6243
        input (Variable): The source input with rank>=1.
W
whs 已提交
6244 6245 6246 6247 6248 6249
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6250

W
whs 已提交
6251 6252 6253 6254 6255 6256
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6257
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6258 6259 6260 6261 6262 6263 6264 6265
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6297
    out = helper.create_variable_for_type_inference(dtype)
6298 6299 6300 6301 6302 6303 6304 6305 6306
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6357
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6358 6359 6360 6361 6362 6363 6364 6365 6366
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6380

6381 6382 6383
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6384
    """
F
stash  
fengjiayi 已提交
6385
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6386
    dtype = x.dtype
X
Xin Pan 已提交
6387
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6388
    if seed is None:
6389
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6390
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6391
    if isinstance(seed, int):
F
fengjiayi 已提交
6392 6393 6394 6395 6396
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6397 6398 6399 6400
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6401
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6402 6403
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6404 6405
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6406
    return out
W
whs 已提交
6407 6408


6409
def log(x, name=None):
W
wanghaoshuang 已提交
6410 6411 6412 6413 6414
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6415
        Out = \\ln(x)
W
wanghaoshuang 已提交
6416 6417

    Args:
6418
        x (Variable): Input tensor.
6419 6420
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6421 6422 6423 6424 6425 6426 6427 6428

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6429
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6430 6431
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6432
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6433
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6434
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6435 6436 6437
    return out


6438
def relu(x, name=None):
W
wanghaoshuang 已提交
6439 6440
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6441
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6442 6443 6444 6445
    the tensor elementwise.

    .. math::

6446
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6447 6448

    Args:
6449
        x (Variable): The input tensor.
6450 6451
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6452 6453 6454 6455 6456 6457 6458 6459

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6460
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6461 6462
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6463
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6464
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6465
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6466
    return out
6467 6468


C
chengduo 已提交
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6510 6511 6512
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6513 6514 6515 6516
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6517
    .. math::
6518 6519

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6520

6521
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6522 6523 6524 6525 6526
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6527
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6528
                           Its shape should be the same as input.
6529
        num_classes (int): The possible number of labels.
W
whs 已提交
6530 6531 6532 6533

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6534
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6535 6536 6537 6538

    Examples:

        .. code-block:: python
6539

W
whs 已提交
6540 6541 6542 6543
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6544 6545 6546
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6547 6548
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6549 6550
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6551
        outputs={
W
whs 已提交
6552 6553 6554
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6555 6556 6557
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6632
                    isinstance(shape, Variable)):
6633 6634 6635 6636 6637
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6638
    out = helper.create_variable_for_type_inference(x.dtype)
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6656 6657


W
whs 已提交
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6675

W
whs 已提交
6676
              out_shape = [2, 3, 5, 5]
6677

W
whs 已提交
6678
          Step 1:
6679

W
whs 已提交
6680 6681 6682
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6683

W
whs 已提交
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6776 6777 6778 6779 6780 6781 6782 6783
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6784

6785 6786
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6787

6788 6789 6790 6791
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6792

6793 6794 6795 6796 6797
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6798 6799 6800

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6836
    out = helper.create_variable_for_type_inference("float32")
6837 6838 6839 6840 6841 6842 6843 6844

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6845 6846


M
minqiyang 已提交
6847 6848
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6849
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6850
    which compares left score and right score passed in.
M
minqiyang 已提交
6851
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6852 6853 6854 6855 6856 6857

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6858
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6859 6860
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6861
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6862 6863 6864
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6865
       Variable: The ranking loss.
M
minqiyang 已提交
6866
    Raises:
M
minqiyang 已提交
6867
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6868 6869 6870 6871 6872 6873 6874
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6875
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6876 6877 6878 6879 6880 6881
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6882 6883
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6909

W
whs 已提交
6910 6911
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6912

W
whs 已提交
6913
      Case 0:
M
minqiyang 已提交
6914

W
whs 已提交
6915 6916 6917
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6918

W
whs 已提交
6919 6920 6921
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6922

W
whs 已提交
6923
      Case 1:
M
minqiyang 已提交
6924

W
whs 已提交
6925 6926
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6927

W
whs 已提交
6928 6929 6930
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6931

W
whs 已提交
6932
      Case 2:
M
minqiyang 已提交
6933

W
whs 已提交
6934 6935
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6936

W
whs 已提交
6937 6938 6939
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6940 6941


W
whs 已提交
6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6968
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6995 6996 6997 6998 6999

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7000 7001
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7002 7003
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7004
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7025 7026 7027 7028 7029

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7030 7031
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7032 7033
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7034
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7055 7056 7057 7058 7059

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7060 7061
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7062 7063
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7064
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7086 7087 7088 7089 7090

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7091
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7092
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7093 7094
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7095
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7118 7119 7120 7121 7122

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7123 7124
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7125 7126
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7127
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7149 7150 7151 7152 7153

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7154 7155
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7156 7157
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7158
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7159 7160 7161 7162 7163 7164 7165 7166
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7167 7168 7169 7170
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7171
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7172 7173 7174

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7175 7176
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7177 7178 7179 7180
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7181
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7182
                       will be named automatically.
J
jerrywgz 已提交
7183 7184 7185 7186 7187 7188 7189 7190

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7191
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7205
        attr=helper.param_attr,
J
jerrywgz 已提交
7206 7207 7208 7209
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7210
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7211 7212 7213 7214 7215 7216 7217 7218 7219
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7230
    Returns:
7231
        output(${out_type}): ${out_comment}
7232 7233 7234 7235 7236 7237 7238

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7239 7240
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7241
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7260
    Returns:
7261
        output(${out_type}): ${out_comment}
7262 7263 7264 7265 7266 7267 7268

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7269 7270
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7271
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7289
    Returns:
7290
        output(${out_type}): ${out_comment}
7291 7292 7293 7294 7295 7296 7297

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7298 7299
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7300
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7301 7302 7303 7304 7305 7306 7307 7308
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7322

7323 7324 7325 7326 7327 7328 7329 7330 7331 7332
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7333 7334
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7350
        ValueError: If axis is not in range [0, rank(x)].
7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7367 7368
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7369
    helper.append_op(
7370
        type='flatten2',
7371
        inputs={"X": x},
7372 7373
        outputs={'Out': out,
                 'XShape': x_shape},
7374 7375
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7376 7377


C
chenweihang 已提交
7378
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7379
    """
C
chenweihang 已提交
7380
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7381
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7382 7383
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7384

C
chenweihang 已提交
7385 7386 7387 7388
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7389
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7390 7391 7392 7393 7394 7395
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7396
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7397 7398 7399
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7400 7401 7402
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7414 7415
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7416 7417 7418 7419 7420 7421
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7422
    return out
7423

7424

S
sneaxiy 已提交
7425 7426 7427 7428 7429 7430 7431 7432 7433
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7434

S
sneaxiy 已提交
7435
    .. math::
7436

S
sneaxiy 已提交
7437 7438 7439
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7440
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7441 7442 7443 7444
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7445 7446 7447
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7448 7449
    Returns:
        Variable: The output sequence mask.
7450

S
sneaxiy 已提交
7451 7452
    """

Q
qingqing01 已提交
7453
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7454
    if name is None:
X
Xin Pan 已提交
7455
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7456
    else:
X
Xin Pan 已提交
7457
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7458

Q
qingqing01 已提交
7459 7460 7461
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7462 7463
        outputs={'Y': out},
        attrs={
7464
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7465 7466 7467
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7468 7469


X
Xin Pan 已提交
7470
def stack(x, axis=0):
S
sneaxiy 已提交
7471 7472 7473 7474
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7475 7476 7477 7478 7479 7480 7481

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7482
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7483
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7484 7485

    Args:
7486
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7487
        axis (int|None): The axis along which all inputs are stacked.
7488

S
sneaxiy 已提交
7489 7490
    Returns:
        Variable: The stacked variable.
7491

S
sneaxiy 已提交
7492 7493
    """

X
Xin Pan 已提交
7494 7495 7496 7497 7498 7499
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7500
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7501
    helper.append_op(
S
sneaxiy 已提交
7502 7503
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7504

X
Xin Pan 已提交
7505
    return out
D
dzhwinter 已提交
7506 7507 7508 7509 7510 7511 7512


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7513

D
dzhwinter 已提交
7514 7515 7516
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7517
    raised.
D
dzhwinter 已提交
7518 7519

    Args:
M
minqiyang 已提交
7520
        x (Variable): Input variable.
D
dzhwinter 已提交
7521 7522
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7523

D
dzhwinter 已提交
7524 7525
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7526

D
dzhwinter 已提交
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7538
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7539 7540 7541 7542 7543 7544 7545 7546

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7559

W
whs 已提交
7560 7561 7562 7563
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7564

W
whs 已提交
7565
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7566

W
whs 已提交
7567
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7568

W
whs 已提交
7569 7570 7571 7572
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7573

W
whs 已提交
7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7590
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7591 7592 7593 7594 7595 7596
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7597 7598


G
fix  
gongweibao 已提交
7599 7600 7601
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7602
@templatedoc()
G
fix  
gongweibao 已提交
7603 7604 7605 7606 7607 7608 7609 7610 7611
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7612
    ${comment}
G
fix  
gongweibao 已提交
7613 7614

    Args:
G
gongweibao 已提交
7615 7616 7617
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7618
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7619 7620 7621
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7622 7623
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7624
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7625 7626 7627 7628

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7629
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7646 7647


G
gongweibao 已提交
7648
@templatedoc()
X
Xin Pan 已提交
7649
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7650
    """
G
gongweibao 已提交
7651
    ${comment}
G
fix  
gongweibao 已提交
7652 7653

    Args:
G
gongweibao 已提交
7654 7655 7656 7657
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7658 7659 7660
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7661
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7662 7663 7664 7665

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7666
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7677
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7678 7679 7680 7681 7682
        })

    return out


G
gongweibao 已提交
7683
@templatedoc()
G
fix  
gongweibao 已提交
7684
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7685
    """
G
gongweibao 已提交
7686
    ${comment}
G
fix  
gongweibao 已提交
7687 7688

    Args:
G
gongweibao 已提交
7689 7690 7691 7692
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7693
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7694 7695

    Returns:
G
gongweibao 已提交
7696
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7697 7698 7699 7700

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7701
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7713
@templatedoc()
G
fix  
gongweibao 已提交
7714 7715 7716 7717 7718 7719 7720 7721 7722
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7723
    ${comment}
G
fix  
gongweibao 已提交
7724 7725

    Args:
G
gongweibao 已提交
7726 7727
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7728
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7729 7730 7731 7732
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7733
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7734 7735

    Returns:
G
gongweibao 已提交
7736
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7737 7738 7739
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7740
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7759
@templatedoc()
X
Xin Pan 已提交
7760
def sum(x):
G
fix  
gongweibao 已提交
7761
    """
G
gongweibao 已提交
7762
    ${comment}
G
fix  
gongweibao 已提交
7763 7764

    Args:
G
gongweibao 已提交
7765
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7766 7767

    Returns:
G
gongweibao 已提交
7768
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7769 7770 7771
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7772 7773
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7774 7775 7776 7777
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7778
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7779 7780 7781 7782

    return out


G
gongweibao 已提交
7783
@templatedoc()
G
fix  
gongweibao 已提交
7784 7785
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7786
    ${comment}
G
fix  
gongweibao 已提交
7787 7788

    Args:
G
gongweibao 已提交
7789 7790 7791 7792
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7793 7794

    Returns:
G
gongweibao 已提交
7795
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7796 7797 7798 7799

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7800 7801
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7813
@templatedoc()
G
fix  
gongweibao 已提交
7814 7815
def shape(input):
    """
G
gongweibao 已提交
7816
    ${comment}
G
fix  
gongweibao 已提交
7817 7818

    Args:
G
gongweibao 已提交
7819
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7820 7821

    Returns:
G
gongweibao 已提交
7822
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7823 7824 7825 7826

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7827 7828
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7829
    helper.append_op(
G
fix  
gongweibao 已提交
7830
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7831 7832

    return out
G
merge  
gongweibao 已提交
7833 7834


S
sneaxiy 已提交
7835 7836 7837 7838 7839 7840 7841 7842
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7843 7844
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7845
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7846 7847 7848
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7849

S
sneaxiy 已提交
7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7861
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7862 7863 7864 7865 7866 7867 7868 7869
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7870
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7871
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7872 7873 7874 7875 7876 7877

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7878
    if name is None:
X
Xin Pan 已提交
7879
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7880 7881 7882
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7883 7884 7885 7886 7887 7888 7889 7890 7891 7892

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7893
    return helper.append_activation(out)
S
sneaxiy 已提交
7894 7895


X
Xin Pan 已提交
7896
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7897 7898 7899
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7900
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7901 7902 7903
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7904
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7905 7906 7907
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7908
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7909 7910 7911
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7912
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7913 7914 7915
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7916
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7917 7918 7919
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7920
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7932 7933
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7934
        ])
M
minqiyang 已提交
7935 7936


7937
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7938 7939
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7940 7941
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7942 7943 7944

    if out is None:
        if name is None:
X
Xin Pan 已提交
7945
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7961
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7973 7974 7975 7976 7977 7978 7979 7980 7981

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
7982 7983 7984 7985 7986 7987 7988
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7989
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8001 8002 8003 8004 8005 8006 8007 8008 8009

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8010 8011 8012 8013 8014 8015 8016
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8017
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8029 8030 8031 8032 8033 8034 8035 8036 8037

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8038 8039 8040 8041 8042 8043 8044
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8045
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8046 8047 8048 8049 8050 8051 8052 8053 8054 8055
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8056 8057 8058 8059 8060 8061 8062

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8063 8064 8065 8066
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8082 8083 8084 8085 8086 8087 8088

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8089 8090 8091 8092 8093
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8094 8095 8096 8097
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8121 8122 8123 8124 8125 8126 8127

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8128 8129 8130 8131 8132
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8133 8134 8135 8136
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8137 8138 8139 8140 8141 8142 8143 8144

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8163
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8193
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8194 8195 8196 8197 8198 8199 8200 8201 8202
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8203 8204
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8227
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8257
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8258 8259 8260 8261 8262 8263 8264 8265 8266 8267
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8268 8269


J
JiabinYang 已提交
8270
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8271
    """
J
JiabinYang 已提交
8272
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8273 8274 8275

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8276
    The attr blocksize indicates the input block size.
8277 8278

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8279
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8280 8281

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8282
    (but keeping all data)
J
JiabinYang 已提交
8283

J
JiabinYang 已提交
8284
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8285
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8286 8287 8288 8289 8290
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8291
    Args:
J
JiabinYang 已提交
8292
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8293
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8294 8295

    Returns:
J
JiabinYang 已提交
8296
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8297 8298

    Raises:
J
JiabinYang 已提交
8299
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8300 8301 8302 8303 8304 8305

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8306
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8307
                x=data, blocksize=2)
J
JiabinYang 已提交
8308 8309
    """

J
JiabinYang 已提交
8310
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8311

J
JiabinYang 已提交
8312 8313
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8314 8315

    if name is None:
J
JiabinYang 已提交
8316 8317
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8318 8319 8320 8321 8322
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8323
        type="space_to_depth",
J
JiabinYang 已提交
8324
        inputs={"X": x},
J
JiabinYang 已提交
8325
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8326
        outputs={"Out": out})
J
JiabinYang 已提交
8327 8328
    return out

J
JiabinYang 已提交
8329

S
sneaxiy 已提交
8330 8331
@templatedoc()
def sequence_reverse(x, name=None):
8332
    """
S
sneaxiy 已提交
8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8344
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8345 8346 8347 8348 8349 8350 8351 8352 8353 8354
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8355 8356


8357 8358 8359 8360 8361 8362
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8363

8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8383
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8396 8397


B
barrierye 已提交
8398
def similarity_focus(input, axis, indexes, name=None):
8399
    """
B
barrierye 已提交
8400
    SimilarityFocus Operator
B
barrierye 已提交
8401 8402

    Generate a similarity focus mask with the same shape of input using the following method:
8403 8404 8405
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8406
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8407 8408 8409 8410 8411 8412 8413
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8414
       each index.
B
barrierye 已提交
8415 8416 8417 8418
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8468
    Args:
8469
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8470
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8471
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8472
            1, 2 or 3.
B
barrierye 已提交
8473
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8474 8475

    Returns:
8476
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8477
            as the input.
8478

B
barrierye 已提交
8479 8480 8481
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8482 8483
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8496 8497 8498 8499 8500
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8501 8502 8503 8504 8505 8506 8507
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8508 8509


M
minqiyang 已提交
8510 8511
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8512 8513
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8514 8515
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8554
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8555
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8556 8557 8558 8559 8560 8561 8562 8563 8564

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8565 8566
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8567 8568
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8569 8570 8571 8572 8573 8574 8575
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8576 8577


D
dengkaipeng 已提交
8578
@templatedoc()
8579 8580
def grid_sampler(x, grid, name=None):
    """
8581
    This operation samples input X by using bilinear interpolation based on
8582
    flow field grid, which is usually gennerated by affine_grid. The grid of
8583 8584 8585 8586
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8587
    interpolation value of 4 nearest corner points.
8588 8589 8590 8591 8592 8593 8594 8595

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8596
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8626 8627

    Args:
8628 8629 8630
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8631 8632

    Returns:
8633
        out(Variable): Output of shape [N, C, H, W] data samples input X
8634 8635 8636 8637 8638 8639 8640 8641 8642
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8643 8644 8645 8646 8647 8648 8649 8650 8651
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8652
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8653 8654
    ipts = {'X': x, 'Grid': grid}

8655
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8656 8657 8658
    return out


G
gmcather 已提交
8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8753 8754 8755 8756 8757 8758 8759 8760 8761 8762


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8763
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8764

Q
Qiao Longfei 已提交
8765
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8766 8767 8768
    For example:

    .. math::
8769
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8770

Q
Qiao Longfei 已提交
8771
    In this formula:
8772 8773
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8774
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8775
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8776 8777 8778
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8779 8780
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8781 8782 8783
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8784
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8785
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8786
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8787 8788 8789 8790
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8791
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8792 8793 8794 8795

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8796
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8797 8798
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8799
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8800 8801 8802 8803

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8804
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)