framework.py 195.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27

Y
Yu Yang 已提交
28
import numpy as np
29
import subprocess
S
sneaxiy 已提交
30
import multiprocessing
31
import sys
32
import logging
M
minqiyang 已提交
33
from .. import compat as cpt
34
from .proto import framework_pb2
35 36

from . import core
37
from . import unique_name
38 39
import paddle.version as fluid_version
import warnings
40
import functools
Y
Yu Yang 已提交
41

42
__all__ = [
43 44 45 46
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
47
    'name_scope',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
S
sneaxiy 已提交
51
    'cuda_pinned_places',
L
lujun 已提交
52
    'in_dygraph_mode',
C
chengduo 已提交
53
    'is_compiled_with_cuda',
54
    'is_compiled_with_xpu',
55
    'Variable',
56
    'load_op_library',
57
    'require_version',
58
    'device_guard',
G
guofei 已提交
59 60
    'set_flags',
    'get_flags',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
69
_dygraph_tracer_ = None
70
_global_expected_place_ = None
71
_current_device = None
72 73
global_prog_seed = 0

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
182
def in_dygraph_mode():
L
lujun 已提交
183
    """
184

185 186 187 188 189 190 191
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
192 193

    Returns:
194
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
195 196 197 198

    Examples:
        .. code-block:: python

199 200 201 202 203 204 205 206
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
207 208

    """
L
lujun 已提交
209
    return _dygraph_tracer_ is not None
210 211


212 213 214
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
215
        ), "We don't support %s in imperative mode" % func.__name__
216 217 218 219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
233
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
234 235 236 237 238
        return func(*args, **kwargs)

    return __impl__


239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


274 275
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
276
static_only = wrap_decorator(_static_only_)
277
fake_interface_only = wrap_decorator(_fake_interface_only_)
278 279


L
lujun 已提交
280 281
def _dygraph_tracer():
    return _dygraph_tracer_
282

W
Wu Yi 已提交
283

M
minqiyang 已提交
284
def _current_expected_place():
285 286 287
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
288 289 290 291 292 293 294 295 296 297 298
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
315 316


L
Leo Chen 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
334
def _cpu_num():
335
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
336 337 338 339 340 341 342 343
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
344
        os.environ['CPU_NUM'] = str(1)
345
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
346 347 348 349 350 351 352 353 354 355
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
356 357


358 359 360 361 362 363 364 365 366
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
382 383 384 385
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

386
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
387 388 389 390

    Examples:
        .. code-block:: python

391 392
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
393 394 395 396
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
397
def cuda_places(device_ids=None):
L
lujun 已提交
398
    """
399 400 401 402
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
403
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
404 405

    If :code:`device_ids` is None, environment variable of
406
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
407
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
408
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
409
    If :code:`FLAGS_selected_gpus` is not set, all visible
410
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
411 412

    If :code:`device_ids` is not None, it should be the device
413
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
414
    the returned list would be 
C
Chen Weihang 已提交
415
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
416
    
417 418
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
419 420

    Returns:
C
Chen Weihang 已提交
421
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
422 423 424 425

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
426 427 428 429 430 431
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
432 433

    """
S
sneaxiy 已提交
434 435 436
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
437
        device_ids = _cuda_ids()
S
sneaxiy 已提交
438 439 440 441 442
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
480
def cpu_places(device_count=None):
L
lujun 已提交
481
    """
C
Chen Weihang 已提交
482
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
483 484 485
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
486 487
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
488 489
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
490

491 492
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
493 494

    Returns:
C
Chen Weihang 已提交
495
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
496 497 498 499

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
500 501 502 503 504 505
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
506 507
    """

S
sneaxiy 已提交
508 509 510 511 512 513
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
514
    """
515
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
516 517 518

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
519 520 521 522
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
523

524 525
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
526 527

    Returns:
528
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
529 530 531 532

    Examples:
        .. code-block:: python

533
            import paddle.fluid as fluid
L
lujun 已提交
534 535 536 537 538
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
539 540 541
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
542 543
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
544 545


546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
572
@signature_safe_contextmanager
573 574
def name_scope(prefix=None):
    """
575 576
    :api_attr: Static Graph

577
    Generate hierarchical name prefix for the operators in Static Graph.
578

T
Tao Luo 已提交
579 580 581
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
582
        Don't use it in dygraph, since it will cause memory leak.
583 584

    Args:
T
Tao Luo 已提交
585
        prefix(str, optional): prefix. Default is none.
586 587 588

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
589

590 591 592
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
593
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
594
             b = a + 1
595
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
596
                c = b * 1
597
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
598
                d = c / 1
599 600 601
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
602 603 604
                g = f - 1

          # Op are created in the default main program.  
605
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
621 622
    """
    # TODO(panyx0718): Only [0-9a-z].
623
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
624 625 626
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
627
        assert prefix, "namescope prefix can not be empty."
628 629
        global _name_scope
        _name_scope = _name_scope.child(prefix)
630 631 632 633
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
634 635 636 637 638 639 640 641 642 643 644 645


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
646 647 648
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
649 650 651 652


def grad_var_name(var_name):
    """
653 654
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
655 656 657
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
658

659
def convert_np_dtype_to_dtype_(np_dtype):
660 661
    """
    Convert the data type in numpy to the data type in Paddle
662

663
    Args:
664
        np_dtype(np.dtype): the data type in numpy.
665

666 667
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
668 669

    """
670 671
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
672
        return core.VarDesc.VarType.FP32
673
    elif dtype == np.float64:
674
        return core.VarDesc.VarType.FP64
675
    elif dtype == np.float16:
676
        return core.VarDesc.VarType.FP16
677
    elif dtype == np.int32:
678
        return core.VarDesc.VarType.INT32
679
    elif dtype == np.int16:
680
        return core.VarDesc.VarType.INT16
681
    elif dtype == np.int64:
682
        return core.VarDesc.VarType.INT64
683
    elif dtype == np.bool:
684
        return core.VarDesc.VarType.BOOL
685
    elif dtype == np.uint16:
686 687 688
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
689 690
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
691 692
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
693 694 695 696
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
697
    else:
M
minqiyang 已提交
698
        raise ValueError("Not supported numpy dtype %s" % dtype)
699 700 701


def dtype_is_floating(dtype):
702 703 704
    """
    Check the data type is floating or not.
    Args:
705
        dtype(np.dtype|core.VarDesc.VarType): data type.
706 707 708 709 710
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
711
    if not isinstance(dtype, core.VarDesc.VarType):
712 713
        dtype = convert_np_dtype_to_dtype_(dtype)

714 715 716 717
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
718 719


Y
Yang Yang(Tony) 已提交
720
def _debug_string_(proto, throw_on_error=True):
721 722 723 724 725 726 727 728 729 730 731
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
732
    error_fields = list()
Y
Yang Yang(Tony) 已提交
733
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
734 735
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
736 737 738
    return proto.__str__()


739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
796
    target_block = default_main_program().current_block()
797 798 799 800 801 802 803 804 805 806 807

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
808
            })
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
848
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
849
                fill_constant([1], 1, force_cpu=True, out=temp_1)
850
                temp_end = target_block.create_var(dtype=slice_item.dtype)
851
                target_block.append_op(
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
891

892
    # starts
L
Leo Chen 已提交
893
    if contain_var(slice_start):
894 895 896 897 898 899 900 901
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
902 903 904 905
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
906 907 908 909 910 911 912
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
913 914 915
    else:
        attrs['ends'] = slice_end

916 917
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
918
        if contain_var(slice_step):
919 920 921 922 923 924 925
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
926 927
        else:
            attrs['strides'] = slice_step
928 929 930 931 932 933
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
934
        slice_out_var = target_block.create_var(
935 936 937
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

938
        target_block.append_op(
939 940 941 942 943 944 945
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
946
        strided_slice_out_var = target_block.create_var(
947 948 949
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
950
        target_block.append_op(
951 952 953 954 955 956 957 958
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
959
        reverse_out_var = target_block.create_var(
960 961 962
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
963
        target_block.append_op(
964 965 966 967 968 969 970 971 972 973 974
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
975
class Variable(object):
976
    """
J
Jiabin Yang 已提交
977
    **Notes**:
978
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
979

980 981
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
982 983 984
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
985
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
986 987
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
988

989
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
990
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
991

T
tianshuo78520a 已提交
992
    Most of a Variable's member variables can be set to be None. It mean
993
    it is not available or will be specified later.
994

995
    Examples:
996 997
        In Static Graph Mode:

998 999
        .. code-block:: python

1000
            import paddle.fluid as fluid
1001
            cur_program = fluid.Program()
1002 1003 1004 1005
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
1006
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1007 1008 1009 1010 1011 1012 1013 1014 1015

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1016 1017
    """

Y
Yu Yang 已提交
1018 1019
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1020
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1021 1022 1023 1024
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1025
                 capacity=None,
Q
QI JUN 已提交
1026
                 persistable=None,
F
fengjiayi 已提交
1027
                 error_clip=None,
Y
Yu Yang 已提交
1028
                 stop_gradient=False,
F
fengjiayi 已提交
1029
                 is_data=False,
H
Huihuang Zheng 已提交
1030
                 need_check_feed=False,
H
hong 已提交
1031
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1032
                 **kwargs):
Y
Yu Yang 已提交
1033 1034
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1035
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1036

Y
Yu Yang 已提交
1037
        if dtype is not None:
1038
            if not isinstance(dtype, core.VarDesc.VarType):
1039
                dtype = convert_np_dtype_to_dtype_(dtype)
1040

H
hong 已提交
1041 1042
        self.belong_to_optimizer = belong_to_optimizer

1043 1044 1045 1046 1047
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1048

1049 1050 1051
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1052

1053 1054 1055 1056 1057 1058 1059
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1060

1061
        if shape is not None:
1062
            if is_new_var:
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1104

1105 1106
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1107

1108 1109 1110 1111 1112 1113 1114
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1115

1116 1117 1118 1119
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1120

1121
    @fake_interface_only
1122 1123
    def detach(self):
        """
J
Jiabin Yang 已提交
1124
        **Notes**:
T
tianshuo78520a 已提交
1125
            **This API is ONLY available in Dygraph mode**
1126

1127
        Returns a new Variable, detached from the current graph.
1128

1129
        Returns:
J
Jiabin Yang 已提交
1130
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1131

1132

1133 1134 1135 1136 1137
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1138
                from paddle.fluid.dygraph import Linear
1139 1140 1141 1142
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1143
                    linear = Linear(32, 64)
1144
                    data = to_variable(data)
1145
                    x = linear(data)
1146 1147 1148
                    y = x.detach()

        """
1149
        pass
1150

1151
    @fake_interface_only
1152
    def numpy(self):
1153
        """
J
Jiabin Yang 已提交
1154
        **Notes**:
T
tianshuo78520a 已提交
1155
            **This API is ONLY available in Dygraph mode**
1156

J
Jiabin Yang 已提交
1157
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1158 1159 1160 1161 1162

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1163
            ndarray: dtype is same as current Variable
1164 1165 1166 1167 1168 1169

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1170
                from paddle.fluid.dygraph import Linear
1171 1172 1173 1174
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1175
                    linear = Linear(32, 64)
1176
                    data = to_variable(data)
1177
                    x = linear(data)
1178 1179 1180
                    print(x.numpy())

        """
1181
        pass
1182

1183
    @fake_interface_only
1184 1185
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1186
        **Notes**:
T
tianshuo78520a 已提交
1187
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1199
                from paddle.fluid.dygraph import Linear
1200 1201
                import numpy as np

1202
                data = np.ones([3, 1024], dtype='float32')
1203
                with fluid.dygraph.guard():
1204
                    linear = fluid.dygraph.Linear(1024, 4)
1205
                    t = to_variable(data)
1206
                    linear(t)  # call with default weight
1207
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1208 1209
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1210 1211

        """
1212
        pass
1213

1214
    @fake_interface_only
1215
    def backward(self, retain_graph=False):
1216
        """
J
Jiabin Yang 已提交
1217
        **Notes**:
T
tianshuo78520a 已提交
1218
            **This API is ONLY available in Dygraph mode**
1219

1220
        Run backward of current Graph which starts from current Tensor.
1221

J
Jiabin Yang 已提交
1222
        Args:
1223 1224 1225 1226
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1227

J
Jiabin Yang 已提交
1228 1229
        Returns:
            NoneType: None
1230 1231 1232 1233 1234

        Examples:
            .. code-block:: python

                import numpy as np
1235 1236
                import paddle
                paddle.disable_static()
1237 1238

                x = np.ones([2, 2], np.float32)
1239 1240 1241 1242 1243 1244 1245
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1246 1247
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1248
                loss.backward()
1249 1250

        """
1251
        pass
1252

1253
    @fake_interface_only
1254
    def gradient(self):
1255
        """
J
Jiabin Yang 已提交
1256
        **Notes**:
T
tianshuo78520a 已提交
1257
            **This API is ONLY available in Dygraph mode**
1258 1259 1260

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1261
        Returns:
1262
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1263 1264 1265 1266 1267 1268 1269

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1270
                # example1: return ndarray
1271 1272 1273 1274 1275 1276 1277 1278 1279
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1280
                    loss2.backward()
1281 1282
                    print(loss2.gradient())

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1296
        """
1297
        pass
1298

1299
    @fake_interface_only
1300
    def clear_gradient(self):
1301
        """
J
Jiabin Yang 已提交
1302
        **Notes**:
T
tianshuo78520a 已提交
1303
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1304 1305

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1306

J
Jiabin Yang 已提交
1307
        Clear  (set to ``0`` ) the Gradient of Current Variable
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1326
                    loss2.backward()
1327 1328 1329 1330 1331
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1332
        pass
X
Xin Pan 已提交
1333

1334
    def __str__(self):
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1351 1352
                import paddle
                import paddle.static as static
1353

1354 1355 1356
                paddle.enable_static()

                cur_program = static.Program()
1357 1358 1359 1360 1361 1362
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1363 1364
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1365
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1366 1367 1368
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
                format(name=self.name, type=type_str, shape=self.shape, dtype=dtype_str, stop_gradient=self.stop_gradient)
1369
        else:
1370 1371
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1385

F
update  
fengjiayi 已提交
1386
    def to_string(self, throw_on_error, with_details=False):
1387 1388 1389
        """
        Get debug string.

J
Jiabin Yang 已提交
1390 1391 1392 1393 1394
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1395

1396 1397
        Returns:
            str: The debug string.
1398 1399 1400 1401 1402

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1403
                import paddle
1404

1405
                paddle.enable_static()
1406 1407 1408 1409 1410
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1411
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1412
                print("=============with detail===============")
1413
                print(new_variable.to_string(True, True))
1414
        """
F
update  
fengjiayi 已提交
1415 1416
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1417
        protostr = self.desc.serialize_to_string()
1418
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1419 1420 1421 1422
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1423 1424 1425
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1426
        return res_str
1427 1428 1429

    __repr__ = __str__

1430
    @property
1431
    def stop_gradient(self):
J
Jiabin Yang 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1447 1448
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1449 1450 1451
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1452 1453
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1454 1455 1456 1457
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1458
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1459 1460
                assert (out1.gradient() == 0).all()
        """
1461
        return self._stop_gradient
1462

1463 1464
    @stop_gradient.setter
    def stop_gradient(self, s):
1465
        self._stop_gradient = s
1466

1467 1468
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1490
        return self.desc.persistable()
1491

Y
Yu Yang 已提交
1492 1493
    @persistable.setter
    def persistable(self, p):
1494
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1495

Y
Yu Yang 已提交
1496 1497
    @property
    def name(self):
J
Jiabin Yang 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1514
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1536 1537
    @name.setter
    def name(self, new_name):
1538
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1539

Y
Yu Yang 已提交
1540 1541
    @property
    def shape(self):
J
Jiabin Yang 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1559
        # convert to tuple, make it as same as numpy API.
1560
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1561 1562

    @property
F
fengjiayi 已提交
1563
    def dtype(self):
J
Jiabin Yang 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1580
        return self.desc.dtype()
Y
Yu Yang 已提交
1581 1582 1583

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1605 1606 1607
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1608
        return self.desc.lod_level()
Y
Yu Yang 已提交
1609

Y
Yu Yang 已提交
1610 1611
    @property
    def type(self):
J
Jiabin Yang 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1628
        return self.desc.type()
Y
Yu Yang 已提交
1629

W
Wu Yi 已提交
1630
    def _set_error_clip(self, error_clip):
1631 1632 1633 1634 1635 1636 1637 1638 1639
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1640 1641
        self.error_clip = error_clip

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1682
            raise ValueError("slice step can not be zero")
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1758
    def _cloneVar(self, copy=False):
1759 1760
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1761 1762
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1763 1764 1765 1766
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1767
        new_var = self._cloneVar()
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1778
        new_var = self._cloneVar()
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1789
                return self._cloneVar(True)
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1808
                return self._cloneVar(True)
1809
            index = int(item)
1810
            if (index > 0 and index >= self.shape[axis]) \
1811 1812 1813 1814 1815 1816 1817
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1818
        return _getitem_impl_(self, item)
1819

Y
Yu Yang 已提交
1820

F
fengjiayi 已提交
1821 1822 1823
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1824

1825 1826
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1827 1828 1829 1830
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1831
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1832 1833 1834 1835 1836
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1837 1838 1839 1840
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1850
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1851 1852 1853 1854 1855 1856
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1857 1858 1859 1860 1861 1862 1863 1864
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1865 1866
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1867 1868
        return self.op_proto_map[type]

1869 1870 1871 1872 1873 1874
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1875 1876 1877 1878
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1879
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1880
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1881 1882
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1883 1884
        }

F
fengjiayi 已提交
1885

X
Xin Pan 已提交
1886
class Operator(object):
1887
    """
1888 1889 1890 1891 1892 1893 1894
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1895
        type(str): The type of operator. Default None.
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1916
        Block.append_op or Block._prepend_op instead.
1917 1918 1919 1920

    Examples:
        .. code-block:: python

1921
            import paddle.fluid as fluid
1922
            cur_program = fluid.Program()
1923 1924 1925 1926 1927
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1928
    """
1929
    OP_WITHOUT_KERNEL_SET = {
1930 1931
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1932 1933
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1934
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1935
    }
1936

Y
Yu Yang 已提交
1937 1938
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1939
                 desc,
Y
Yu Yang 已提交
1940 1941 1942
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1943
                 attrs=None):
L
lujun 已提交
1944
        if in_dygraph_mode():
1945 1946
            if type is None:
                raise ValueError(
1947
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1948
            self._type = type
M
minqiyang 已提交
1949
            self.attrs = attrs if attrs else {}
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1964
                )] = self.block.program._op_role
1965 1966 1967

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1968 1969
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1970 1971 1972 1973 1974 1975 1976 1977

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1978
                    "`type` to initialized an Operator can not be None.")
1979 1980
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1981 1982 1983 1984 1985 1986 1987
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1988 1989 1990 1991 1992 1993 1994

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2026
                        if not isinstance(in_args, (list, tuple)):
2027 2028 2029 2030 2031 2032
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2033
                        for index, arg in enumerate(in_args):
2034 2035 2036 2037
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2038
                            elif isinstance(arg, (Variable, core.VarBase)):
2039
                                in_arg_names.append(cpt.to_text(arg.name))
2040
                            else:
2041 2042 2043 2044
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2045 2046
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2071 2072 2073 2074
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2075
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2076
                        if not in_dygraph_mode():
2077 2078 2079 2080
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2099
    def _has_kernel(self, op_type):
2100 2101
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2102
    def to_string(self, throw_on_error):
2103
        """
2104 2105
        Get debug string.

2106
        Args:
2107 2108
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2109

2110 2111
        Returns:
            str: The debug string.
2112 2113

        """
2114
        protostr = self.desc.serialize_to_string()
2115
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2116 2117
        return _debug_string_(proto, throw_on_error)

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2211
    def __str__(self):
2212
        return self._to_readable_code()
2213 2214 2215

    __repr__ = __str__

F
fengjiayi 已提交
2216 2217
    @property
    def type(self):
2218
        return self.desc.type()
F
fengjiayi 已提交
2219 2220

    def input(self, name):
2221
        r"""
2222
        Get the input arguments according to the input parameter name.
2223

2224 2225
        Args:
            name(str): The input parameter name.
2226

2227 2228 2229
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2230
        """
F
fengjiayi 已提交
2231 2232
        return self.desc.input(name)

W
Wu Yi 已提交
2233
    def _rename_input(self, old_name, new_name):
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2244
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2245

W
Wu Yi 已提交
2246
    def _rename_output(self, old_name, new_name):
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2257
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2258

F
fengjiayi 已提交
2259 2260 2261 2262
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2263 2264 2265 2266 2267 2268 2269 2270
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2271
    def output(self, name):
2272
        r"""
2273
        Get output arguments by the output parameter name.
2274

2275 2276
        Args:
            name(str): The output parameter name.
2277

2278 2279 2280
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2281
        """
F
fengjiayi 已提交
2282 2283 2284 2285 2286 2287
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2288 2289 2290 2291 2292 2293 2294 2295
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2296
    def has_attr(self, name):
2297
        """
2298 2299
        Whether this Operator has the attribute with name or not.

2300
        Args:
2301
            name(str): the attribute name.
2302

2303 2304
        Returns:
            bool: True if has this attribute.
2305 2306

        """
F
fengjiayi 已提交
2307 2308 2309
        return self.desc.has_attr(name)

    def attr_type(self, name):
2310
        """
2311
        Get the type of attribute by attribute's name.
2312

2313 2314
        Args:
            name(str): the attribute name.
2315

2316 2317
        Returns:
            core.AttrType: the attribute type.
2318
        """
F
fengjiayi 已提交
2319 2320
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2321
    def _set_attr(self, name, val):
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2332 2333
        self._update_desc_attr(name, val)

2334 2335 2336
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2348 2349
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2350 2351
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2352
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2353 2354 2355 2356
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2357
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2358

F
fengjiayi 已提交
2359 2360 2361 2362 2363
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2364
        """
2365 2366
        Get the attribute by name.

2367
        Args:
2368
            name(str): the attribute name.
2369

2370 2371
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2372 2373
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2374
        return self.desc.attr(name)
Y
Yu Yang 已提交
2375

W
Wu Yi 已提交
2376
    def _block_attr_id(self, name):
2377
        """
G
gongweibao 已提交
2378
        Get the block attribute's id by name.
2379

2380 2381
        Args:
            name(str): the attribute name.
2382

2383 2384
        Returns:
            int: the block index.
2385
        """
W
Wu Yi 已提交
2386
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2387

W
Wu Yi 已提交
2388
    def _block_attr(self, name):
G
gongweibao 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2399
        id = self._block_attr_id(name)
G
gongweibao 已提交
2400 2401 2402
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2403
    def _blocks_attr(self, name):
G
gongweibao 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2414
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2415 2416 2417 2418 2419
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2420
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2431
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2432

J
JiayiFeng 已提交
2433
    def all_attrs(self):
F
fengjiayi 已提交
2434
        """
2435 2436 2437
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2438
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2439 2440 2441 2442
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2443 2444
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2445
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2446 2447 2448
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2449
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2450 2451 2452 2453
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2454 2455
        return attr_map

2456 2457 2458
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2459 2460 2461 2462

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2463 2464 2465
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2466 2467 2468 2469 2470 2471 2472 2473

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2474 2475
            return False

2476 2477 2478 2479 2480 2481
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2482

Y
Yu Yang 已提交
2483
class Block(object):
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2498
        use `Program._create_block()` to create a block.
2499 2500 2501 2502

    Examples:
        .. code-block:: python

2503 2504 2505
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2506 2507 2508 2509 2510 2511 2512 2513 2514
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2515
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2516
        self.desc = program.desc.block(idx)
2517
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2518
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2519
        self.program = program
2520
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2521

2522
    def __str__(self):
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2569

F
fengjiayi 已提交
2570 2571
    def to_string(self, throw_on_error, with_details=False):
        """
2572 2573
        Get debug string.

F
fengjiayi 已提交
2574 2575
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2576
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2577
            with_details(bool): more details about variables and parameters
2578 2579
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2580

2581 2582
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2583 2584 2585 2586
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2587
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2588 2589
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2590
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2591
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2592
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2593
            for op in self.ops:
F
fengjiayi 已提交
2594 2595
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2596 2597 2598
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2599 2600
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2601 2602
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2603 2604 2605

    __repr__ = __str__

Y
Yu Yang 已提交
2606 2607
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2608
        return self.desc.parent
Y
Yu Yang 已提交
2609

Y
Yu Yang 已提交
2610 2611 2612 2613
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2614
    def _set_forward_block_idx(self, idx):
2615 2616 2617 2618 2619 2620 2621 2622 2623
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2624
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2625

2626 2627 2628 2629 2630 2631 2632 2633
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2634 2635
    @property
    def idx(self):
Y
Yu Yang 已提交
2636
        return self.desc.id
Y
Yu Yang 已提交
2637

Q
Qiao Longfei 已提交
2638
    def var(self, name):
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2652
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2653 2654 2655
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2656 2657
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2658
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2659
        return v
Q
Qiao Longfei 已提交
2660

X
Xin Pan 已提交
2661
    def _find_var_recursive(self, name):
2662 2663 2664 2665 2666 2667 2668
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2669
            Variable: the Variable with the giving name. Or None if not found.
2670
        """
Y
Yu Yang 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2695
        return None
Y
Yu Yang 已提交
2696

X
Xin Pan 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2716

Q
Qiao Longfei 已提交
2717
    def all_parameters(self):
2718
        return list(self.iter_parameters())
2719

2720
    def iter_parameters(self):
M
minqiyang 已提交
2721
        return (item[1] for item in six.iteritems(self.vars)
2722
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2723

Y
Yu Yang 已提交
2724
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2725 2726 2727
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2728 2729 2730
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2731
        return var
Y
Yu Yang 已提交
2732

Q
Qiao Longfei 已提交
2733 2734 2735
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2736
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2737 2738
        """
        Rename variable in vars and ops' inputs and outputs
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2751
        """
M
minqiyang 已提交
2752 2753
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2754

T
typhoonzero 已提交
2755
        if not self.has_var(name):
2756
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2757 2758
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2759
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2760 2761 2762 2763 2764 2765
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2766
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2767 2768 2769 2770
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2771
        orig_var_type = v.type
M
minqiyang 已提交
2772
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2773
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2774
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2775
        if var_type == "Parameter":
L
Leo Chen 已提交
2776 2777
            if in_dygraph_mode():
                var = ParamBase(
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2788 2789
                var = Parameter(
                    self,
2790 2791 2792 2793 2794 2795 2796 2797 2798
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2799
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2800 2801
            var = Variable(
                self,
T
typhoonzero 已提交
2802
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2803 2804 2805 2806
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2807
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2808 2809 2810
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2811
        self._sync_with_cpp()
2812
        return var
T
typhoonzero 已提交
2813

2814 2815 2816
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2817
        self.desc._remove_var(cpt.to_bytes(name))
2818 2819
        del self.vars[name]

Y
Yu Yang 已提交
2820 2821
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2822
        param = None
L
Leo Chen 已提交
2823
        if in_dygraph_mode():
2824
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2825 2826
        else:
            param = Parameter(global_block, *args, **kwargs)
2827 2828 2829 2830 2831 2832
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2833
        if 'initializer' in kwargs:
2834 2835 2836 2837 2838

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2839 2840 2841 2842 2843
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2855
                # TODO already inited, do nothing, should log a warning
2856 2857 2858
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2859
        return param
Y
Yu Yang 已提交
2860

Y
Yu Yang 已提交
2861
    def append_op(self, *args, **kwargs):
2862 2863 2864 2865 2866 2867
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2868
        if in_dygraph_mode():
2869
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2870
            type = kwargs.get("type", None)
2871 2872 2873
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2874
                type=type,
M
minqiyang 已提交
2875 2876
                inputs=None,
                outputs=None,
2877
                attrs=attrs)
2878

M
minqiyang 已提交
2879 2880 2881
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2882
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2883 2884

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2885
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2886 2887
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2888
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2889
        else:
2890 2891 2892 2893 2894 2895 2896 2897 2898
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2899
            self.ops.append(op)
M
minqiyang 已提交
2900

2901 2902
        return op

W
Wu Yi 已提交
2903
    def _insert_op(self, index, *args, **kwargs):
2904 2905 2906 2907 2908 2909 2910 2911 2912
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2913 2914
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2915 2916 2917 2918
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
2936 2937 2938 2939 2940 2941 2942 2943 2944
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
2945 2946
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
2947
        self.desc._remove_op(index, index + 1)
2948 2949
        del self.ops[index]

W
Wu Yi 已提交
2950
    def _slice_ops(self, start, end):
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2961
        return self.ops[start:end]
Y
Yancey1989 已提交
2962

W
Wu Yi 已提交
2963
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2964
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2965 2966
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2967
            op = Operator(
J
Jiabin Yang 已提交
2968
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2969

J
Jiabin Yang 已提交
2970
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2971
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2972 2973
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2974
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2975
        else:
2976 2977 2978 2979 2980 2981 2982 2983
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2984
            self.ops.insert(0, op)
2985

Y
Yu Yang 已提交
2986 2987
        return op

W
Wu Yi 已提交
2988
    def _sync_with_cpp(self):
2989
        """
2990 2991
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2992
        """
Q
Qiao Longfei 已提交
2993 2994 2995 2996 2997
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2998
        # sync variables removed from c++ end
2999
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3000
            if not self.desc.find_var(cpt.to_bytes(var)):
3001 3002
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3003
        # sync operators from cpp
3004 3005 3006 3007
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3024 3025 3026 3027 3028

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3029
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3030 3031 3032 3033 3034 3035 3036

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3050 3051 3052 3053
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3054
    def _copy_param_info_from(self, other):
3055
        """
3056 3057
        Copy the information of parameters from the other block.

3058
        Args:
3059 3060 3061 3062 3063
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3064 3065 3066 3067 3068

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3069 3070
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3071
        for p in other.iter_parameters():
3072 3073 3074
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3075 3076
                # if the Parameter is pruned, v may be None
                continue
3077
            assert isinstance(v, Variable)
3078
            new_p = None
L
Leo Chen 已提交
3079 3080
            if in_dygraph_mode():
                new_p = ParamBase(
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3092 3093
                new_p = Parameter(
                    block=self,
3094 3095 3096
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3097 3098
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3099 3100 3101 3102 3103 3104
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3105 3106
            self.vars[new_p.name] = new_p

3107
    def _clone_variable(self, var, force_persistable=True):
3108 3109
        """
        Clone a variable into current block.
3110

3111 3112
        Args:
            var: the variable to be cloned.
3113 3114 3115
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3116 3117

        Returns:
3118
            Variable: the new  variable cloned from 'var' in current block.
3119 3120
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3121 3122 3123 3124 3125
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3126 3127
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3128
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3129 3130 3131 3132 3133 3134
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3135
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3136 3137
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3138 3139 3140 3141 3142 3143 3144
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3145
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3146 3147
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3148
        return ret_var
3149

Y
Yu Yang 已提交
3150

3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3246
    def remove_input_by_id(self, node_id):
3247 3248 3249 3250 3251 3252
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3253
        self.node.remove_input(node_id)
3254

3255
    def remove_input(self, node):
3256 3257 3258 3259
        """
        Remove a node from inputs.

        Args:
3260
            node(IrNode): the node being removed.
3261
        """
3262
        self.node.remove_input(node.node)
3263

3264
    def append_input(self, node):
3265 3266 3267 3268
        """
        Append a node in inputs.

        Args:
3269
            node(IrNode): the node being appended.
3270
        """
3271
        self.node.append_input(node.node)
3272 3273 3274 3275 3276 3277 3278 3279

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3280
    def remove_output_by_id(self, node_id):
3281 3282 3283 3284 3285 3286
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3287
        self.node.remove_output(node_id)
3288

3289
    def remove_output(self, node):
3290 3291 3292 3293
        """
        Remove a node from outputs.

        Args:
3294
            node(IrNode): the node being removed.
3295
        """
3296
        self.node.remove_output(node.node)
3297

3298
    def append_output(self, node):
3299 3300 3301 3302
        """
        Append a node in outputs.

        Args:
3303
            node(IrNode): the node being appended.
3304
        """
3305
        self.node.append_output(node.node)
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3353
            "The node variable description can not be None."
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3364
            "The node variable description can not be None."
3365 3366
        return self.node.var().persistable()

3367 3368 3369 3370 3371 3372 3373 3374
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3375
            "The node variable description can not be None."
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3386
            "The node variable description can not be None."
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3397
            "The node variable description can not be None."
3398 3399
        return self.node.var().shape()

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3447
            "The node operator description can not be None."
3448 3449
        self.node.op()._rename_input(old_input_name, new_input_name)

3450 3451 3452 3453 3454 3455 3456 3457 3458
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3459
            "The node operator description can not be None."
3460 3461
        self.node.op()._rename_output(old_output_name, new_output_name)

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3473
            "The node operator description can not be None."
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3487
            "The node operator description can not be None."
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3498
            "The node operator description can not be None."
3499 3500
        return self.node.op().set_type(new_type)

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3516
            "The node operator description can not be None."
3517 3518 3519 3520
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3521
                all(isinstance(v, Block) for v in val):
3522 3523
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3524
                isinstance(val, core.ProgramDesc):
3525 3526 3527 3528
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3529 3530 3531 3532 3533 3534 3535 3536
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3537
            "The node operator description can not be None."
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3548
            "The node operator description can not be None."
3549 3550
        return self.node.op().output_arg_names()

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3572 3573
class IrGraph(object):
    """
3574
    Python IrGraph. Beneath it is a core.Graph, which is used for
3575
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3576 3577
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3578 3579 3580 3581
    """

    def __init__(self, graph, for_test=False):
        """
3582 3583
        Construct an IrGraph using core.Graph.

3584 3585 3586 3587 3588 3589 3590 3591 3592
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3593 3594 3595 3596
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3597 3598 3599
        Warns:
            The method only clones the graph structure, not its attributes.

3600 3601 3602
        Returns:
            IrGraph: A new and duplicated graph.
        """
3603
        g = self.graph.clone()
3604 3605
        return IrGraph(g, self._for_test)

3606
    def is_test(self):
3607 3608 3609
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3610 3611
        return self._for_test

W
WangZhen 已提交
3612
    def all_nodes(self):
3613 3614 3615
        """
        Return all nodes included in the graph as a set.
        """
3616
        return {IrNode(node) for node in self.graph.nodes()}
3617

3618
    def all_var_nodes(self):
3619 3620 3621
        """
        Return all variable nodes included in the graph as a set.
        """
3622
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3623

3624
    def all_persistable_nodes(self):
3625 3626 3627
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3628 3629 3630 3631 3632
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3633
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3634

3635
    def all_op_nodes(self):
3636 3637 3638
        """
        Return all operator nodes included in the graph as a set.
        """
3639
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3640

3641
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3653
            IrVarNode: the created persistable variable node.
3654
        """
3655 3656 3657 3658 3659
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3660
        return IrVarNode(self.graph.create_var_node(var_desc))
3661 3662

    def create_var_node(self, name, var_type, shape, var_dtype):
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3674
            IrVarNode: the created variable node.
3675 3676
        """

3677 3678 3679 3680
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3681
        return IrVarNode(self.graph.create_var_node(var_desc))
3682

3683 3684 3685 3686 3687 3688
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3689
    def create_var_node_from_desc(self, var_desc):
3690 3691 3692 3693 3694 3695 3696 3697
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3698
            IrVarNode: the created variable node.
3699
        """
3700
        return IrVarNode(self.graph.create_var_node(var_desc))
3701 3702

    def create_op_node(self, op_type, attrs, inputs, outputs):
3703 3704 3705 3706 3707 3708 3709
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3710
            outputs(dict): the outputs of the operator node.
3711 3712

        Returns:
3713
            IrOpNode: the created operator node.
3714
        """
3715 3716
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3717
        for attr, value in six.iteritems(attrs):
3718
            self._update_desc_attr(op_desc, attr, value)
3719
        for input_name, var_nodes in six.iteritems(inputs):
3720 3721 3722 3723
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3724
        for output_name, var_nodes in six.iteritems(outputs):
3725 3726 3727 3728
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3729
        return IrOpNode(self.graph.create_op_node(op_desc))
3730 3731

    def create_op_node_from_desc(self, op_desc):
3732 3733 3734 3735 3736 3737 3738
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3739
            IrOpNode: the created operator node.
3740
        """
3741
        return IrOpNode(self.graph.create_op_node(op_desc))
3742 3743

    def update_input_link(self, old_input_node, new_input_node, op_node):
3744 3745 3746 3747
        """
        Update the input's link of a operator node.

        Args:
3748 3749 3750
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3751
        """
3752
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3753 3754
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3755 3756 3757 3758
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3759
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3760

3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3771 3772
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3773 3774 3775 3776 3777 3778
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3779
    def link_to(self, node_in, node_out):
3780 3781 3782 3783
        """
        Connect two nodes.

        Args:
3784 3785
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3786
        """
3787
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3788
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3789 3790
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3791 3792

    def safe_remove_nodes(self, remove_nodes):
3793 3794 3795 3796 3797 3798 3799
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3800
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3801 3802 3803 3804
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3805 3806
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3807

Z
Zhen Wang 已提交
3808 3809 3810 3811 3812 3813 3814 3815
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3816
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3817 3818 3819 3820
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3821
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3822 3823 3824
                        ]
                    else:
                        var_nodes[each_var_name].append(
3825 3826
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3827 3828
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3829
    def has_circle(self):
3830 3831 3832 3833 3834 3835
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3836 3837 3838
        return core.has_circle(self.graph)

    def graph_num(self):
3839 3840 3841 3842 3843 3844
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3845 3846 3847
        return core.graph_num(self.graph)

    def topology_sort(self):
3848 3849 3850
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3851
        Notes: the `graph` can not contain a circle.
3852 3853

        Returns:
Z
Zhen Wang 已提交
3854
            list(IrNode): nodes in topology order.
3855
        """
3856
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3857
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3858 3859

    def build_adjacency_list(self):
3860 3861 3862 3863
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3864
            dict{IrNode: set(IrNode)}: the adjacency list.
3865
        """
3866 3867 3868 3869 3870
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3871

3872 3873 3874 3875 3876 3877 3878 3879
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3880
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3881 3882 3883 3884 3885
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3886 3887 3888
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3889
                                          + ' -o ' + pdf_save_path, shell=True)
3890 3891 3892 3893 3894
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3895
        remove_ctr_vars = set()
3896
        if remove_ctr_var:
3897
            for node in self.all_var_nodes():
3898 3899 3900
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3901 3902
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3903 3904
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3905 3906 3907 3908 3909 3910
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3911 3912 3913 3914
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3915 3916
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3917 3918 3919 3920 3921 3922 3923
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3924 3925 3926
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3927
        WARN: When the graph includes backward operator nodes, the
3928 3929 3930 3931 3932 3933
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3934
        convert_pass = core.get_pass('graph_to_program_pass')
3935 3936
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3937 3938 3939 3940
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3968
class Program(object):
D
dzhwinter 已提交
3969
    """
3970
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
3971
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3972
    it will contain nested block.
3973

J
Jiabin Yang 已提交
3974 3975 3976
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3977

J
Jiabin Yang 已提交
3978
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3979
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3980 3981 3982 3983 3984 3985 3986
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3987
    **Notes**:
3988 3989 3990
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3991 3992

    Returns:
J
Jiabin Yang 已提交
3993
        Program: An empty Program.
D
dzhwinter 已提交
3994 3995

    Examples:
3996 3997
        .. code-block:: python

3998 3999 4000 4001
            import paddle
            import paddle.static as static

            paddle.enable_static()
4002

4003 4004 4005 4006 4007
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4008
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4009 4010 4011

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4012 4013 4014

    """

4015 4016
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4017 4018
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4019 4020
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4021
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4022
        self.__op_role_var = []
T
tangwei12 已提交
4023

4024 4025
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4026
        self._is_distributed = False
4027
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4028
        self._is_chief = False
4029 4030 4031
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4032
        self._endpoints = []
4033 4034 4035
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4036
        self._trainers_endpoints = []
4037
        # the distributed lookup table names
T
tangwei12 已提交
4038
        self._distributed_lookup_table = None
4039 4040 4041

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4042 4043
        self._use_lamb = False

4044 4045 4046
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4047

4048 4049 4050
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4051
        self._program_config = None
4052

H
hutuxian 已提交
4053 4054 4055
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4056 4057 4058
        # appending gradients times
        self._appending_grad_times = 0

4059 4060 4061 4062
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4063 4064 4065
        # compiled program, i.e. Graph
        self._graph = None

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4076 4077
                import paddle
                import paddle.static as static
4078

4079 4080 4081
                paddle.enable_static()

                prog = static.default_main_program()
4082 4083 4084 4085 4086
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4087
                prog1 = static.default_main_program()
4088 4089 4090 4091 4092 4093 4094 4095
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4096
    @property
4097
    def _op_role(self):
Y
yuyang18 已提交
4098 4099 4100 4101 4102 4103 4104 4105
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4106
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4107 4108 4109 4110
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4111 4112
        return self._current_role

4113 4114
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4115 4116 4117
        self._current_role = role

    @property
4118
    def _op_role_var(self):
Y
yuyang18 已提交
4119
        """
4120
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4121

4122
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4123 4124 4125

        Notes: This is a very low-level API. Users should not use it directly.
        """
4126
        return self.__op_role_var
Y
yuyang18 已提交
4127

4128
    @signature_safe_contextmanager
4129 4130 4131 4132 4133
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4134 4135 4136 4137
        try:
            yield
        finally:
            self._current_role = tmp_role
4138

S
rename  
sneaxiy 已提交
4139
    @signature_safe_contextmanager
W
Wu Yi 已提交
4140
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4141 4142 4143 4144 4145 4146 4147
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4148
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4149 4150 4151

        Examples:

4152
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4153
            >>> p, g = backward(...)
W
Wu Yi 已提交
4154
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4155 4156
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4157
        tmp_role = self._current_role
4158
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4159

Y
yuyang18 已提交
4160 4161
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4162
        self.__op_role_var = [
4163 4164 4165
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4166 4167 4168 4169 4170
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4171

S
rename  
sneaxiy 已提交
4172
    @signature_safe_contextmanager
X
Xin Pan 已提交
4173
    def _lr_schedule_guard(self, is_with_opt=False):
4174 4175 4176 4177 4178 4179 4180
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4181 4182 4183 4184
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4185 4186 4187

        Examples:

4188
            >>> import paddle.fluid as fluid
4189 4190 4191 4192
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4193 4194

        tmp_role = self._current_role
4195
        tmp_var = self.__op_role_var
4196

4197 4198
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4199 4200
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4201
        # TODO(typhoonzero): how to set target learning rate var
4202
        self.__op_role_var = []
4203 4204 4205 4206 4207
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4208

4209
    def __str__(self):
Y
yuyang18 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4239 4240
            import paddle
            import paddle.static as static
4241

4242 4243 4244
            paddle.enable_static()

            cur_program = static.Program()
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4261
            program_str += '\n'
4262
        return program_str
Y
Yang Yang(Tony) 已提交
4263

F
fengjiayi 已提交
4264 4265 4266
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4267

J
Jiabin Yang 已提交
4268 4269 4270
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4271

J
Jiabin Yang 已提交
4272
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4273

H
haowang101779990 已提交
4274
        Returns:
J
Jiabin Yang 已提交
4275
            str: The debug string describe current Program.
Y
yuyang18 已提交
4276 4277

        Raises:
J
Jiabin Yang 已提交
4278
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4279

4280 4281 4282
        Examples:
            .. code-block:: python

4283 4284 4285 4286
                import paddle
                import paddle.static as static

                paddle.enable_static()
4287

4288 4289 4290
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4291
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4292
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4293
                print("program string without detail: {}".format(prog_string))
4294
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4295
        """
4296 4297 4298 4299 4300 4301 4302 4303 4304
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4305 4306 4307 4308 4309 4310
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4311 4312
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4313 4314
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4315

W
Wu Yi 已提交
4316
    def _get_desc(self):
Y
yuyang18 已提交
4317 4318 4319 4320 4321 4322 4323
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4324 4325
        return self.desc

X
version  
Xin Pan 已提交
4326 4327 4328
    def _version(self):
        return self.desc._version()

4329
    def clone(self, for_test=False):
Y
yuyang18 已提交
4330
        """
4331 4332 4333 4334
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4335

4336
        Create a new Program with forward content of original one when ``for_test=True``.
4337
        Create a new Program as same as the original one when ``for_test=False``.
4338

4339
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4340 4341 4342
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4343

4344 4345
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4346 4347
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4348
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4349

J
Jiabin Yang 已提交
4350
        For Example:
4351
          ::
L
Luo Tao 已提交
4352

4353 4354 4355 4356 4357 4358
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4359
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4360
            loss = paddle.mean(pred)
4361
            # Here we use clone before Momentum
4362 4363
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4364
            optimizer.minimize(loss)
4365

J
Jiabin Yang 已提交
4366
        Args:
4367

4368 4369
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4370

J
Jiabin Yang 已提交
4371
        Returns:
4372
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4373

Y
yuyang18 已提交
4374 4375 4376

        Examples:

4377 4378 4379 4380 4381 4382 4383
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4400
            1. To clone a test program, the sample code is:
4401 4402 4403
                .. code-block:: python

                    import six
4404 4405 4406 4407 4408 4409
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4422 4423
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4424 4425 4426

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4427 4428 4429
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4430
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4431 4432
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4433
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4434 4435
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4436
                            test_program = train_program.clone(for_test=True)
4437
                    print_prog(test_program)
J
Jiabin Yang 已提交
4438 4439 4440 4441

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4442
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4443 4444 4445 4446
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4447 4448 4449
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4450 4451 4452
                            sgd.minimize(avg_loss)


4453
            2. The clone method can be avoid if you create program for training and program for testing individually.
4454 4455 4456
                .. code-block:: python

                    import six
4457 4458 4459 4460 4461 4462
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4474

4475
                    def network():
4476
                        img = static.data(name='image', shape=[None, 784])
4477
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4478 4479
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4480
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4481 4482
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4483 4484
                        return avg_loss

4485 4486 4487 4488 4489
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4490
                            avg_loss = network()
4491
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4492
                            sgd.minimize(avg_loss)
4493
                    # the test startup program is not used.
4494 4495
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4496 4497
                            avg_loss = network()
                    print_prog(test_program_2)
4498

4499
            The two code snippets above will generate and print same programs.
4500
        """
4501 4502 4503 4504 4505

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4506
        pruned_origin_block_id_map = None
4507
        if for_test:
4508 4509 4510 4511 4512 4513 4514 4515 4516
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4517
        else:
4518
            p = Program()
G
gongweibao 已提交
4519 4520
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4521
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4522 4523 4524
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4525 4526

            p._current_role = self._current_role
4527
            p.__op_role_var = self.__op_role_var
4528
            p._appending_grad_times = self._appending_grad_times
4529 4530
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4531

4532 4533
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4534
            p._sync_with_cpp()
4535

W
Wu Yi 已提交
4536
        p._copy_param_info_from(self)
4537
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4538
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4539
        return p
4540

4541
    def _prune(self, targets):
Y
yuyang18 已提交
4542 4543 4544 4545 4546 4547 4548 4549
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4550
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4551 4552 4553 4554
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4555
        """
4556
        return self._prune_with_input([], targets)
4557 4558

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4559
        """
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4570
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4571 4572 4573 4574 4575 4576
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4577 4578 4579 4580
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4581 4582
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4583 4584
        if not isinstance(targets, list):
            targets = [targets]
4585 4586 4587

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4588 4589 4590
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4591

4592 4593 4594 4595
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4596 4597 4598
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4599
                else:
4600 4601 4602
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4603 4604 4605 4606 4607 4608 4609 4610

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4627 4628 4629 4630 4631 4632 4633 4634
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4635

4636
        res = Program()
4637 4638 4639
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4640 4641 4642
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4643
        res._sync_with_cpp()
4644 4645 4646 4647 4648

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4649 4650
        return res

X
Xin Pan 已提交
4651
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4652
        """
F
fengjiayi 已提交
4653 4654 4655 4656 4657
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4658
        3. change the :code:`is_test`
Y
yuyang18 已提交
4659 4660 4661
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4662
        Args:
X
Xin Pan 已提交
4663 4664
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4665

Y
yuyang18 已提交
4666 4667 4668 4669 4670 4671
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4672
        res = Program()
4673
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4674 4675 4676 4677

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4678
        if prune_read_op:
4679 4680 4681 4682 4683 4684 4685 4686 4687
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4688
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4689 4690

        # change all `is_test` attributes to True
M
minqiyang 已提交
4691
        for i in six.moves.range(res.desc.num_blocks()):
4692
            block = res.desc.block(i)
M
minqiyang 已提交
4693
            for j in six.moves.range(block.op_size()):
4694 4695
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4696
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4697 4698 4699
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4700
        res._sync_with_cpp()
4701 4702
        return res

4703 4704
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4705
        """
4706 4707 4708
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4709

4710 4711
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4712

J
Jiabin Yang 已提交
4713
        Args:
Y
yuyang18 已提交
4714

J
Jiabin Yang 已提交
4715
            binary_str_type (str): the binary prootbuf string.
4716

J
Jiabin Yang 已提交
4717 4718
        Returns:
            Program: A deserialized Program.
4719 4720 4721 4722

        Examples:
            .. code-block:: python

4723 4724 4725 4726
                import paddle
                import paddle.static as static

                paddle.enable_static()
4727

4728 4729 4730 4731
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4732

4733
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4734

4735
                    z = paddle.matmul(x=x, y=y)
4736

4737 4738
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4739

4740
                    print(static.default_main_program())
4741
                    print(prog_restored)
Y
yuyang18 已提交
4742
        """
4743 4744
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4745
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4746
        p._sync_with_cpp()
4747
        return p
Y
Yu Yang 已提交
4748

4749
    @staticmethod
4750
    def _construct_from_desc(desc):
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4766 4767
    @property
    def random_seed(self):
Y
yuyang18 已提交
4768
        """
J
Jiabin Yang 已提交
4769
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4770 4771
        the random seed from random device.

4772 4773
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4774 4775 4776

        Returns:
            int64: Random seed in current Program
4777

4778 4779 4780 4781

        Examples:
            .. code-block:: python

4782 4783 4784
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4785

4786 4787 4788
                paddle.enable_static()

                prog = static.default_main_program()
4789
                random_seed = prog.random_seed
4790
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4791 4792 4793
                print(random_seed)
                ## 0
                ## the default random seed is 0
4794

4795
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4796
                prog.random_seed = 1
4797
                z_var = F.dropout(x_var, 0.7)
4798

4799
                print(prog.random_seed)
4800 4801
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4802
        """
D
dzhwinter 已提交
4803 4804
        return self._seed

Q
qiaolongfei 已提交
4805 4806
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4807
        """
4808 4809
        The number of :ref:`api_guide_Block_en`  in this Program.

4810 4811
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4812 4813 4814

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4815

4816 4817 4818 4819

        Examples:
            .. code-block:: python

4820 4821 4822 4823
                import paddle
                import paddle.static as static

                paddle.enable_static()
4824

4825
                prog = static.default_main_program()
4826 4827
                num_blocks = prog.num_blocks
                print(num_blocks)
4828

4829 4830
                # print result:
                # 1
Y
yuyang18 已提交
4831
        """
Q
qiaolongfei 已提交
4832 4833
        return self.desc.num_blocks()

D
dzhwinter 已提交
4834 4835 4836
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4837 4838 4839
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4840 4841
        self._seed = seed

Y
Yu Yang 已提交
4842
    def __repr__(self):
4843
        return self.__str__()
4844

Y
Yu Yang 已提交
4845
    def global_block(self):
Y
yuyang18 已提交
4846
        """
4847 4848
        .. note::
            This API has no effect in Dygraph mode.
4849 4850 4851

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4852 4853
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4854

4855 4856 4857 4858

        Examples:
            .. code-block:: python

4859 4860 4861 4862
                import paddle
                import paddle.static as static

                paddle.enable_static()
4863

4864
                prog = static.default_main_program()
4865 4866
                gb_block = prog.global_block()
                print(gb_block)
4867

Y
yuyang18 已提交
4868
        """
Y
Yu Yang 已提交
4869 4870
        return self.blocks[0]

Q
Qiao Longfei 已提交
4871
    def block(self, index):
Y
yuyang18 已提交
4872
        """
4873 4874
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4875

4876 4877
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4878 4879
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4880

J
Jiabin Yang 已提交
4881 4882
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4883 4884 4885 4886

        Examples:
            .. code-block:: python

4887 4888 4889 4890
                import paddle
                import paddle.static as static

                paddle.enable_static()
4891

4892
                prog = static.default_main_program()
4893 4894
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4895
        """
Q
Qiao Longfei 已提交
4896 4897
        return self.blocks[index]

Y
Yu Yang 已提交
4898
    def current_block(self):
Y
yuyang18 已提交
4899
        """
4900 4901
        .. note::
            This API has no effect in Dygraph mode.
4902

J
Jiabin Yang 已提交
4903 4904
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4905

J
Jiabin Yang 已提交
4906 4907
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4908

4909 4910 4911
        Examples:
            .. code-block:: python

4912 4913 4914 4915
                import paddle
                import paddle.static as static

                paddle.enable_static()
4916

4917
                prog = static.default_main_program()
4918 4919
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4920
        """
Y
Yu Yang 已提交
4921 4922
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4923
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4924 4925 4926 4927 4928
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4929

Y
yuyang18 已提交
4930 4931 4932 4933 4934
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4935
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4936 4937 4938
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4939 4940 4941 4942
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4943
    def _rollback(self):
Y
yuyang18 已提交
4944 4945 4946 4947 4948
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4949 4950
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4951
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4962 4963 4964
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4965
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4966

W
Wu Yi 已提交
4967
    def _copy_param_info_from(self, other):
4968
        """
4969
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4970

Y
yuyang18 已提交
4971 4972 4973
        Notes: This is a very low level API. Users should not invoke it
        directly.

4974 4975 4976 4977 4978 4979 4980
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4981 4982 4983
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4984

W
Wu Yi 已提交
4985
        self.global_block()._copy_param_info_from(other.global_block())
4986

4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4998 4999 5000
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5001 5002
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5003
        self._parameters_on_pservers = other._parameters_on_pservers
5004
        self._endpoints = other._endpoints
5005
        self._ps_endpoint = other._ps_endpoint
5006 5007
        self._distributed_lookup_table = other._distributed_lookup_table

5008
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5009 5010
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5011

Y
yuyang18 已提交
5012 5013 5014
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5015 5016
        Args:
            other(Program): Other program
5017 5018 5019 5020
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5021 5022 5023 5024 5025

        Returns:
            None
        """
        if not isinstance(other, Program):
5026 5027 5028
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5029

5030 5031 5032 5033 5034
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5035 5036 5037

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5038 5039
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5040
            for var in list(block.vars.values()):
5041 5042 5043 5044 5045 5046 5047
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5048

5049
    def list_vars(self):
Y
yuyang18 已提交
5050
        """
5051
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5052

J
Jiabin Yang 已提交
5053
        Returns:
5054
            iterable Tensors: The Generator will yield every Tensor in this program.
5055 5056 5057 5058

        Examples:
            .. code-block:: python

5059 5060
                import paddle
                import paddle.static as static
5061

5062 5063 5064 5065 5066
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5067 5068
                for var in prog.list_vars():
                    print(var)
5069
                
5070 5071
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5072
        """
5073
        for each_block in self.blocks:
5074
            for each_var in list(each_block.vars.values()):
5075 5076
                yield each_var

5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5087 5088 5089 5090
                import paddle
                import paddle.static as static

                paddle.enable_static()
5091

5092 5093
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5094
                hidden = static.nn.fc(x=data, size=10)
5095 5096
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5097 5098 5099 5100 5101 5102 5103

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5104 5105
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5116

5117
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5118
class Parameter(Variable):
5119
    """
5120
    Parameter is derived from Variable. A parameter is a persistable
5121
    Variable, and will be updated by optimizers after each iteration.
5122
    The training of a neural network is essentially the updating of
5123 5124
    its parameters.

5125
    Relative to a general Variable, a Parameter has several its own
5126 5127
    member variables:

5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5138 5139
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5140 5141
    """

5142 5143 5144 5145 5146 5147
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5148 5149 5150 5151 5152
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5153
        if len(shape) == 0:
5154 5155
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5156 5157 5158

        for each in shape:
            if each < 0:
5159 5160 5161
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5162 5163

        Variable.__init__(
5164 5165 5166 5167 5168 5169 5170
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5171 5172 5173 5174
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5175 5176
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5177
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5178

5179 5180
        self.need_clip = kwargs.get('need_clip', True)

5181 5182
        self.is_distributed = False

F
fengjiayi 已提交
5183
    def __str__(self):
5184
        return self._to_readable_code()
F
fengjiayi 已提交
5185

F
update  
fengjiayi 已提交
5186 5187 5188
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5189

F
update  
fengjiayi 已提交
5190 5191 5192 5193 5194 5195 5196 5197
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5198 5199 5200 5201 5202 5203 5204 5205 5206
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5207 5208 5209 5210 5211 5212
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5213
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5214
            for attr_name in additional_attr:
5215 5216
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5217 5218
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5219 5220 5221 5222
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5223

5224 5225
class ParamBase(core.VarBase):
    """
5226 5227 5228
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5229 5230 5231
    The training of a neural network is essentially the updating of
    its ParamBase.

5232
    Relative to a general Tensor, a ParamBase has several its own
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5245 5246
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5277 5278
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5279 5280 5281 5282 5283 5284 5285

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5286 5287
        self.need_clip = kwargs.get('need_clip', True)

5288
        self.is_distributed = False
5289
        # self.block = default_main_program().global_block()
5290

5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5304
    def __str__(self):
5305
        """
5306
        Convert a ParamBase object to a readable string.
5307

5308
        Returns(str): A readable string.
5309 5310 5311 5312

        Examples:
            .. code-block:: python

5313
                import paddle
5314 5315 5316 5317 5318 5319 5320
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5321
        """
5322 5323
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5324

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
                
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5355 5356 5357
    __repr__ = __str__


Y
Yu Yang 已提交
5358
# program is a global instance.
Y
Yu Yang 已提交
5359 5360
_main_program_ = Program()
_startup_program_ = Program()
5361

5362

5363
def default_startup_program():
Y
Yu Yang 已提交
5364
    """
Y
yuyang18 已提交
5365 5366
    Get default/global startup program.

5367 5368 5369 5370 5371
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
  
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5372

5373 5374
    Returns:
        Program: current default startup program.
5375

5376
    Returns type: 
5377 5378 5379 5380

    Examples:
        .. code-block:: python

5381
            import paddle
5382

5383
            paddle.enable_static()
5384 5385 5386 5387
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5388
    """
Y
Yu Yang 已提交
5389
    return _startup_program_
5390

5391

5392
def default_main_program():
Y
Yu Yang 已提交
5393
    """
5394
    This API can be used to get ``default main program`` which store the 
5395
    descriptions of Ops and tensors.
5396
    
5397
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5398
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5399

5400 5401
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5402
    :code:`default_main_program` when the program is not specified.
5403

5404
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
5405
    
Y
Yu Yang 已提交
5406
    Returns:
5407
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5408 5409 5410 5411

    Examples:
        ..  code-block:: python

5412
            import paddle
5413

5414
            paddle.enable_static()
5415
            # Sample Network:
5416 5417 5418
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5419

5420 5421 5422
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5423
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5424
    """
Y
Yu Yang 已提交
5425
    return _main_program_
Y
Yu Yang 已提交
5426 5427 5428 5429 5430


def switch_main_program(program):
    """
    Switch the main program to a new program.
5431

Y
Yu Yang 已提交
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5446
    Switch the startup program to a new program
Y
Yu Yang 已提交
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5459
@signature_safe_contextmanager
Y
Yu Yang 已提交
5460 5461
def program_guard(main_program, startup_program=None):
    """
5462 5463
    :api_attr: Static Graph

5464 5465 5466
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5467

G
guofei 已提交
5468
    Args:
5469 5470
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5471 5472 5473 5474
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5475
    Examples:
5476 5477
       .. code-block:: python
       
5478
          import paddle
Y
yuyang18 已提交
5479

5480 5481 5482 5483 5484
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5485
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5486 5487 5488

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5489

Y
Yu Yang 已提交
5490
    Examples:
5491
       .. code-block:: python
Y
yuyang18 已提交
5492

5493
          import paddle
5494

5495 5496 5497 5498 5499
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
G
guofei 已提交
5500
    
Y
Yu Yang 已提交
5501
    """
5502
    from .data_feeder import check_type
5503 5504
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5505 5506
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5507
        check_type(startup_program, 'startup_program', Program,
5508
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5509
        startup_program = switch_startup_program(startup_program)
5510 5511 5512 5513 5514 5515
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5516 5517


W
Wu Yi 已提交
5518
def _get_var(name, program=None):
X
xuwei06 已提交
5519
    """
Y
yuyang18 已提交
5520
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5521

X
xuwei06 已提交
5522 5523 5524
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5525
        If None, default_global_program() will be used.
X
xuwei06 已提交
5526 5527 5528 5529 5530 5531 5532

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5533
    assert isinstance(program, Program)
X
xuwei06 已提交
5534 5535

    return program.global_block().var(name)
5536 5537


S
rename  
sneaxiy 已提交
5538
@signature_safe_contextmanager
L
lujun 已提交
5539 5540 5541 5542
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5543
    core._switch_tracer(tracer)
M
minqiyang 已提交
5544

5545 5546 5547 5548 5549
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5550 5551


S
rename  
sneaxiy 已提交
5552
@signature_safe_contextmanager
L
lujun 已提交
5553
def _dygraph_place_guard(place):
5554 5555 5556
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5557

5558 5559 5560
    try:
        yield
    finally:
5561
        _global_expected_place_ = tmp_place
5562 5563 5564 5565


def load_op_library(lib_filename):
    """
5566 5567
    :api_attr: Static Graph
    
5568 5569 5570
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5571
    Please note, the type of custom operators can't have the same type
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5638 5639 5640 5641 5642
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5643 5644 5645 5646
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5647 5648
    if index:
        device = ":".join([device, index])
5649
    pre_device = switch_device(device)
5650 5651 5652 5653
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value