nn.py 323.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
P
phlrain 已提交
172
    'lstm',
Y
Yu Yang 已提交
173 174 175 176 177 178 179 180 181
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
182
       is_test=False,
183
       name=None):
Y
Yu Yang 已提交
184
    """
185
    **Fully Connected Layer**
Y
Yu Yang 已提交
186

187 188 189 190 191 192 193 194
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
195
    to the output as well.
C
caoying03 已提交
196

C
caoying03 已提交
197
    This process can be formulated as follows:
198 199 200

    .. math::

201
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
202 203 204

    In the above equation:

C
caoying03 已提交
205 206 207 208
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
209
    * :math:`Act`: The activation function.
C
caoying03 已提交
210
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
211 212

    Args:
R
ranqiu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
228 229
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
230
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
231
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
232
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
233

234
    Returns:
F
fengjiayi 已提交
235
        Variable: The transformation result.
236 237

    Raises:
C
caoying03 已提交
238
        ValueError: If rank of the input tensor is less than 2.
239 240 241 242

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
243
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
244
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
245
    """
C
caoying03 已提交
246

C
caoying03 已提交
247
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
248 249 250 251

    dtype = helper.input_dtype()

    mul_results = []
252 253
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
254 255 256
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
257

Y
Yu Yang 已提交
258
        w = helper.create_parameter(
259
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
260
        tmp = helper.create_variable_for_type_inference(dtype)
261
        helper.append_op(
262 263 264
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
265
            outputs={"Out": tmp},
M
mozga-intel 已提交
266 267
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
268 269 270 271
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
272
    else:
X
Xin Pan 已提交
273
        pre_bias = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
278
            attrs={"use_mkldnn": False})
279 280 281 282
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
283 284


285 286 287
def embedding(input,
              size,
              is_sparse=False,
288
              is_distributed=False,
289 290 291
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
292
    """
293 294
    **Embedding Layer**

295
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
296 297
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
298 299 300

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
301 302

    Args:
303 304 305 306 307
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
308
        is_distributed(bool): Whether to run lookup table from remote parameter server.
309 310
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
311
            with zeros whenever lookup encounters it in :attr:`input`. If
312
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
313 314
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
315
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
316

317 318 319
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
320

321 322
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
323

C
chengduoZH 已提交
324
          dict_size = len(dataset.ids)
325
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
326
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
327 328 329
    """

    helper = LayerHelper('embedding', **locals())
330 331 332
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
333 334
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
335 336
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
337
    tmp = helper.create_variable_for_type_inference(dtype)
338 339
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
340 341 342 343 344
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
345 346 347
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
348
            'remote_prefetch': remote_prefetch,
349 350
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
351 352 353
    return tmp


W
wopeizl 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
370

W
wopeizl 已提交
371 372 373 374 375 376 377 378 379 380 381
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
382

W
wopeizl 已提交
383 384 385 386
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
387

W
wopeizl 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
474 475


P
phlrain 已提交
476 477 478 479 480 481
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
482
         dropout_prob=0.0,
P
phlrain 已提交
483 484 485 486 487
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
488
    """
P
phlrain 已提交
489
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
490 491 492 493 494

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
534 535
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
536 537 538 539 540 541
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
542
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
543

L
liuhongyu 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
569
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
570 571 572 573 574 575
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
576 577 578
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
638 639 640 641 642 643 644 645 646 647 648
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
649 650
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
651 652 653
    """
    **Dynamic LSTMP Layer**

654 655 656 657 658 659
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
660 661 662 663 664

    The formula is as follows:

    .. math::

665
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
666

667
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
668

669
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
670

671
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
672

673
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
674

675
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
676

677
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
678

Y
Yibing Liu 已提交
679 680 681 682 683 684
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
685
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
686
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
687
          bias vector).
Y
Yibing Liu 已提交
688 689 690
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
691
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
692
    * :math:`h`: The hidden state.
693
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
694 695
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
696
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
697
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
698
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
699 700
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
701 702 703 704

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
705

Y
Yibing Liu 已提交
706 707 708 709 710 711 712 713 714 715 716 717
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
718
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
719 720
                               hidden-hidden weight and projection weight.

721 722
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
723 724
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
725 726
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
727
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
728 729 730 731 732

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
733
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
734 735 736 737 738 739
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
740
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
741 742 743
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
744
                                - The shape is (1 x 7D).
C
chengduo 已提交
745 746 747 748 749

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
750 751 752 753 754 755 756 757 758
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
759
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
760 761
                              default "tanh".
        proj_activation(str): The activation for projection output.
762
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
763 764
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
765 766
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
767 768

    Returns:
769 770 771 772
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
773 774

    Examples:
775

Y
Yibing Liu 已提交
776 777
        .. code-block:: python

778 779 780 781
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
782
            hidden_dim, proj_dim = 512, 256
783
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
784
                                     act=None, bias_attr=None)
785 786 787
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
788 789 790 791
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
792
    """
793

C
chengduo 已提交
794
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
795
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
796
    size = size // 4
Y
Yibing Liu 已提交
797 798 799 800 801 802 803 804 805 806
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
807 808 809 810 811 812
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
841 842 843 844 845 846 847 848 849
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
850
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
851

852
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
853
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
854

G
guosheng 已提交
855 856 857 858 859 860 861 862 863
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
864

G
guosheng 已提交
865
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
866

G
guosheng 已提交
867
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
868 869
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
870 871 872 873
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
874
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
875 876

    Args:
877 878
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
879
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
880
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
881 882
            is the hidden size.
        size(int): The dimension of the gru cell.
883
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
884 885
            hidden-hidden weight matrix. Note:

886
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
887
              :math:`D` is the hidden size.
888
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
889
              The first part are weights of the update gate and reset gate with
890
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
891
              candidate hidden state with shape :math:`(D \\times D)`.
892 893 894 895 896

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
897
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
898
            the bias in the update gate, reset gate and candidate calculations.
899 900 901
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
902 903
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
904
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
905 906 907
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
908
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
909
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
910 911 912 913
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
914 915

    Returns:
G
guosheng 已提交
916
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
917
            and sequence length is the same with the input.
918

G
guosheng 已提交
919
    Examples:
920

G
guosheng 已提交
921 922
        .. code-block:: python

923 924 925 926
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
927
            hidden_dim = 512
928
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
929 930 931 932 933 934 935 936 937 938
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
939
    batch_size = input.shape[0]
G
guosheng 已提交
940
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
941
    if h_0:
G
guosheng 已提交
942
        assert h_0.shape == (
Y
Yancey 已提交
943 944 945
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
946

X
Xin Pan 已提交
947 948 949 950
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
969 970 971
def gru_unit(input,
             hidden,
             size,
972 973
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
974
             activation='tanh',
975
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
976
    """
977
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
978

979 980
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
981

982
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
983

984
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
985

986
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
987 988

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
989 990 991
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
992 993
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

994 995
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
996 997 998
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
999 1000 1001

    Args:
        input (Variable): The fc transformed input value of current step.
1002
        hidden (Variable): The hidden value of gru unit from previous step.
1003
        size (integer): The input dimension value.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1018
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1019
            the bias in the update gate, reset gate and candidate calculations.
1020 1021 1022
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1023 1024
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1025 1026 1027 1028
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1029

1030 1031 1032 1033 1034 1035
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1036

1037
             # assuming we have x_t_data and prev_hidden of size=10
1038
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1039 1040
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1053
    size = size // 3
Y
Yu Yang 已提交
1054 1055

    # create weight
1056 1057
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1058

X
Xin Pan 已提交
1059 1060 1061
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1062
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1063
    # create bias
1064
    if helper.bias_attr:
Y
Yu Yang 已提交
1065 1066 1067
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1068
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1069 1070 1071

    helper.append_op(
        type='gru_unit',
1072
        inputs=inputs,
Y
Yu Yang 已提交
1073 1074 1075 1076 1077 1078
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1079 1080
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1081 1082 1083 1084 1085
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1086
@templatedoc()
1087
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1088 1089 1090 1091 1092 1093 1094
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1095
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1096 1097 1098 1099
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1100 1101 1102
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1103 1104

    """
Y
Yu Yang 已提交
1105 1106 1107 1108 1109 1110
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1111 1112 1113 1114 1115 1116 1117 1118
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1134 1135 1136 1137
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1138

W
wopeizl 已提交
1139 1140
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1141

W
wopeizl 已提交
1142
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1143

W
wopeizl 已提交
1144
        label(${label_type}): ${label_comment}
1145

W
wopeizl 已提交
1146 1147
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1148

W
wopeizl 已提交
1149 1150
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1151

W
wopeizl 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1162
                "Transition": transition,
W
wopeizl 已提交
1163 1164
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1165

W
wopeizl 已提交
1166
    return viterbi_path
Y
Yu Yang 已提交
1167 1168


Y
yi.wu 已提交
1169
@templatedoc()
F
fengjiayi 已提交
1170
def cos_sim(X, Y):
Y
Yu Yang 已提交
1171
    """
Y
yi.wu 已提交
1172 1173 1174
    ${comment}

    Args:
1175 1176
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1177

Y
yi.wu 已提交
1178
    Returns:
1179
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1180
    """
F
fengjiayi 已提交
1181
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1182 1183 1184
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1195 1196 1197 1198 1199
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1200
            dropout_implementation="downgrade_in_infer"):
1201 1202 1203 1204 1205
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1206
    training. The dropout operator randomly sets (according to the given dropout
1207 1208 1209 1210
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1211 1212
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1213 1214 1215 1216 1217 1218 1219
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1231
                                           dropout op can be removed from the program.
P
phlrain 已提交
1232
                                           the program will be efficient
1233

P
phlrain 已提交
1234

1235 1236

    Returns:
1237
        Variable: A tensor variable is the shape with `x`.
1238 1239

    Examples:
1240

1241 1242
        .. code-block:: python

1243 1244
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1245 1246
    """

F
fengjiayi 已提交
1247
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1248 1249 1250
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1251 1252 1253 1254

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1255 1256 1257 1258 1259
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1260 1261 1262 1263
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1264 1265
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1266
        })
1267 1268 1269
    return out


1270
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1271
    """
Y
Yibing Liu 已提交
1272 1273
    **Cross Entropy Layer**

1274 1275 1276
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1277 1278

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1279
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1280

Y
Yibing Liu 已提交
1281
        .. math::
Y
yangyaming 已提交
1282

Y
Yibing Liu 已提交
1283 1284 1285
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1286 1287
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1288 1289 1290 1291 1292

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1293
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1294 1295 1296
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1297 1298
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1299
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1300

Y
Yibing Liu 已提交
1301
    Args:
Y
yangyaming 已提交
1302
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1303 1304 1305 1306
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1307
        label (Variable|list): the ground truth which is a 2-D tensor. When
1308 1309 1310 1311
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1312
        soft_label (bool): a flag indicating whether to
1313
                                           interpretate the given labels as soft
1314
                                           labels. Default: `False`.
M
minqiyang 已提交
1315 1316
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1317
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1318 1319 1320 1321 1322

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1323 1324 1325 1326 1327
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1328 1329 1330 1331 1332 1333

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1334
    """
F
fengjiayi 已提交
1335
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1336
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1337 1338 1339 1340 1341
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1342 1343
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1344 1345 1346
    return out


F
fengjiayi 已提交
1347
def square_error_cost(input, label):
Y
Yu Yang 已提交
1348
    """
1349 1350
    **Square error cost layer**

1351 1352
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1367 1368
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1369 1370

    Returns:
G
guosheng 已提交
1371
        Variable: The tensor variable storing the element-wise squared error \
1372
                  difference of input and label.
1373 1374 1375 1376 1377 1378 1379 1380

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1381
    """
F
fengjiayi 已提交
1382
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1383
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1384 1385 1386 1387 1388 1389
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1390
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1391
    helper.append_op(
F
fengjiayi 已提交
1392 1393
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1394 1395 1396
    return square_out


Y
yi.wu 已提交
1397
@templatedoc()
Y
Yu Yang 已提交
1398 1399 1400 1401
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1402
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1403
    """
Y
yi.wu 已提交
1404
    **Chunk Evaluator**
Y
yi.wu 已提交
1405

Y
yangyaming 已提交
1406
    This function computes and outputs the precision, recall and
1407
    F1-score of chunk detection.
Y
yi.wu 已提交
1408

Y
yi.wu 已提交
1409 1410 1411 1412 1413 1414 1415 1416
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1417

Y
yi.wu 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1443

Y
yi.wu 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1468
    Args:
1469 1470 1471 1472 1473
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1474

Y
yi.wu 已提交
1475
    Returns:
Y
update  
yi.wu 已提交
1476 1477 1478
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1479

Y
yi.wu 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1492
    """
F
fengjiayi 已提交
1493
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1494 1495

    # prepare output
X
Xin Pan 已提交
1496 1497 1498 1499 1500 1501 1502
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1503 1504 1505 1506 1507 1508 1509 1510

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1511 1512 1513 1514
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1515 1516 1517
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1518 1519
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1520
        })
1521 1522
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1523 1524


1525
@templatedoc()
Y
Yu Yang 已提交
1526 1527 1528 1529 1530 1531 1532
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1533 1534
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1535 1536 1537 1538
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1539 1540 1541 1542 1543 1544 1545

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1559

1560 1561
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1562 1563 1564 1565 1566 1567 1568
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1569
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1580
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1581 1582 1583 1584 1585 1586
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1587
def sequence_softmax(input, use_cudnn=False, name=None):
1588 1589 1590
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1591
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1608 1609 1610
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1611

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1623 1624
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1625
    softmax_out = helper.create_variable_for_type_inference(dtype)
1626 1627 1628 1629 1630 1631 1632 1633
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1634
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1635
    """
1636
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1637
    has the same shape as the input.
Q
qiaolongfei 已提交
1638

1639 1640 1641 1642 1643 1644
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1645
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1646 1647 1648 1649 1650 1651 1652

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1653
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1654 1655 1656 1657 1658 1659 1660 1661

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1662 1663 1664
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1677 1678
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1679
    softmax_out = helper.create_variable_for_type_inference(dtype)
1680 1681 1682 1683 1684 1685 1686 1687
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1688 1689 1690
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1691 1692
           stride=1,
           padding=0,
1693
           dilation=1,
Y
Yu Yang 已提交
1694 1695 1696
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1697
           use_cudnn=True,
1698 1699
           act=None,
           name=None):
Y
Yu Yang 已提交
1700
    """
C
chengduoZH 已提交
1701
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1702 1703
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1704
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1705 1706 1707 1708 1709 1710 1711
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1712 1713 1714
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1715

1716
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1717

C
chengduoZH 已提交
1718 1719
    .. math::

C
refine  
chengduoZH 已提交
1720
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1721

T
tensor-tang 已提交
1722
    Where:
C
chengduoZH 已提交
1723

1724 1725 1726 1727 1728
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1729
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1730 1731 1732

    Example:

1733 1734
        - Input:

W
weixing02 已提交
1735
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1736

W
weixing02 已提交
1737
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1738

1739
        - Output:
T
tensor-tang 已提交
1740

W
weixing02 已提交
1741
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1742

C
chengduoZH 已提交
1743
        Where
1744 1745

        .. math::
C
chengduoZH 已提交
1746

W
weixing02 已提交
1747 1748
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1749 1750

    Args:
1751
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1752
        num_filters(int): The number of filter. It is as same as the output
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1781 1782
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1783 1784
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1785
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1786
            will be named automatically. Default: None
C
chengduoZH 已提交
1787 1788

    Returns:
G
guosheng 已提交
1789
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1790 1791
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1792
    Raises:
1793 1794
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1795

C
chengduoZH 已提交
1796 1797 1798
    Examples:
        .. code-block:: python

1799 1800
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1801 1802 1803
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1804
    assert param_attr is not False, "param_attr should not be False here."
1805
    l_type = 'conv2d'
X
xzl 已提交
1806 1807
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1808
        l_type = 'depthwise_conv2d'
1809 1810 1811 1812

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1813 1814 1815 1816 1817
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1818
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1819

C
chengduoZH 已提交
1820 1821 1822
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1823
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1824

C
chengduoZH 已提交
1825 1826
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1827 1828

    input_shape = input.shape
M
minqiyang 已提交
1829
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1830 1831

    def _get_default_param_initializer():
C
chengduo 已提交
1832 1833
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1834 1835 1836 1837 1838 1839 1840 1841
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1842
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1858
    helper.append_op(
1859
        type=l_type,
Y
Yu Yang 已提交
1860 1861 1862 1863 1864
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1865 1866 1867
        attrs={
            'strides': stride,
            'paddings': padding,
1868
            'dilations': dilation,
C
chengduoZH 已提交
1869
            'groups': groups,
1870
            'use_cudnn': use_cudnn,
1871
            'use_mkldnn': False,
C
chengduoZH 已提交
1872
        })
Y
Yu Yang 已提交
1873 1874 1875 1876 1877 1878

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1896 1897 1898 1899 1900 1901
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1911 1912
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1913 1914 1915
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1916
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1942
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1943 1944
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1945
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1946 1947
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1948
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1949 1950
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1951
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1952 1953 1954 1955 1956 1957
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1968 1969
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1970 1971
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1972
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1973
            will be named automatically. Default: None.
C
chengduoZH 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1986 1987
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1988 1989 1990
    """

    l_type = 'conv3d'
C
chengduo 已提交
1991
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2002
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2016 2017 2018
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2019 2020 2021 2022 2023 2024 2025 2026
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2027
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2042
            'use_mkldnn': False
C
chengduoZH 已提交
2043 2044
        })

2045
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2046 2047 2048 2049

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2050
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2051
    """
Y
yangyaming 已提交
2052 2053 2054
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2066
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2067 2068 2069 2070 2071
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2072
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2073 2074 2075 2076 2077 2078 2079

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2080 2081
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2082

L
Luo Tao 已提交
2083 2084
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2085
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2086
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2087
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2088 2089 2090 2091 2092 2093 2094

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2095

Y
yangyaming 已提交
2096
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2097 2098 2099 2100 2101
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2102 2103
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2104
    """
F
fengjiayi 已提交
2105
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2106
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2107 2108
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2109 2110 2111 2112 2113 2114

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2115 2116
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2117

Y
yangyaming 已提交
2118 2119 2120 2121 2122
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2123 2124 2125
    return pool_out


C
add doc  
chengduoZH 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2145
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2146 2147 2148 2149 2150
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2151
def sequence_first_step(input):
L
Luo Tao 已提交
2152
    """
L
Luo Tao 已提交
2153
    This function gets the first step of sequence.
L
Luo Tao 已提交
2154 2155 2156 2157

    .. code-block:: text

       x is a 1-level LoDTensor:
2158
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2159 2160 2161 2162 2163
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2164
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2165
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2166

L
Luo Tao 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2176

Y
yangyaming 已提交
2177
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2178 2179 2180
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2181 2182 2183
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2184
def sequence_last_step(input):
L
Luo Tao 已提交
2185
    """
L
Luo Tao 已提交
2186
    This function gets the last step of sequence.
L
Luo Tao 已提交
2187 2188 2189 2190

    .. code-block:: text

       x is a 1-level LoDTensor:
2191
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2192 2193 2194 2195 2196
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2197
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2198
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2199

L
Luo Tao 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2209

Y
yangyaming 已提交
2210
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2211 2212 2213
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2214 2215 2216
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2217 2218 2219 2220
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2221
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2222 2223 2224 2225 2226
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2227

Y
Yibing Liu 已提交
2228 2229
	- Case:

2230
            Given the input Variable **input**:
2231

2232 2233 2234
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2235

2236
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2237

2238
            the output Variable will be
2239

2240 2241 2242
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2243 2244

    NOTE: The first dimension size of **input**, **offset** and **length**
2245
          should be equal. The **offset** should start from 0.
2246

Y
Yibing Liu 已提交
2247
    Args:
2248
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2249
                         sequences.
Y
Yibing Liu 已提交
2250 2251 2252 2253 2254 2255
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2256
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2267
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2268 2269 2270 2271
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2272
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2287
@templatedoc()
Y
Yu Yang 已提交
2288
def pool2d(input,
C
chengduoZH 已提交
2289 2290
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2291 2292
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2293
           global_pooling=False,
C
chengduoZH 已提交
2294
           use_cudnn=True,
2295
           ceil_mode=False,
2296 2297
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2298
    """
F
fengjiayi 已提交
2299
    ${comment}
2300 2301

    Args:
2302 2303 2304
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2305
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2306
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2307 2308
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2309
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2310 2311 2312 2313 2314 2315
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2316 2317 2318
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2319
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2320
                        layer will be named automatically.
2321
        exclusive (bool): Whether to exclude padding points in average pooling
2322
                          mode, default is true
F
fengjiayi 已提交
2323

2324
    Returns:
F
fengjiayi 已提交
2325
        Variable: The pooling result.
F
fengjiayi 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2339 2340 2341 2342
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2343
                            global_pooling=False)
Y
Yu Yang 已提交
2344 2345 2346 2347 2348
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2349

C
chengduoZH 已提交
2350 2351 2352 2353 2354
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2355 2356 2357 2358
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2359 2360
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2361

C
Add doc  
chengduoZH 已提交
2362
    l_type = 'pool2d'
2363 2364

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2365
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2366
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2367 2368

    helper.append_op(
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2380 2381
            "use_mkldnn": False,
            "exclusive": exclusive,
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2395 2396
           name=None,
           exclusive=True):
2397 2398
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2399
    pooling configurations mentioned in input parameters.
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2412
        exclusive (bool): Whether to exclude padding points in average pooling
2413
                          mode, default is true
2414

2415
    Returns:
2416
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2417 2418 2419 2420 2421
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2422

C
chengduoZH 已提交
2423 2424 2425 2426 2427
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2428 2429 2430
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2431

C
chengduoZH 已提交
2432 2433
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2434

2435 2436
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2437
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2438
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2439 2440

    helper.append_op(
2441
        type=l_type,
Y
Yu Yang 已提交
2442 2443 2444 2445 2446 2447 2448
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2449
            "paddings": pool_padding,
2450
            "use_cudnn": use_cudnn,
2451
            "ceil_mode": ceil_mode,
2452 2453
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2466
               data_layout='NCHW',
Y
Yang Yang 已提交
2467
               in_place=False,
2468 2469
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2470
               moving_variance_name=None,
2471
               do_model_average_for_mean_and_var=False,
2472 2473
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2474
    """
Q
qiaolongfei 已提交
2475 2476 2477 2478
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2479

Q
qiaolongfei 已提交
2480
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2481

Q
qiaolongfei 已提交
2482 2483
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2484 2485 2486
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2499

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2513
    Args:
Q
qiaolongfei 已提交
2514
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2515 2516 2517 2518
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2519 2520 2521 2522 2523 2524 2525 2526
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2527
        data_layout(string, default NCHW): NCHW|NHWC
2528
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2529 2530 2531 2532
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2533
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2534
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2535 2536 2537 2538 2539
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2540 2541

    Returns:
Q
qiaolongfei 已提交
2542
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2543 2544 2545 2546 2547 2548 2549

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2550
    """
C
chengduo 已提交
2551
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2572 2573 2574
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2575 2576

    bias = helper.create_parameter(
2577
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2578 2579 2580
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2581

2582 2583
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2584 2585 2586
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2587
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2588
        shape=param_shape,
2589 2590 2591 2592 2593 2594 2595
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2596
            trainable=False,
W
wanghaoshuang 已提交
2597
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2598
        shape=param_shape,
2599 2600
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2601 2602 2603 2604 2605 2606

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2607 2608 2609 2610
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2611

X
Xin Pan 已提交
2612 2613
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2631 2632 2633 2634
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2635
            "use_mkldnn": False,
2636 2637
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2638
        })
Y
Yu Yang 已提交
2639 2640 2641 2642

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2643
@templatedoc()
G
guosheng 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2654
    ${comment}
G
guosheng 已提交
2655 2656 2657

    The formula is as follows:

Y
yuyang18 已提交
2658
    ..  math::
G
guosheng 已提交
2659 2660 2661 2662 2663 2664 2665

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2666 2667 2668 2669 2670 2671 2672 2673
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2674

G
guosheng 已提交
2675 2676
    Args:
        input(Variable): The input tensor variable.
2677
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2678
            normalization. Default True.
2679
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2680 2681
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2682
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2683
            Default 1.
2684
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2685
            division by zero. Default 1e-05.
G
guosheng 已提交
2686
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2687 2688
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2689 2690
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2691
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2692 2693
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2694
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2695
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2696
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2697 2698 2699
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2700 2701

    Returns:
Y
yuyang18 已提交
2702
        ${y_comment}
G
guosheng 已提交
2703 2704 2705

    Examples:

Y
yuyang18 已提交
2706 2707 2708
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2724
    if shift:
G
guosheng 已提交
2725 2726 2727 2728 2729 2730
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2731 2732 2733 2734 2735
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2829 2830 2831 2832
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2833 2834 2835
                     padding=0,
                     stride=1,
                     dilation=1,
2836
                     groups=None,
C
caoying03 已提交
2837
                     param_attr=None,
2838
                     bias_attr=None,
C
chengduoZH 已提交
2839
                     use_cudnn=True,
2840
                     act=None,
C
caoying03 已提交
2841
                     name=None):
Y
Yu Yang 已提交
2842
    """
2843 2844 2845 2846 2847 2848 2849 2850
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2851 2852
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2853 2854 2855
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2856 2857 2858 2859 2860

    For each input :math:`X`, the equation is:

    .. math::

2861
        Out = \sigma (W \\ast X + b)
2862

2863
    Where:
2864 2865 2866

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2867 2868 2869 2870
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2871

2872 2873 2874 2875
    Example:

        - Input:

2876
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2877

2878
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2879 2880 2881

        - Output:

2882
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2883 2884

        Where
Y
Yu Yang 已提交
2885

2886 2887
        .. math::

2888 2889 2890 2891
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2892 2893

    Args:
2894 2895 2896 2897
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2898 2899 2900 2901
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2930
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2931 2932 2933
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2934
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2935
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2936 2937

    Returns:
2938
        Variable: The tensor variable storing the convolution transpose result.
2939 2940

    Raises:
2941 2942
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2943 2944 2945 2946

    Examples:
       .. code-block:: python

2947 2948
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2949
    """
C
chengduo 已提交
2950
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2951 2952 2953 2954 2955 2956 2957 2958
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2959 2960 2961
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2962 2963 2964
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2965

C
chengduoZH 已提交
2966 2967
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2968

Y
Yu Yang 已提交
2969 2970 2971 2972 2973
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2974

Y
Yu Yang 已提交
2975 2976
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2977

C
chengduoZH 已提交
2978
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2979
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2980
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2981
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2982
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2983 2984 2985
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2986

2987 2988 2989 2990 2991 2992 2993
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2994
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2995
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2996

Y
Yu Yang 已提交
2997 2998 2999
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3000
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3001
    helper.append_op(
3002
        type=op_type,
Y
Yu Yang 已提交
3003 3004
        inputs={'Input': [input],
                'Filter': [img_filter]},
3005
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3006
        attrs={
3007
            'output_size': output_size,
3008 3009 3010 3011 3012
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3013 3014
        })

3015 3016 3017
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3018 3019


3020
def conv3d_transpose(input,
Y
Yu Yang 已提交
3021 3022 3023
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3024 3025 3026
                     padding=0,
                     stride=1,
                     dilation=1,
3027
                     groups=None,
C
caoying03 已提交
3028
                     param_attr=None,
3029
                     bias_attr=None,
C
chengduoZH 已提交
3030
                     use_cudnn=True,
3031
                     act=None,
C
caoying03 已提交
3032
                     name=None):
Y
Yu Yang 已提交
3033
    """
3034
    **Convlution3D transpose layer**
3035

3036
    The convolution3D transpose layer calculates the output based on the input,
3037
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3038 3039 3040 3041 3042 3043
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3044 3045 3046
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3047 3048 3049 3050 3051

    For each input :math:`X`, the equation is:

    .. math::

3052
        Out = \sigma (W \\ast X + b)
3053 3054 3055

    In the above equation:

3056 3057
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3058 3059 3060 3061
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3062

3063 3064 3065 3066
    Example:

        - Input:

3067
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3068

3069
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3070 3071 3072

        - Output:

3073
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3074 3075

        Where
Y
Yu Yang 已提交
3076

3077 3078
        .. math::

3079 3080 3081
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3082 3083

    Args:
3084
        input(Variable): The input image with [N, C, D, H, W] format.
3085 3086 3087
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3088
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3089 3090
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3091
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3092 3093 3094
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3095 3096
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3097
        stride(int|tuple): The stride size. If stride is a tuple, it must
3098 3099
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3100
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3101 3102 3103
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3104 3105 3106 3107 3108
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3109 3110 3111 3112 3113 3114 3115 3116 3117
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3118 3119
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3120 3121
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3122 3123
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3124 3125

    Returns:
3126
        Variable: The tensor variable storing the convolution transpose result.
3127 3128

    Raises:
3129 3130
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3131 3132 3133 3134

    Examples:
       .. code-block:: python

3135 3136
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3137
    """
C
chengduo 已提交
3138
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3139 3140
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3141
    if not isinstance(input, Variable):
3142
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3143 3144
    input_channel = input.shape[1]

3145 3146 3147
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3148

C
chengduoZH 已提交
3149 3150 3151
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3152 3153 3154 3155 3156 3157
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3158 3159 3160
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3161

3162
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3163
                         padding[0] - 1) // dilation[0] + 1
3164
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3165
                         padding[1] - 1) // dilation[1] + 1
3166
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3167
                         padding[2] - 1) // dilation[2] + 1
3168
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3169
    else:
3170 3171
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3172

3173
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3174
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3175 3176 3177
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3178
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3179
    helper.append_op(
3180
        type=l_type,
Y
Yu Yang 已提交
3181 3182
        inputs={'Input': [input],
                'Filter': [img_filter]},
3183
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3184 3185 3186 3187
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3188
            'groups': groups,
C
chengduoZH 已提交
3189 3190
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3191

3192 3193
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3194
    return out
Y
yangyaming 已提交
3195 3196


Y
yangyaming 已提交
3197
def sequence_expand(x, y, ref_level=-1, name=None):
3198
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3199 3200 3201 3202
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3203 3204 3205 3206 3207

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3208
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3209
                x.data = [[a], [b], [c], [d]]
3210 3211 3212
                x.dims = [4, 1]

            y is a LoDTensor:
3213 3214
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3215

Y
yangyaming 已提交
3216
            ref_level: 0
3217

Y
yangyaming 已提交
3218
            then output is a 1-level LoDTensor:
3219
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3220
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3221 3222 3223 3224
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3225
                x.data = [[a], [b], [c]]
3226 3227 3228
                x.dims = [3, 1]

            y is a LoDTensor:
3229
                y.lod = [[2, 0, 3]]
3230

Y
yangyaming 已提交
3231
            ref_level: -1
3232

Y
yangyaming 已提交
3233 3234 3235
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3236 3237 3238
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3239 3240
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3241
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3242
                        will be named automatically.
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3253
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3254
    """
Y
yangyaming 已提交
3255
    helper = LayerHelper('sequence_expand', input=x, **locals())
3256
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3257
    tmp = helper.create_variable_for_type_inference(dtype)
3258
    helper.append_op(
Y
yangyaming 已提交
3259 3260 3261 3262 3263
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3264
    return tmp
3265 3266


C
chengduo 已提交
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3323
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3324 3325 3326 3327 3328 3329 3330 3331
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3332
@templatedoc()
3333
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3334 3335 3336 3337 3338
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3339 3340 3341
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3342
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3343 3344 3345 3346
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3347 3348 3349
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3350

F
fengjiayi 已提交
3351
    Returns:
M
minqiyang 已提交
3352
        Variable: The padded sequence batch and the original lengths before
3353
                  padding. All sequences has the same length.
M
minqiyang 已提交
3354

F
fengjiayi 已提交
3355 3356 3357 3358 3359 3360 3361
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3362
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3363
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3364 3365 3366 3367 3368
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3369 3370
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3371 3372 3373 3374

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3375 3376 3377 3378 3379 3380
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3381 3382
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3383
        attrs={'padded_length': maxlen})
3384
    return out, length
F
fengjiayi 已提交
3385 3386


3387
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3388
    """
3389
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3390

3391 3392
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3393 3394 3395 3396 3397 3398 3399 3400 3401
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3402 3403 3404
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3405
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3406 3407 3408 3409 3410 3411

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3412
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3413 3414 3415 3416 3417 3418

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3419 3420
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3435
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3447 3448 3449 3450 3451 3452 3453 3454 3455
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3456 3457
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3458 3459 3460

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3461 3462

    This layer does the search in beams for one time step. Specifically, it
3463 3464 3465 3466 3467 3468
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3469

3470 3471 3472 3473 3474 3475 3476 3477
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3478

3479
    Args:
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3505

3506
    Returns:
3507 3508
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3509 3510 3511 3512

    Examples:
        .. code-block:: python

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3530 3531 3532 3533
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3534 3535 3536
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3537 3538 3539 3540 3541

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3542
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3560 3561 3562 3563 3564 3565 3566
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3567

3568 3569 3570 3571 3572 3573 3574 3575 3576
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3577

3578 3579 3580 3581 3582 3583
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3584

3585 3586 3587 3588 3589 3590 3591 3592
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3593 3594
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3610 3611 3612 3613
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3614
              param_attr=None,
C
caoying03 已提交
3615 3616
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3617 3618 3619 3620
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3621
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3622

3623
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3624

3625
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3626

3627
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3628 3629 3630

            h_t & = o_t tanh(c_t)

3631 3632 3633 3634 3635 3636
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3637 3638 3639

        .. math::

3640
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3641 3642 3643 3644 3645 3646 3647 3648

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3649
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3650 3651

    Args:
Y
yangyaming 已提交
3652 3653 3654 3655 3656 3657
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3658
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3671 3672
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3673 3674

    Returns:
Y
yangyaming 已提交
3675
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3676 3677

    Raises:
3678 3679 3680 3681
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3682 3683 3684 3685 3686 3687

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3688
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3689
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3690
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3707
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3708 3709 3710 3711
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3712 3713
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3714 3715 3716
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3717
    size = cell_t_prev.shape[1]
3718
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3719 3720
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3721
                param_attr=param_attr,
3722
                bias_attr=bias_attr)
Y
yangyaming 已提交
3723
    dtype = x_t.dtype
X
Xin Pan 已提交
3724 3725
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3735
    return h, c
G
guosheng 已提交
3736 3737


C
caoying03 已提交
3738
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3739
    """
Y
yangyaming 已提交
3740
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3741 3742 3743

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3744
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3745 3746
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3747 3748
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3749
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3750
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3751
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3752 3753
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3754 3755 3756

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3757

G
guosheng 已提交
3758 3759 3760 3761 3762 3763
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3764
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3765 3766 3767 3768
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3769 3770 3771 3772

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3773
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3774 3775 3776
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3777 3778
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3779
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3780 3781
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3782 3783 3784 3785 3786
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3787
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3788 3789 3790 3791
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3792 3793


C
caoying03 已提交
3794
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3795
    """
Y
Yibing Liu 已提交
3796
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3797 3798 3799

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3800 3801 3802
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3803
            must be in the range :math:`[-rank(input), rank(input))`. If
3804
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3805
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3806 3807
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3808
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3809
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3810
                       will be named automatically.
G
guosheng 已提交
3811 3812

    Returns:
Y
Yibing Liu 已提交
3813
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3814

G
guosheng 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3825 3826
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3827 3828 3829 3830 3831 3832 3833

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3834 3835
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3836
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3837 3838
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3839 3840 3841 3842 3843
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3844
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3845 3846 3847 3848
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3849 3850


C
caoying03 已提交
3851
def reduce_max(input, dim=None, keep_dim=False, name=None):
3852
    """
Y
yangyaming 已提交
3853
    Computes the maximum of tensor elements over the given dimension.
3854 3855 3856

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3857
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3858 3859 3860
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3861
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3862 3863
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3864
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3865 3866
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3867 3868 3869

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3870

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3882 3883 3884 3885 3886 3887 3888

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3889 3890
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3891
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3892 3893
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3894 3895 3896 3897 3898
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3899
            'dim': dim if dim != None else [0],
3900 3901 3902 3903 3904 3905
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3906
def reduce_min(input, dim=None, keep_dim=False, name=None):
3907
    """
Y
yangyaming 已提交
3908
    Computes the minimum of tensor elements over the given dimension.
3909 3910 3911

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3912
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3913 3914 3915
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3916
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3917 3918
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3919
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3920 3921
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3922 3923 3924

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3925

3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3937 3938 3939 3940 3941 3942 3943

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3944 3945
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3946
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3947 3948
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3949 3950 3951 3952 3953
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3954
            'dim': dim if dim != None else [0],
3955 3956 3957 3958
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3959 3960


3961 3962 3963 3964 3965 3966
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3967
        dim (list|int|None): The dimensions along which the product is performed. If
3968 3969
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3970 3971
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3972 3973 3974
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3975
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3976
            layer will be named automatically.
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3991
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3992
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3993 3994 3995 3996 3997 3998 3999

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4000 4001
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4002
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4003 4004
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4005 4006 4007 4008 4009
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4010
            'dim': dim if dim != None else [0],
4011 4012 4013 4014 4015 4016
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4017
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4018
    """
C
caoying03 已提交
4019
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4020 4021 4022

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4023 4024 4025 4026 4027
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4028
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4029
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4030
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4031 4032
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4033 4034

    Returns:
D
dzhwinter 已提交
4035
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4045 4046
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4062
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4085
    .. math::
4086 4087

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4088 4089 4090 4091 4092

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4093
        x(Variable|list): The input tensor to l2_normalize layer.
4094
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4095 4096
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4097
        epsilon(float): The epsilon value is used to avoid division by zero, \
4098
            the defalut value is 1e-10.
4099
        name(str|None): A name for this layer(optional). If set None, the layer \
4100
            will be named automatically.
C
caoying03 已提交
4101 4102

    Returns:
4103
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4104 4105

    Examples:
4106

C
caoying03 已提交
4107 4108
        .. code-block:: python

4109 4110 4111 4112
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4113 4114
    """

F
fengjiayi 已提交
4115 4116
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4117 4118
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4119 4120
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4121
    helper.append_op(
4122 4123 4124 4125
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4126
        attrs={
4127 4128
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4129 4130
        })
    return out
4131 4132


S
sneaxiy 已提交
4133
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4134
    """
Y
ying 已提交
4135 4136 4137 4138
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4139

C
chengduoZH 已提交
4140
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4141
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4142

4143 4144 4145 4146 4147
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4148
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4149

C
chengduoZH 已提交
4150
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4151
      performs in the following way.
G
guosheng 已提交
4152

4153
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4154
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4155
        last two dimensions and a batched matrix multiply supporting broadcast
4156
        applies on the two tensors.
G
guosheng 已提交
4157

Y
ying 已提交
4158 4159
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4160
    removed after matrix multiplication.
G
guosheng 已提交
4161 4162 4163

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4164 4165 4166
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4167
        alpha (float): The scale of output. Default 1.0.
4168
        name(str|None): A name for this layer(optional). If set None, the layer
4169
            will be named automatically.
G
guosheng 已提交
4170 4171

    Returns:
4172
        Variable: The product Tensor variable.
G
guosheng 已提交
4173

G
guosheng 已提交
4174 4175 4176
    Examples:
        .. code-block:: python

4177
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4178 4179
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4180

4181 4182
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4183

4184 4185
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4186

4187 4188
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4189 4190 4191 4192

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4193 4194
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4195

Y
ying 已提交
4196
            # x: [M], y: [N]
4197
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4198
    """
Y
ying 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4211
            y_shape = y_shape + [1]
Y
ying 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4228
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4229
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4230
    helper.append_op(
4231 4232 4233 4234
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4235 4236 4237
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4238
            'alpha': float(alpha),
S
sneaxiy 已提交
4239
        })
4240
    return out
4241 4242


4243
def topk(input, k, name=None):
Q
qingqing01 已提交
4244 4245 4246 4247
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4248
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4249 4250 4251 4252 4253 4254
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4276 4277 4278
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4279
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4280
                 of input.
4281
        name(str|None): A name for this layer(optional). If set None, the layer
4282
                       will be named automatically.
F
fengjiayi 已提交
4283
                       Default: None
Q
qingqing01 已提交
4284 4285

    Returns:
4286 4287 4288
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4289
        within the last dimension of input.
Q
qingqing01 已提交
4290

F
fengjiayi 已提交
4291 4292
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4293 4294 4295 4296 4297 4298 4299

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4300 4301
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4313
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4314
    """
Y
ying 已提交
4315 4316 4317 4318 4319 4320 4321 4322 4323
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4324

Y
ying 已提交
4325
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4326

4327
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4328 4329
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4330
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4331

4332
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4333 4334
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4335

4336 4337 4338
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4339
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4340
                          the length of reference string.
4341
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4342
                                     calculating edit distance.
4343
        name (str): The name of this layer. It is optional.
4344

W
wanghaoshuang 已提交
4345
    Returns:
W
wanghaoshuang 已提交
4346
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4347 4348 4349 4350

    Examples:
        .. code-block:: python

T
tink2123 已提交
4351 4352
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4353
            cost = fluid.layers.edit_distance(input=x,label=y)
4354
    """
4355
    helper = LayerHelper("edit_distance", **locals())
4356

4357
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4358
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4359 4360
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4361 4362 4363 4364 4365

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4366
            attrs={"tokens": ignored_tokens})
4367 4368 4369 4370 4371
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4372
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4373
            attrs={"tokens": ignored_tokens})
4374 4375
        label = erased_label

4376
    # edit distance op
X
Xin Pan 已提交
4377 4378
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4379 4380 4381 4382
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4383 4384
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4385 4386
        attrs={"normalized": normalized})

4387
    return edit_distance_out, sequence_num
4388 4389 4390 4391 4392


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4393

Y
ying 已提交
4394 4395 4396 4397
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4415
        input.lod = [[4, 4]]
W
whs 已提交
4416 4417
      
        Computation:
4418

W
whs 已提交
4419 4420 4421 4422 4423 4424
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4425 4426 4427 4428 4429

        output.data = [[2],
                       [1],
                       [3]]

4430
        output.lod = [[2, 1]]
4431

W
whs 已提交
4432

4433 4434
    Args:

Y
ying 已提交
4435 4436 4437 4438 4439 4440 4441 4442 4443
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4444
        name (str): The name of this layer. It is optional.
4445 4446

    Returns:
W
whs 已提交
4447 4448 4449 4450
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4451 4452 4453 4454 4455

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4456

4457
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4458
    """
4459
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4460
    _, topk_indices = topk(input, k=1)
4461 4462

    # ctc align op
X
Xin Pan 已提交
4463
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4464 4465 4466
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4467
        outputs={"Output": [ctc_out]},
4468 4469
        attrs={"merge_repeated": True,
               "blank": blank})
4470
    return ctc_out
4471 4472


W
Wu Yi 已提交
4473
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4474
    """
4475 4476
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4477
    to compute Connectionist Temporal Classification (CTC) loss.
4478 4479
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4480 4481 4482
    input tensor.

    Args:
4483
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4484 4485 4486 4487
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4488
       label (Variable): The ground truth of variable-length sequence,
4489 4490 4491
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4492 4493
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4494 4495 4496
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4497
         follewed by a mean_op.
W
Wu Yi 已提交
4498
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4499 4500

    Returns:
4501 4502
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4503 4504

    Examples:
4505

W
wanghaoshuang 已提交
4506
        .. code-block:: python
4507

4508 4509 4510
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4511 4512

    """
F
fengjiayi 已提交
4513
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4514 4515
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4516 4517 4518 4519 4520 4521
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4522 4523 4524 4525 4526
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4527
    return loss_out
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4543 4544 4545
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4546 4547 4548 4549 4550
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4551

4552
            out.lod  = [[0, 1, 3]]
4553 4554 4555 4556

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4557 4558 4559 4560 4561 4562 4563
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4564 4565 4566

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4567 4568

    Returns:
4569

4570 4571 4572 4573 4574
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4575
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4576
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4577 4578
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4579
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4580 4581 4582 4583 4584 4585
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4586 4587


4588 4589 4590 4591
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4592 4593 4594 4595 4596 4597
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4598
        num_neg_samples=None,
4599 4600 4601
        name=None,
        sampler="uniform",
        custom_dist=None,
4602 4603
        seed=0,
        is_sparse=False):
4604 4605 4606 4607 4608 4609 4610
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4611 4612
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4613
            sample is 1.0.
C
chengduo 已提交
4614 4615 4616 4617 4618 4619 4620 4621 4622
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4623
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4624 4625
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4626 4627 4628
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4629
        custom_dist (float[]): A float[] with size=num_total_classes.
4630 4631 4632 4633
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4634
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4635

4636
    Returns:
Y
Yibing Liu 已提交
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4664 4665 4666 4667 4668 4669 4670 4671 4672

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4673

4674
    """
Y
Yang Yu 已提交
4675 4676 4677
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4678 4679

    dim = input.shape[1]
Y
Yang Yu 已提交
4680 4681 4682 4683 4684 4685
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4686
    inputs = {}
C
chengduo 已提交
4687 4688 4689 4690 4691 4692 4693
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4694 4695 4696
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4697

4698 4699 4700 4701
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4702 4703 4704 4705 4706 4707 4708

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4761 4762 4763 4764
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4765 4766 4767 4768 4769
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4770 4771
    attrs = {
        'num_total_classes': int(num_total_classes),
4772 4773
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4774 4775
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4776
    }
Y
Yang Yu 已提交
4777 4778 4779

    helper.append_op(
        type='nce',
C
chengduo 已提交
4780
        inputs=inputs,
Y
Yang Yu 已提交
4781 4782 4783 4784 4785 4786
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4787
    return cost / (num_neg_samples + 1)
4788 4789


C
chengduo 已提交
4790 4791
def hsigmoid(input,
             label,
4792
             num_classes,
C
chengduo 已提交
4793 4794
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4795
             name=None,
4796 4797 4798
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4799
             is_sparse=False):
W
weixing02 已提交
4800 4801
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4802
    process of language model. This operator organizes the classes into a
4803 4804
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4805 4806 4807 4808 4809 4810
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4811
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4812
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4813

4814 4815 4816 4817 4818 4819 4820 4821 4822
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4823
    Args:
M
minqiyang 已提交
4824
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4825 4826 4827 4828
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4829 4830 4831
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4843 4844 4845 4846 4847 4848 4849
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4850
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4851 4852
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4853 4854

    Returns:
J
JiabinYang 已提交
4855
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4856 4857 4858 4859 4860

    Examples:

        .. code-block:: python

G
guosheng 已提交
4861 4862 4863
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4864 4865 4866 4867
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4868 4869
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4870
    dim = input.shape[1]
4871
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4872 4873 4874
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4875 4876 4877 4878
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4879 4880
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4881 4882 4883
    else:
        pass

J
JiabinYang 已提交
4884 4885
    weights = None

4886
    if not is_custom:
J
JiabinYang 已提交
4887 4888 4889 4890 4891 4892 4893 4894
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4895
            shape=[num_classes, dim],
J
JiabinYang 已提交
4896 4897
            is_bias=False,
            dtype=input.dtype)
4898 4899 4900
    inputs = {
        "X": input,
        "W": weights,
4901 4902
        "PTable": path_table,
        "PathCode": path_code,
4903 4904
        "Label": label
    }
W
weixing02 已提交
4905
    if helper.bias_attr:
4906
        if not is_custom:
J
JiabinYang 已提交
4907 4908
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4909
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4910 4911 4912 4913 4914 4915
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4916
                shape=[num_classes, 1],
J
JiabinYang 已提交
4917 4918 4919
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4920 4921
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4922
        inputs=inputs,
W
weixing02 已提交
4923 4924
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4925 4926
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4927 4928 4929
    return out


Y
fix ci.  
ying 已提交
4930
def transpose(x, perm, name=None):
Y
ying 已提交
4931 4932 4933 4934 4935 4936 4937
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4938 4939 4940
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4941 4942 4943 4944 4945 4946 4947

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4948
            # use append_batch_size=False to avoid prepending extra
4949
            # batch size in shape
4950
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4951
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4952
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4953 4954
    """

Y
fix ci.  
ying 已提交
4955
    if len(perm) != len(x.shape):
Y
ying 已提交
4956 4957 4958
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4959 4960 4961 4962 4963 4964
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4965 4966

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4967 4968
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4969
    helper.append_op(
4970
        type='transpose2',
Y
fix ci.  
ying 已提交
4971
        inputs={'X': [x]},
4972 4973
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4974 4975
        attrs={'axis': perm})
    return out
4976 4977


4978 4979 4980 4981 4982 4983 4984
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4985
    """
4986 4987 4988 4989 4990 4991 4992
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5021 5022 5023 5024 5025 5026 5027 5028 5029
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5030 5031 5032
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5033 5034 5035 5036 5037
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5065 5066 5067
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5080
            output.dims = {8, 8}
5081

5082
            output.lod = [[4, 4]]
5083

D
dzhwinter 已提交
5084
     Examples:
5085 5086 5087

        .. code-block:: python

5088 5089
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5090 5091

    """
W
wanghaoshuang 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5102 5103 5104 5105 5106 5107 5108
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5109
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5110
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5111
    helper.append_op(
5112
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5113
    return out
5114 5115


Y
yuyang18 已提交
5116
@templatedoc()
5117
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5118 5119
    """
    ${comment}
5120 5121

    Args:
Y
yuyang18 已提交
5122
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5123 5124
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5125 5126 5127 5128 5129
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5130
        ${out_comment}.
5131 5132

    Examples:
Y
yuyang18 已提交
5133 5134 5135 5136
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5137 5138 5139 5140 5141 5142
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5143
    out = helper.create_variable_for_type_inference(dtype)
5144 5145 5146 5147 5148
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5149
    return helper.append_activation(out)
5150 5151


Y
yuyang18 已提交
5152
@templatedoc()
5153 5154
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5155 5156 5157 5158 5159 5160 5161
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5162 5163

    Args:
Y
yuyang18 已提交
5164 5165
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5166 5167

    Returns:
Y
yuyang18 已提交
5168
        ${out_comment}.
5169 5170
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5171 5172 5173 5174 5175

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5176
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5177 5178 5179 5180 5181 5182
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5183 5184


5185 5186 5187
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
5188
                               ignore_index=-100,
5189 5190
                               numeric_stable_mode=False,
                               return_softmax=False):
5191 5192
    """
    **Softmax With Cross Entropy Operator.**
5193

5194 5195 5196 5197
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5198

5199 5200 5201
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5202

5203 5204 5205
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5206

5207
    The equation is as follows:
5208

5209
    1) Hard label (one-hot label, so every sample has exactly one class)
5210

5211 5212 5213 5214
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5215

5216 5217 5218
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5219

5220 5221 5222 5223
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5224 5225 5226
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5227

S
sneaxiy 已提交
5228 5229 5230 5231 5232 5233 5234 5235
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5236 5237 5238 5239 5240 5241 5242 5243
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5244 5245
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5246
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5247 5248 5249
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5250 5251 5252
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5253
                                    stable algorithm. Default: False
5254
        return_softmax (bool): A flag indicating whether to return the softmax
5255
                               along with the cross entropy loss. Default: False
5256

5257
    Returns:
5258 5259 5260 5261
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5262
                              2-D tensor with shape [N x K].
5263 5264 5265 5266 5267 5268 5269

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5270 5271
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5272 5273
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5274 5275
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5276 5277 5278 5279 5280 5281
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5282 5283 5284 5285 5286
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5287 5288 5289 5290

    if return_softmax:
        return loss, softmax

5291 5292 5293 5294 5295
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5296 5297
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5298
    For each instance, it computes the smooth L1 loss element by element first
5299
    and then sums all the losses. So the shape of ouput Variable is
5300
    [batch_size, 1].
5301

5302 5303
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5304
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5305
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5306
            L1 loss op with same shape as :attr:`x`.
5307
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5308 5309
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5310
            by this tensor element by element.
5311
        outside_weight (Variable|None): A tensor with rank at least 2. This
5312 5313
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5314
            element by element.
5315
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5316 5317
           scalar with default value 1.0.

5318
    Returns:
5319
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5320 5321 5322 5323 5324

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5325 5326
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5327
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5328
            out = fluid.layers.smooth_l1(x=fc, y=label)
5329
    """
5330

5331
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5332 5333
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5346 5347 5348 5349


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5350
    This layer creates the one-hot representations for input indices.
5351 5352

    Args:
Y
Yibing Liu 已提交
5353 5354
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5355 5356

    Returns:
Y
Yibing Liu 已提交
5357
        Variable: The one-hot representations of input.
5358 5359

    Examples:
C
caoying03 已提交
5360
        .. code-block:: python
5361

Y
Yibing Liu 已提交
5362 5363
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5364 5365
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5366
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5367 5368 5369 5370 5371 5372
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5373 5374


Y
Yu Yang 已提交
5375
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5376
    """
Y
yi.wu 已提交
5377 5378 5379
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5380 5381 5382 5383 5384 5385

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5386 5387
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5388 5389 5390 5391 5392 5393

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5394 5395
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5396 5397
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5398 5399 5400 5401 5402
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5403
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5404
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5405 5406
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5407 5408
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5409 5410 5411
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5412 5413


5414
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5415
    """
C
caoying03 已提交
5416 5417
    Gives a new shape to the input Tensor without changing its data.

5418 5419 5420 5421 5422
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5423

5424
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5425

5426 5427 5428 5429
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5430
    2. 0 means the actual dimension value is going to be copied from the
5431 5432 5433 5434
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5435 5436

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5437
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5438
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5439

5440
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5441 5442
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5443 5444
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5445
    dimensions.
C
caoying03 已提交
5446

5447
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5448 5449 5450 5451
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5452 5453

    Args:
5454
        x(variable): The input tensor.
C
caoying03 已提交
5455 5456
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5457 5458 5459 5460 5461
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5462 5463
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5464 5465 5466 5467 5468 5469 5470
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5471
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5472

5473
    Returns:
G
guosheng 已提交
5474 5475 5476 5477
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5478

X
Xin Pan 已提交
5479 5480 5481
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5482 5483
    Examples:
        .. code-block:: python
G
guosheng 已提交
5484

5485
            data = fluid.layers.data(
5486
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5487
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5488
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5489 5490 5491
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5492
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5493 5494 5495 5496 5497
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5498

5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5514
    helper = LayerHelper("reshape2", **locals())
5515 5516
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5517
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5518
    helper.append_op(
5519
        type="reshape2",
X
Xin Pan 已提交
5520
        inputs=inputs,
D
dzhwinter 已提交
5521
        attrs={"shape": shape},
5522 5523
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5524

D
dzhwinter 已提交
5525
    return helper.append_activation(out)
5526

5527

5528
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5529
    """
M
minqiyang 已提交
5530 5531 5532
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5533
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5534

Y
Yibing Liu 已提交
5535 5536
    Examples:
    Case 1:
M
minqiyang 已提交
5537
      Given
Y
Yibing Liu 已提交
5538 5539 5540 5541 5542 5543 5544 5545
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5546
        and
Y
Yibing Liu 已提交
5547 5548 5549
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5550

Y
Yibing Liu 已提交
5551
    Args:
5552
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5553
        axes (list): List of integers, indicating the dimensions to be squeezed.
5554
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5555 5556 5557 5558 5559 5560 5561 5562

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5563
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5564 5565
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5566 5567
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5568
    helper.append_op(
5569
        type="squeeze2",
5570
        inputs={"X": input},
Y
Yibing Liu 已提交
5571
        attrs={"axes": axes},
5572 5573
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5574

5575 5576 5577
    return out


5578
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5579
    """
M
minqiyang 已提交
5580 5581 5582
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5583

M
minqiyang 已提交
5584 5585
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5586
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5587

Y
Yibing Liu 已提交
5588
    Args:
5589
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5590
        axes (list): List of integers, indicating the dimensions to be inserted.
5591
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5592 5593 5594 5595 5596 5597 5598 5599

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5600
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5601 5602
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5603 5604
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5605
    helper.append_op(
5606
        type="unsqueeze2",
5607
        inputs={"X": input},
Y
Yibing Liu 已提交
5608
        attrs={"axes": axes},
5609 5610
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5611

5612 5613
    return out

5614

Y
yangyaming 已提交
5615
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5616
    """
Y
Yibing Liu 已提交
5617
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5618 5619 5620 5621
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5622
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5623 5624 5625 5626 5627 5628

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5629
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5630 5631 5632
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5633
            target_lod: [4, 2]
Y
yangyaming 已提交
5634 5635

            then we get a 1-level LoDTensor:
5636
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5637 5638 5639 5640 5641 5642
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5643
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5644 5645 5646 5647
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5648
                y.data = [[2, 4]]
Y
yangyaming 已提交
5649 5650 5651
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5652
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5653 5654 5655 5656 5657 5658
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5659
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5660 5661 5662 5663
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5664
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5665 5666 5667 5668
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5669
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5670 5671 5672 5673 5674
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5675
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5676
                           from :attr:`y`.
Y
yangyaming 已提交
5677
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5678
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5679 5680

    Returns:
Y
Yibing Liu 已提交
5681
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5682 5683

    Raises:
Y
Yibing Liu 已提交
5684
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5694
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5720
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5749 5750
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5763 5764 5765
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5779 5780 5781 5782


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5783
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5784
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5785

G
guosheng 已提交
5786 5787 5788 5789
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5812
                         The length of :attr:paddings must be
G
guosheng 已提交
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5823

G
guosheng 已提交
5824 5825 5826 5827 5828 5829
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5830
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5831 5832 5833 5834 5835 5836 5837
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5838 5839


C
chengduo 已提交
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5910
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5911 5912 5913 5914 5915 5916 5917 5918 5919
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5920 5921 5922 5923 5924 5925 5926
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5927 5928
    called label-smoothing regularization (LSR).

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5952
                              be :math:`(1, class\_num)`.
5953 5954
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5955
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5975
    smooth_label = helper.create_variable_for_type_inference(dtype)
5976 5977 5978 5979 5980 5981 5982
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5983 5984


W
wopeizl 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6021 6022


J
jerrywgz 已提交
6023 6024 6025 6026 6027 6028
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6029 6030
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6047 6048 6049
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6050 6051 6052 6053 6054 6055
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6056
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6097 6098
        .. code-block:: python

W
whs 已提交
6099 6100 6101 6102
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6103
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6104 6105 6106 6107 6108 6109
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6110 6111


6112 6113 6114 6115
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6116 6117
                 resample='BILINEAR',
                 actual_shape=None):
6118
    """
Q
qiaolongfei 已提交
6119
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6120

6121
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6122 6123 6124
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6125

6126
        'BILINEAR' : Bilinear interpolation
6127
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6128

6129
    Args:
6130
        input (Variable): The input tensor of image resize layer,
6131 6132
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6133
        out_shape(list|tuple|Variable|None): Output shape of image resize
6134 6135
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6136
        scale(float|None): The multiplier for the input height or width.
6137 6138 6139
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6140 6141
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6142
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6143
                       currently.
6144
                       Default: 'BILINEAR'
6145 6146 6147
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6148
                                :attr:`out_shape` and :attr:`scale` specifying
6149 6150 6151 6152 6153 6154 6155
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6156 6157
                                constructing stage.
                                Default: None
6158 6159

    Returns:
Q
update  
qiaolongfei 已提交
6160 6161
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6162

6163 6164 6165
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6166
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6167 6168 6169 6170
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6171 6172 6173
    Examples:
        .. code-block:: python

6174
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6175
    """
6176 6177 6178 6179
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6180 6181
    if resample not in resample_methods:
        raise ValueError(
6182
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6183
        )
6184
    resample_type = resample_methods[resample]
6185
    if out_shape is None and scale is None:
6186
        raise ValueError("One of out_shape and scale must not be None.")
6187
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6188
    dtype = helper.input_dtype()
6189 6190 6191 6192

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6193 6194 6195
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6196
    if out_shape is not None:
6197 6198 6199 6200
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6201
            inputs['OutSize'] = out_shape
6202 6203 6204 6205 6206 6207 6208 6209
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6210 6211 6212 6213
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6214 6215 6216 6217 6218
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6219
    out = helper.create_variable_for_type_inference(dtype)
6220
    helper.append_op(
6221
        type='{}_interp'.format(resample_type),
6222
        inputs=inputs,
6223
        outputs={"Out": out},
6224 6225 6226
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6227
    return out
F
stash  
fengjiayi 已提交
6228 6229


6230
@templatedoc(op_type="bilinear_interp")
6231 6232 6233 6234 6235
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6236
    """
6237 6238
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6239 6240
    in priority order.

6241 6242 6243 6244
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6245 6246
    again in the other direction.

6247
    For details of bilinear interpolation, please refer to Wikipedia:
6248
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6249 6250 6251 6252 6253

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6254

Y
yuyang18 已提交
6255 6256 6257 6258 6259
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6260 6261 6262
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6263
                                :attr:`out_shape` and :attr:`scale` specifying
6264 6265 6266 6267 6268 6269 6270
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6271 6272
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6273 6274 6275

    Returns:
        ${out_comment}.
6276 6277 6278 6279 6280

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6281 6282
    """

6283
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6284 6285


6286
@templatedoc(op_type="nearest_interp")
6287 6288 6289 6290 6291
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6292
    """
6293
    Resize input by performing nearest neighbor interpolation in both the
6294 6295
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6296 6297
    out_shape and scale in priority order.

6298
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6299
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6300 6301 6302 6303 6304

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6305

Y
yuyang18 已提交
6306 6307 6308 6309 6310
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6311 6312 6313
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6314
                                :attr:`out_shape` and :attr:`scale` specifying
6315 6316 6317 6318 6319 6320 6321
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6322 6323
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6324 6325 6326

    Returns:
        ${out_comment}.
6327 6328 6329 6330 6331

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6332 6333
    """

6334
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6335 6336 6337 6338


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6339 6340 6341
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6342 6343 6344 6345 6346 6347 6348
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6349
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6350

6351
    Returns:
Q
update  
qiaolongfei 已提交
6352
        Variable: The output is a 4-D tensor of the shape
6353
        (num_batches, channls, out_h, out_w).
6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6364 6365 6366
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6367 6368 6369
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6370 6371
def gather(input, index):
    """
Q
qiaolongfei 已提交
6372 6373
    **Gather Layer**

6374
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6375 6376 6377 6378
    of X indexed by `index` and concatenate them together.

    .. math::

6379
        Out = X[Index]
W
whs 已提交
6380 6381 6382 6383 6384 6385 6386


    .. code-block:: text


                Given:

6387 6388
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6399
        input (Variable): The source input with rank>=1.
W
whs 已提交
6400 6401 6402 6403 6404 6405
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6406

W
whs 已提交
6407 6408 6409 6410 6411 6412
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6413
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6414 6415 6416 6417 6418 6419 6420 6421
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6453
    out = helper.create_variable_for_type_inference(dtype)
6454 6455 6456 6457 6458 6459 6460 6461 6462
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6513
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6514 6515 6516 6517 6518 6519 6520 6521 6522
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6536

6537 6538 6539
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6540
    """
F
stash  
fengjiayi 已提交
6541
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6542
    dtype = x.dtype
X
Xin Pan 已提交
6543
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6544
    if seed is None:
6545
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6546
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6547
    if isinstance(seed, int):
F
fengjiayi 已提交
6548 6549 6550 6551 6552
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6553 6554 6555 6556
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6557
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6558 6559
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6560 6561
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6562
    return out
W
whs 已提交
6563 6564


6565
def log(x, name=None):
W
wanghaoshuang 已提交
6566 6567 6568 6569 6570
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6571
        Out = \\ln(x)
W
wanghaoshuang 已提交
6572 6573

    Args:
6574
        x (Variable): Input tensor.
6575 6576
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6577 6578 6579 6580 6581 6582 6583 6584

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6585
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6586 6587
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6588
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6589
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6590
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6591 6592 6593
    return out


6594
def relu(x, name=None):
W
wanghaoshuang 已提交
6595 6596
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6597
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6598 6599 6600 6601
    the tensor elementwise.

    .. math::

6602
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6603 6604

    Args:
6605
        x (Variable): The input tensor.
6606 6607
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6608 6609 6610 6611 6612 6613 6614 6615

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6616
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6617 6618
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6619
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6620
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6621
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6622
    return out
6623 6624


C
chengduo 已提交
6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6666 6667 6668
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6669 6670 6671 6672
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6673
    .. math::
6674 6675

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6676

6677
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6678 6679 6680 6681 6682
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6683
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6684
                           Its shape should be the same as input.
6685
        num_classes (int): The possible number of labels.
W
whs 已提交
6686 6687 6688 6689

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6690
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6691 6692 6693 6694

    Examples:

        .. code-block:: python
6695

W
whs 已提交
6696 6697 6698 6699
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6700 6701 6702
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6703 6704
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6705 6706
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6707
        outputs={
W
whs 已提交
6708 6709 6710
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6711 6712 6713
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6788
            isinstance(shape, Variable)):
6789 6790 6791 6792 6793
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6794
    out = helper.create_variable_for_type_inference(x.dtype)
6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6812 6813


W
whs 已提交
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6831

W
whs 已提交
6832
              out_shape = [2, 3, 5, 5]
6833

W
whs 已提交
6834
          Step 1:
6835

W
whs 已提交
6836 6837 6838
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6839

W
whs 已提交
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6910
            isinstance(out_shape, Variable)):
W
whs 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6932 6933 6934 6935 6936 6937 6938 6939
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6940

6941 6942
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6943

6944 6945 6946 6947
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6948

6949 6950 6951 6952 6953
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6954 6955 6956

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6992
    out = helper.create_variable_for_type_inference("float32")
6993 6994 6995 6996 6997 6998 6999 7000

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7001 7002


M
minqiyang 已提交
7003 7004
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7005
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7006
    which compares left score and right score passed in.
M
minqiyang 已提交
7007
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7008 7009 7010 7011 7012 7013

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7014
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7015 7016
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7017
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7018 7019 7020
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7021
       Variable: The ranking loss.
M
minqiyang 已提交
7022
    Raises:
M
minqiyang 已提交
7023
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7024 7025 7026 7027 7028 7029 7030
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7031
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7032 7033 7034 7035 7036 7037
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7038 7039
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
7065

W
whs 已提交
7066 7067
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
7068

W
whs 已提交
7069
      Case 0:
M
minqiyang 已提交
7070

W
whs 已提交
7071 7072 7073
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
7074

W
whs 已提交
7075 7076 7077
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7078

W
whs 已提交
7079
      Case 1:
M
minqiyang 已提交
7080

W
whs 已提交
7081 7082
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
7083

W
whs 已提交
7084 7085 7086
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7087

W
whs 已提交
7088
      Case 2:
M
minqiyang 已提交
7089

W
whs 已提交
7090 7091
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
7092

W
whs 已提交
7093 7094 7095
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7096 7097


W
whs 已提交
7098 7099
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7100
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7124
    out = helper.create_variable_for_type_inference(dtype)
7125 7126 7127 7128 7129 7130 7131 7132 7133
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7134
    helper.append_op(
7135
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7136 7137 7138 7139

    return out


7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7152 7153 7154 7155 7156

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7157 7158
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7159 7160
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7161
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7182 7183 7184 7185 7186

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7187 7188
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7189 7190
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7191
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7212 7213 7214 7215 7216

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7217 7218
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7219 7220
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7221
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7243 7244 7245 7246 7247

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7248
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7249
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7250 7251
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7252
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7275 7276 7277 7278 7279

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7280 7281
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7282 7283
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7284
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7306 7307 7308 7309 7310

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7311 7312
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7313 7314
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7315
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7316 7317 7318 7319 7320 7321 7322 7323
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7324 7325 7326 7327
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7328
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7329 7330 7331

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7332 7333
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7334 7335 7336 7337
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7338
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7339
                       will be named automatically.
J
jerrywgz 已提交
7340 7341 7342 7343 7344 7345 7346 7347

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7348
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7362
        attr=helper.param_attr,
J
jerrywgz 已提交
7363 7364 7365 7366
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7367
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7368 7369 7370 7371 7372 7373 7374 7375 7376
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7387
    Returns:
7388
        output(${out_type}): ${out_comment}
7389 7390 7391 7392 7393 7394 7395

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7396 7397
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7398
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7417
    Returns:
7418
        output(${out_type}): ${out_comment}
7419 7420 7421 7422 7423 7424 7425

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7426 7427
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7428
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7446
    Returns:
7447
        output(${out_type}): ${out_comment}
7448 7449 7450 7451 7452 7453 7454

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7455 7456
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7457
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7458 7459 7460 7461 7462 7463 7464 7465
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7479

7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7490 7491
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7507
        ValueError: If axis is not in range [0, rank(x)].
7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7524 7525
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7526
    helper.append_op(
7527
        type='flatten2',
7528
        inputs={"X": x},
7529 7530
        outputs={'Out': out,
                 'XShape': x_shape},
7531 7532
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7533 7534


C
chenweihang 已提交
7535
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7536
    """
C
chenweihang 已提交
7537
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7538
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7539 7540
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7541

C
chenweihang 已提交
7542 7543 7544 7545
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7546
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7547 7548 7549 7550 7551 7552
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7553
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7554 7555 7556
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7557 7558 7559
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7571 7572
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7573 7574 7575 7576 7577 7578
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7579
    return out
7580

7581

S
sneaxiy 已提交
7582 7583 7584 7585 7586 7587 7588 7589 7590
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7591

S
sneaxiy 已提交
7592
    .. math::
7593

S
sneaxiy 已提交
7594 7595 7596
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7597
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7598 7599 7600 7601
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7602 7603 7604
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7605 7606
    Returns:
        Variable: The output sequence mask.
7607

S
sneaxiy 已提交
7608 7609
    """

Q
qingqing01 已提交
7610
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7611
    if name is None:
X
Xin Pan 已提交
7612
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7613
    else:
X
Xin Pan 已提交
7614
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7615

Q
qingqing01 已提交
7616 7617 7618
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7619 7620
        outputs={'Y': out},
        attrs={
7621
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7622 7623 7624
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7625 7626


X
Xin Pan 已提交
7627
def stack(x, axis=0):
S
sneaxiy 已提交
7628 7629 7630 7631
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7632 7633 7634 7635 7636 7637 7638

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7639
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7640
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7641 7642

    Args:
7643
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7644
        axis (int|None): The axis along which all inputs are stacked.
7645

S
sneaxiy 已提交
7646 7647
    Returns:
        Variable: The stacked variable.
7648

S
sneaxiy 已提交
7649 7650
    """

X
Xin Pan 已提交
7651 7652 7653 7654 7655 7656
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7657
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7658
    helper.append_op(
S
sneaxiy 已提交
7659 7660
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7661

X
Xin Pan 已提交
7662
    return out
D
dzhwinter 已提交
7663 7664 7665 7666 7667 7668 7669


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7670

D
dzhwinter 已提交
7671 7672 7673
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7674
    raised.
D
dzhwinter 已提交
7675 7676

    Args:
M
minqiyang 已提交
7677
        x (Variable): Input variable.
D
dzhwinter 已提交
7678 7679
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7680

D
dzhwinter 已提交
7681 7682
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7683

D
dzhwinter 已提交
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7695
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7696 7697 7698 7699 7700 7701 7702 7703

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7716

W
whs 已提交
7717 7718 7719 7720
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7721

W
whs 已提交
7722
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7723

W
whs 已提交
7724
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7725

W
whs 已提交
7726 7727 7728 7729
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7730

W
whs 已提交
7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7747
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7748 7749 7750 7751 7752 7753
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7754 7755


G
fix  
gongweibao 已提交
7756 7757 7758
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7759
@templatedoc()
G
fix  
gongweibao 已提交
7760 7761 7762 7763 7764 7765 7766 7767 7768
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7769
    ${comment}
G
fix  
gongweibao 已提交
7770 7771

    Args:
G
gongweibao 已提交
7772 7773 7774
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7775
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7776 7777 7778
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7779 7780
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7781
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7782

7783 7784 7785 7786 7787
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7788 7789 7790
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7791
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7808 7809


G
gongweibao 已提交
7810
@templatedoc()
X
Xin Pan 已提交
7811
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7812
    """
G
gongweibao 已提交
7813
    ${comment}
G
fix  
gongweibao 已提交
7814 7815

    Args:
G
gongweibao 已提交
7816 7817 7818 7819
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7820 7821 7822
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7823
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7824

7825 7826 7827 7828
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7829 7830 7831
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7832
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7833 7834 7835 7836 7837 7838 7839 7840 7841 7842
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7843
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7844 7845 7846 7847 7848
        })

    return out


G
gongweibao 已提交
7849
@templatedoc()
G
fix  
gongweibao 已提交
7850
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7851
    """
G
gongweibao 已提交
7852
    ${comment}
G
fix  
gongweibao 已提交
7853 7854

    Args:
G
gongweibao 已提交
7855 7856 7857 7858
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7859
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7860 7861

    Returns:
G
gongweibao 已提交
7862
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7863

7864 7865 7866 7867 7868 7869 7870 7871 7872 7873
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7874 7875 7876
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7877
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7889
@templatedoc()
G
fix  
gongweibao 已提交
7890 7891 7892 7893 7894 7895 7896 7897 7898
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7899
    ${comment}
G
fix  
gongweibao 已提交
7900 7901

    Args:
G
gongweibao 已提交
7902 7903
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7904
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7905 7906 7907 7908
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7909
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7910 7911

    Returns:
G
gongweibao 已提交
7912
        out (Variable): ${out_comment}
7913 7914 7915 7916 7917 7918 7919 7920

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7921 7922 7923
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7924
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7943
@templatedoc()
X
Xin Pan 已提交
7944
def sum(x):
G
fix  
gongweibao 已提交
7945
    """
G
gongweibao 已提交
7946
    ${comment}
G
fix  
gongweibao 已提交
7947 7948

    Args:
G
gongweibao 已提交
7949
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7950 7951

    Returns:
G
gongweibao 已提交
7952
        out (Variable): ${out_comment}
7953 7954 7955 7956 7957 7958

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
7959 7960 7961
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7962 7963
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7964 7965 7966 7967
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7968
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7969 7970 7971 7972

    return out


G
gongweibao 已提交
7973
@templatedoc()
G
fix  
gongweibao 已提交
7974 7975
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7976
    ${comment}
G
fix  
gongweibao 已提交
7977 7978

    Args:
G
gongweibao 已提交
7979 7980 7981 7982
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7983 7984

    Returns:
G
gongweibao 已提交
7985
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7986

7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
7998 7999 8000
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8001 8002
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8014
@templatedoc()
G
fix  
gongweibao 已提交
8015 8016
def shape(input):
    """
G
gongweibao 已提交
8017
    ${comment}
G
fix  
gongweibao 已提交
8018 8019

    Args:
G
gongweibao 已提交
8020
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8021 8022

    Returns:
G
gongweibao 已提交
8023
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8024

8025 8026 8027 8028 8029 8030
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8031 8032 8033
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8034 8035
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8036
    helper.append_op(
G
fix  
gongweibao 已提交
8037
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8038 8039

    return out
G
merge  
gongweibao 已提交
8040 8041


S
sneaxiy 已提交
8042 8043 8044 8045 8046 8047 8048 8049
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8050 8051
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8052
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8053 8054 8055
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8056

S
sneaxiy 已提交
8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8068
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8069 8070 8071 8072 8073 8074 8075 8076
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8077
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8078
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8079 8080 8081 8082 8083 8084

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8085
    if name is None:
X
Xin Pan 已提交
8086
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8087 8088 8089
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8090 8091 8092 8093 8094 8095 8096 8097 8098 8099

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8100
    return helper.append_activation(out)
S
sneaxiy 已提交
8101 8102


X
Xin Pan 已提交
8103
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8104 8105 8106
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8107
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8108 8109 8110
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8111
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8112 8113 8114
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8115
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8116 8117 8118
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8119
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8120 8121 8122
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8123
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8124 8125 8126
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8127
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8139 8140
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8141
        ])
M
minqiyang 已提交
8142 8143


8144
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8145 8146
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8147 8148
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8149 8150 8151

    if out is None:
        if name is None:
X
Xin Pan 已提交
8152
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8168
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8180 8181 8182 8183 8184 8185 8186 8187 8188

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8189 8190 8191 8192 8193 8194 8195
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8196
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8208 8209 8210 8211 8212 8213 8214 8215 8216

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8217 8218 8219 8220 8221 8222 8223
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8224
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8236 8237 8238 8239 8240 8241 8242 8243 8244

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8245 8246 8247 8248 8249 8250 8251
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8252
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8253 8254 8255 8256 8257 8258 8259 8260 8261 8262
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8263 8264 8265 8266 8267 8268 8269

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8270 8271 8272 8273
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8289 8290 8291 8292 8293 8294 8295

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8296 8297 8298 8299 8300
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8301 8302 8303 8304
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8328 8329 8330 8331 8332 8333 8334

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8335 8336 8337 8338 8339
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8340 8341 8342 8343
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8344 8345 8346 8347 8348 8349 8350 8351

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8370
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8400
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8401 8402 8403 8404 8405 8406 8407 8408 8409
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8410 8411
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8434
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8464
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8475 8476


J
JiabinYang 已提交
8477
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8478
    """
J
JiabinYang 已提交
8479
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8480 8481 8482

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8483
    The attr blocksize indicates the input block size.
8484 8485

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8486
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8487 8488

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8489
    (but keeping all data)
J
JiabinYang 已提交
8490

J
JiabinYang 已提交
8491
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8492
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8493 8494 8495 8496 8497
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8498
    Args:
J
JiabinYang 已提交
8499
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8500
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8501 8502

    Returns:
J
JiabinYang 已提交
8503
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8504 8505

    Raises:
J
JiabinYang 已提交
8506
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8507 8508 8509 8510 8511 8512

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8513
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8514
                x=data, blocksize=2)
J
JiabinYang 已提交
8515 8516
    """

J
JiabinYang 已提交
8517
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8518

J
JiabinYang 已提交
8519 8520
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8521 8522

    if name is None:
J
JiabinYang 已提交
8523 8524
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8525 8526 8527 8528 8529
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8530
        type="space_to_depth",
J
JiabinYang 已提交
8531
        inputs={"X": x},
J
JiabinYang 已提交
8532
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8533
        outputs={"Out": out})
J
JiabinYang 已提交
8534 8535
    return out

J
JiabinYang 已提交
8536

S
sneaxiy 已提交
8537 8538
@templatedoc()
def sequence_reverse(x, name=None):
8539
    """
S
sneaxiy 已提交
8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8551
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8552 8553 8554 8555 8556 8557 8558 8559 8560 8561
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8562 8563


8564 8565 8566 8567 8568 8569
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8570

8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8590
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8603 8604


B
barrierye 已提交
8605
def similarity_focus(input, axis, indexes, name=None):
8606
    """
B
barrierye 已提交
8607
    SimilarityFocus Operator
B
barrierye 已提交
8608 8609

    Generate a similarity focus mask with the same shape of input using the following method:
8610 8611 8612
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8613
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8614 8615 8616 8617 8618 8619 8620
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8621
       each index.
B
barrierye 已提交
8622 8623 8624 8625
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8675
    Args:
8676
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8677
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8678
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8679
            1, 2 or 3.
B
barrierye 已提交
8680
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8681 8682

    Returns:
8683
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8684
            as the input.
8685

B
barrierye 已提交
8686 8687 8688
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8689 8690
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8703 8704 8705 8706 8707
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8708 8709 8710 8711 8712 8713 8714
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8715 8716


M
minqiyang 已提交
8717 8718
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8719 8720
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8721 8722
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8761
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8762
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8763 8764 8765 8766 8767 8768 8769 8770 8771

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8772 8773
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8774 8775
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8776 8777 8778 8779 8780 8781 8782
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8783 8784


D
dengkaipeng 已提交
8785
@templatedoc()
8786 8787
def grid_sampler(x, grid, name=None):
    """
8788
    This operation samples input X by using bilinear interpolation based on
8789
    flow field grid, which is usually gennerated by affine_grid. The grid of
8790 8791 8792 8793
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8794
    interpolation value of 4 nearest corner points.
8795 8796 8797 8798 8799 8800 8801 8802

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8803
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8833 8834

    Args:
8835 8836 8837
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8838 8839

    Returns:
8840
        out(Variable): Output of shape [N, C, H, W] data samples input X
8841 8842 8843 8844 8845 8846 8847 8848 8849
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8850 8851 8852 8853 8854 8855 8856 8857 8858
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8859
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8860 8861
    ipts = {'X': x, 'Grid': grid}

8862
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8863 8864 8865
    return out


G
gmcather 已提交
8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8960 8961 8962 8963 8964 8965 8966 8967 8968 8969


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8970
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8971

Q
Qiao Longfei 已提交
8972
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8973 8974 8975
    For example:

    .. math::
8976
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8977

Q
Qiao Longfei 已提交
8978
    In this formula:
8979 8980
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8981
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8982
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8983 8984 8985
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8986 8987
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8988 8989 8990
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8991
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8992
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8993
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8994 8995 8996 8997
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8998
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8999 9000 9001 9002

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9003
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9004 9005
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9006
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9007 9008 9009 9010

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9011
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)