framework.py 198.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27

Y
Yu Yang 已提交
28
import numpy as np
29
import subprocess
S
sneaxiy 已提交
30
import multiprocessing
31
import sys
32
import logging
M
minqiyang 已提交
33
from .. import compat as cpt
34
from .proto import framework_pb2
35 36

from . import core
37
from . import unique_name
38 39
import paddle.version as fluid_version
import warnings
40
import functools
Y
Yu Yang 已提交
41

42
__all__ = [
43 44 45 46
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
47
    'name_scope',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
S
sneaxiy 已提交
51
    'cuda_pinned_places',
L
lujun 已提交
52
    'in_dygraph_mode',
C
chengduo 已提交
53
    'is_compiled_with_cuda',
54
    'is_compiled_with_xpu',
55
    'Variable',
56
    'load_op_library',
57
    'require_version',
58
    'device_guard',
G
guofei 已提交
59 60
    'set_flags',
    'get_flags',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
69
_dygraph_tracer_ = None
70
_global_expected_place_ = None
71
_current_device = None
72 73
global_prog_seed = 0

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
182
def in_dygraph_mode():
L
lujun 已提交
183
    """
184

185 186 187 188 189 190 191
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
192 193

    Returns:
194
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
195 196 197 198

    Examples:
        .. code-block:: python

199 200 201 202 203 204 205 206
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
207 208

    """
L
lujun 已提交
209
    return _dygraph_tracer_ is not None
210 211


212 213 214
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
215
        ), "We don't support %s in imperative mode" % func.__name__
216 217 218 219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
233
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
234 235 236 237 238
        return func(*args, **kwargs)

    return __impl__


239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


274 275
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
276
static_only = wrap_decorator(_static_only_)
277
fake_interface_only = wrap_decorator(_fake_interface_only_)
278 279


L
lujun 已提交
280 281
def _dygraph_tracer():
    return _dygraph_tracer_
282

W
Wu Yi 已提交
283

M
minqiyang 已提交
284
def _current_expected_place():
285 286 287
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
288 289 290 291 292 293 294 295 296 297 298
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
315 316


L
Leo Chen 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
334
def _cpu_num():
335
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
336 337 338 339 340 341 342 343
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
344
        os.environ['CPU_NUM'] = str(1)
345
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
346 347 348 349 350 351 352 353 354 355
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
356 357


358 359 360 361 362 363 364 365 366
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
382 383 384 385
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

386
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
387 388 389 390

    Examples:
        .. code-block:: python

391 392
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
393 394 395 396
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
397
def cuda_places(device_ids=None):
L
lujun 已提交
398
    """
399 400 401 402
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
403
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
404 405

    If :code:`device_ids` is None, environment variable of
406
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
407
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
408
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
409
    If :code:`FLAGS_selected_gpus` is not set, all visible
410
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
411 412

    If :code:`device_ids` is not None, it should be the device
413
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
414
    the returned list would be 
C
Chen Weihang 已提交
415
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
416
    
417 418
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
419 420

    Returns:
C
Chen Weihang 已提交
421
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
422 423 424 425

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
426 427 428 429 430 431
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
432 433

    """
S
sneaxiy 已提交
434 435 436
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
437
        device_ids = _cuda_ids()
S
sneaxiy 已提交
438 439 440 441 442
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
480
def cpu_places(device_count=None):
L
lujun 已提交
481
    """
C
Chen Weihang 已提交
482
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
483 484 485
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
486 487
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
488 489
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
490

491 492
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
493 494

    Returns:
C
Chen Weihang 已提交
495
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
496 497 498 499

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
500 501 502 503 504 505
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
506 507
    """

S
sneaxiy 已提交
508 509 510 511 512 513
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
514
    """
515
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
516 517 518

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
519 520 521 522
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
523

524 525
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
526 527

    Returns:
528
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
529 530 531 532

    Examples:
        .. code-block:: python

533
            import paddle.fluid as fluid
L
lujun 已提交
534 535 536 537 538
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
539 540 541
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
542 543
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
544 545


546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
572
@signature_safe_contextmanager
573 574
def name_scope(prefix=None):
    """
575 576
    :api_attr: Static Graph

577
    Generate hierarchical name prefix for the operators in Static Graph.
578

T
Tao Luo 已提交
579 580 581
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
582
        Don't use it in dygraph, since it will cause memory leak.
583 584

    Args:
T
Tao Luo 已提交
585
        prefix(str, optional): prefix. Default is none.
586 587 588

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
589

590 591 592
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
593
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
594
             b = a + 1
595
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
596
                c = b * 1
597
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
598
                d = c / 1
599 600 601
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
602 603 604
                g = f - 1

          # Op are created in the default main program.  
605
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
621 622
    """
    # TODO(panyx0718): Only [0-9a-z].
623
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
624 625 626
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
627
        assert prefix, "namescope prefix can not be empty."
628 629
        global _name_scope
        _name_scope = _name_scope.child(prefix)
630 631 632 633
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
634 635 636 637 638 639 640 641 642 643 644 645


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
646 647 648
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
649 650 651 652


def grad_var_name(var_name):
    """
653 654
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
655 656 657
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
658

659
def convert_np_dtype_to_dtype_(np_dtype):
660 661
    """
    Convert the data type in numpy to the data type in Paddle
662

663
    Args:
664
        np_dtype(np.dtype): the data type in numpy.
665

666 667
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
668 669

    """
670 671
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
672
        return core.VarDesc.VarType.FP32
673
    elif dtype == np.float64:
674
        return core.VarDesc.VarType.FP64
675
    elif dtype == np.float16:
676
        return core.VarDesc.VarType.FP16
677
    elif dtype == np.int32:
678
        return core.VarDesc.VarType.INT32
679
    elif dtype == np.int16:
680
        return core.VarDesc.VarType.INT16
681
    elif dtype == np.int64:
682
        return core.VarDesc.VarType.INT64
683
    elif dtype == np.bool:
684
        return core.VarDesc.VarType.BOOL
685
    elif dtype == np.uint16:
686 687 688
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
689 690
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
691 692
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
693 694 695 696
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
697
    else:
M
minqiyang 已提交
698
        raise ValueError("Not supported numpy dtype %s" % dtype)
699 700 701


def dtype_is_floating(dtype):
702 703 704
    """
    Check the data type is floating or not.
    Args:
705
        dtype(np.dtype|core.VarDesc.VarType): data type.
706 707 708 709 710
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
711
    if not isinstance(dtype, core.VarDesc.VarType):
712 713
        dtype = convert_np_dtype_to_dtype_(dtype)

714 715 716 717
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
718 719


Y
Yang Yang(Tony) 已提交
720
def _debug_string_(proto, throw_on_error=True):
721 722 723 724 725 726 727 728 729 730 731
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
732
    error_fields = list()
Y
Yang Yang(Tony) 已提交
733
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
734 735
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
736 737 738
    return proto.__str__()


739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
796
    target_block = default_main_program().current_block()
797 798 799 800 801 802 803 804 805 806 807

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
808
            })
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
848
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
849
                fill_constant([1], 1, force_cpu=True, out=temp_1)
850
                temp_end = target_block.create_var(dtype=slice_item.dtype)
851
                target_block.append_op(
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
891

892
    # starts
L
Leo Chen 已提交
893
    if contain_var(slice_start):
894 895 896 897 898 899 900 901
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
902 903 904 905
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
906 907 908 909 910 911 912
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
913 914 915
    else:
        attrs['ends'] = slice_end

916 917
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
918
        if contain_var(slice_step):
919 920 921 922 923 924 925
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
926 927
        else:
            attrs['strides'] = slice_step
928 929 930 931 932 933
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
934
        slice_out_var = target_block.create_var(
935 936 937
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

938
        target_block.append_op(
939 940 941 942 943 944 945
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
946
        strided_slice_out_var = target_block.create_var(
947 948 949
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
950
        target_block.append_op(
951 952 953 954 955 956 957 958
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
959
        reverse_out_var = target_block.create_var(
960 961 962
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
963
        target_block.append_op(
964 965 966 967 968 969 970 971 972 973 974
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
975
class Variable(object):
976
    """
J
Jiabin Yang 已提交
977
    **Notes**:
978
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
979

980 981
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
982 983 984
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
985
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
986 987
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
988

989
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
990
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
991

T
tianshuo78520a 已提交
992
    Most of a Variable's member variables can be set to be None. It mean
993
    it is not available or will be specified later.
994

995
    Examples:
996 997
        In Static Graph Mode:

998 999
        .. code-block:: python

1000
            import paddle.fluid as fluid
1001
            cur_program = fluid.Program()
1002 1003 1004 1005
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
1006
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1007 1008 1009 1010 1011 1012 1013 1014 1015

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1016 1017
    """

Y
Yu Yang 已提交
1018 1019
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1020
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1021 1022 1023 1024
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1025
                 capacity=None,
Q
QI JUN 已提交
1026
                 persistable=None,
F
fengjiayi 已提交
1027
                 error_clip=None,
Y
Yu Yang 已提交
1028
                 stop_gradient=False,
F
fengjiayi 已提交
1029
                 is_data=False,
H
Huihuang Zheng 已提交
1030
                 need_check_feed=False,
H
hong 已提交
1031
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1032
                 **kwargs):
Y
Yu Yang 已提交
1033 1034
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1035
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1036

Y
Yu Yang 已提交
1037
        if dtype is not None:
1038
            if not isinstance(dtype, core.VarDesc.VarType):
1039
                dtype = convert_np_dtype_to_dtype_(dtype)
1040

H
hong 已提交
1041 1042
        self.belong_to_optimizer = belong_to_optimizer

1043 1044 1045 1046 1047
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1048

1049 1050 1051
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1052

1053 1054 1055 1056 1057 1058 1059
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1060

1061
        if shape is not None:
1062
            if is_new_var:
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1104

1105 1106
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1107

1108 1109 1110 1111 1112 1113 1114
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1115

1116 1117 1118 1119
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1120

1121
    @fake_interface_only
1122 1123
    def detach(self):
        """
J
Jiabin Yang 已提交
1124
        **Notes**:
T
tianshuo78520a 已提交
1125
            **This API is ONLY available in Dygraph mode**
1126

1127
        Returns a new Variable, detached from the current graph.
1128

1129
        Returns:
J
Jiabin Yang 已提交
1130
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1131

1132

1133 1134 1135 1136 1137
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1138
                from paddle.fluid.dygraph import Linear
1139 1140 1141 1142
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1143
                    linear = Linear(32, 64)
1144
                    data = to_variable(data)
1145
                    x = linear(data)
1146 1147 1148
                    y = x.detach()

        """
1149
        pass
1150

1151
    @fake_interface_only
1152
    def numpy(self):
1153
        """
J
Jiabin Yang 已提交
1154
        **Notes**:
T
tianshuo78520a 已提交
1155
            **This API is ONLY available in Dygraph mode**
1156

J
Jiabin Yang 已提交
1157
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1158 1159 1160 1161 1162

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1163
            ndarray: dtype is same as current Variable
1164 1165 1166 1167 1168 1169

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1170
                from paddle.fluid.dygraph import Linear
1171 1172 1173 1174
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1175
                    linear = Linear(32, 64)
1176
                    data = to_variable(data)
1177
                    x = linear(data)
1178 1179 1180
                    print(x.numpy())

        """
1181
        pass
1182

1183
    @fake_interface_only
1184 1185
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1186
        **Notes**:
T
tianshuo78520a 已提交
1187
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1199
                from paddle.fluid.dygraph import Linear
1200 1201
                import numpy as np

1202
                data = np.ones([3, 1024], dtype='float32')
1203
                with fluid.dygraph.guard():
1204
                    linear = fluid.dygraph.Linear(1024, 4)
1205
                    t = to_variable(data)
1206
                    linear(t)  # call with default weight
1207
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1208 1209
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1210 1211

        """
1212
        pass
1213

1214
    @fake_interface_only
1215
    def backward(self, retain_graph=False):
1216
        """
J
Jiabin Yang 已提交
1217
        **Notes**:
T
tianshuo78520a 已提交
1218
            **This API is ONLY available in Dygraph mode**
1219

1220
        Run backward of current Graph which starts from current Tensor.
1221

J
Jiabin Yang 已提交
1222
        Args:
1223 1224 1225 1226
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1227

J
Jiabin Yang 已提交
1228 1229
        Returns:
            NoneType: None
1230 1231 1232 1233 1234

        Examples:
            .. code-block:: python

                import numpy as np
1235 1236
                import paddle
                paddle.disable_static()
1237 1238

                x = np.ones([2, 2], np.float32)
1239 1240 1241 1242 1243 1244 1245
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1246 1247
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1248
                loss.backward()
1249 1250

        """
1251
        pass
1252

1253
    @fake_interface_only
1254
    def gradient(self):
1255
        """
J
Jiabin Yang 已提交
1256
        **Notes**:
T
tianshuo78520a 已提交
1257
            **This API is ONLY available in Dygraph mode**
1258 1259 1260

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1261
        Returns:
1262
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1263 1264 1265 1266 1267 1268 1269

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1270
                # example1: return ndarray
1271 1272 1273 1274 1275 1276 1277 1278 1279
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1280
                    loss2.backward()
1281 1282
                    print(loss2.gradient())

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1296
        """
1297
        pass
1298

1299
    @fake_interface_only
1300
    def clear_gradient(self):
1301
        """
J
Jiabin Yang 已提交
1302
        **Notes**:
T
tianshuo78520a 已提交
1303
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1304 1305

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1306

J
Jiabin Yang 已提交
1307
        Clear  (set to ``0`` ) the Gradient of Current Variable
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1326
                    loss2.backward()
1327 1328 1329 1330 1331
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1332
        pass
X
Xin Pan 已提交
1333

1334
    def __str__(self):
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1351 1352
                import paddle
                import paddle.static as static
1353

1354 1355 1356
                paddle.enable_static()

                cur_program = static.Program()
1357 1358 1359 1360 1361 1362
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1363 1364
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1365
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1366 1367 1368
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
                format(name=self.name, type=type_str, shape=self.shape, dtype=dtype_str, stop_gradient=self.stop_gradient)
1369
        else:
1370 1371
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1385

F
update  
fengjiayi 已提交
1386
    def to_string(self, throw_on_error, with_details=False):
1387 1388 1389
        """
        Get debug string.

J
Jiabin Yang 已提交
1390 1391 1392 1393 1394
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1395

1396 1397
        Returns:
            str: The debug string.
1398 1399 1400 1401 1402

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1403
                import paddle
1404

1405
                paddle.enable_static()
1406 1407 1408 1409 1410
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1411
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1412
                print("=============with detail===============")
1413
                print(new_variable.to_string(True, True))
1414
        """
F
update  
fengjiayi 已提交
1415 1416
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1417
        protostr = self.desc.serialize_to_string()
1418
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1419 1420 1421 1422
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1423 1424 1425
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1426
        return res_str
1427 1428 1429

    __repr__ = __str__

1430
    @property
1431
    def stop_gradient(self):
J
Jiabin Yang 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1447 1448
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1449 1450 1451
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1452 1453
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1454 1455 1456 1457
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1458
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1459 1460
                assert (out1.gradient() == 0).all()
        """
1461
        return self._stop_gradient
1462

1463 1464
    @stop_gradient.setter
    def stop_gradient(self, s):
1465
        self._stop_gradient = s
1466

1467 1468
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1490
        return self.desc.persistable()
1491

Y
Yu Yang 已提交
1492 1493
    @persistable.setter
    def persistable(self, p):
1494
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1495

Y
Yu Yang 已提交
1496 1497
    @property
    def name(self):
J
Jiabin Yang 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1514
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1536 1537
    @name.setter
    def name(self, new_name):
1538
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1539

Y
Yu Yang 已提交
1540 1541
    @property
    def shape(self):
J
Jiabin Yang 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1559
        # convert to tuple, make it as same as numpy API.
1560
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1561 1562

    @property
F
fengjiayi 已提交
1563
    def dtype(self):
J
Jiabin Yang 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1580
        return self.desc.dtype()
Y
Yu Yang 已提交
1581 1582 1583

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1605 1606 1607
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1608
        return self.desc.lod_level()
Y
Yu Yang 已提交
1609

Y
Yu Yang 已提交
1610 1611
    @property
    def type(self):
J
Jiabin Yang 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1628
        return self.desc.type()
Y
Yu Yang 已提交
1629

W
Wu Yi 已提交
1630
    def _set_error_clip(self, error_clip):
1631 1632 1633 1634 1635 1636 1637 1638 1639
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1640 1641
        self.error_clip = error_clip

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1682
            raise ValueError("slice step can not be zero")
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1758
    def _cloneVar(self, copy=False):
1759 1760
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1761 1762
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1763 1764 1765 1766
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1767
        new_var = self._cloneVar()
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1778
        new_var = self._cloneVar()
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1789
                return self._cloneVar(True)
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1808
                return self._cloneVar(True)
1809
            index = int(item)
1810
            if (index > 0 and index >= self.shape[axis]) \
1811 1812 1813 1814 1815 1816 1817
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1818
        return _getitem_impl_(self, item)
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
    def __setitem__(self, item, value):
        inputs = {'Input': self}

        # 1. Parse item
        if not isinstance(item, tuple):
            item = [item]

        axes = []
        starts = []
        ends = []
        max_integer = sys.maxsize
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step

                if start is None and end is None and step is None:
                    continue

                start = 0 if start is None else start
                step = 1 if step is None else step

                # TODO: support cases when step != 1
                if step != 1:
                    raise ValueError(
                        "When assign a value to a paddle.Tensor, only support step is 1, "
                        "but received step is {}.".format(step))
                end = max_integer if end is None else end
            else:
                start = slice_item
                end = slice_item + 1 if slice_item != -1 else max_integer
            axes.append(dim)
            starts.append(start)
            ends.append(end)

        attrs = {'axes': axes, 'starts': starts, 'ends': ends}

        # 2. Parse value
        dtype = self.dtype
        attrs['dtype'] = dtype

        #  2.1 value is an integer of float
        if isinstance(value, (int, float)):
            value = np.array([value])

        #  2.2 value is a np.ndarray
        if isinstance(value, np.ndarray):
            shape = list(value.shape)
            if dtype == core.VarDesc.VarType.BOOL:
                value_name = "bool_values"
                values = [bool(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.FP32:
                value_name = "fp32_values"
                values = [float(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT32:
                value_name = "int32_values"
                values = [int(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT64:
                value_name = "int64_values"
                values = [int(v) for v in value.flat]
            else:
                from .data_feeder import convert_dtype
                raise TypeError(
                    "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
                    "the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
                    "received %s." % convert_dtype(dtype))
            attrs[value_name] = values
            attrs["shape"] = shape

        elif isinstance(value, Variable):
            inputs["ValueTensor"] = value
        else:
            raise TypeError(
                "Only support to assign an integer, float, numpy.ndarray or "
                "paddle.Tensor to a paddle.Tensor, but received {}".format(
                    type(value)))

        self.block.append_op(
            type="set_value", inputs=inputs, outputs={'Out': self}, attrs=attrs)
        return self

Y
Yu Yang 已提交
1902

F
fengjiayi 已提交
1903 1904 1905
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1906

1907 1908
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1909 1910 1911 1912
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1913
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1914 1915 1916 1917 1918
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1919 1920 1921 1922
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1932
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1933 1934 1935 1936 1937 1938
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1939 1940 1941 1942 1943 1944 1945 1946
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1947 1948
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1949 1950
        return self.op_proto_map[type]

1951 1952 1953 1954 1955 1956
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1957 1958 1959 1960
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1961
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1962
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1963 1964
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1965 1966
        }

F
fengjiayi 已提交
1967

X
Xin Pan 已提交
1968
class Operator(object):
1969
    """
1970 1971 1972 1973 1974 1975 1976
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1977
        type(str): The type of operator. Default None.
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1998
        Block.append_op or Block._prepend_op instead.
1999 2000 2001 2002

    Examples:
        .. code-block:: python

2003
            import paddle.fluid as fluid
2004
            cur_program = fluid.Program()
2005 2006 2007 2008 2009
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2010
    """
2011
    OP_WITHOUT_KERNEL_SET = {
2012 2013
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2014 2015
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
2016
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
2017
    }
2018

Y
Yu Yang 已提交
2019 2020
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2021
                 desc,
Y
Yu Yang 已提交
2022 2023 2024
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2025
                 attrs=None):
L
lujun 已提交
2026
        if in_dygraph_mode():
2027 2028
            if type is None:
                raise ValueError(
2029
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2030
            self._type = type
M
minqiyang 已提交
2031
            self.attrs = attrs if attrs else {}
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2046
                )] = self.block.program._op_role
2047 2048 2049

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2050 2051
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2052 2053 2054 2055 2056 2057 2058 2059

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2060
                    "`type` to initialized an Operator can not be None.")
2061 2062
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2063 2064 2065 2066 2067 2068 2069
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2070 2071 2072 2073 2074 2075 2076

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2108
                        if not isinstance(in_args, (list, tuple)):
2109 2110 2111 2112 2113 2114
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2115
                        for index, arg in enumerate(in_args):
2116 2117 2118 2119
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2120
                            elif isinstance(arg, (Variable, core.VarBase)):
2121
                                in_arg_names.append(cpt.to_text(arg.name))
2122
                            else:
2123 2124 2125 2126
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2127 2128
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2153 2154 2155 2156
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2157
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2158
                        if not in_dygraph_mode():
2159 2160 2161 2162
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2181
    def _has_kernel(self, op_type):
2182 2183
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2184
    def to_string(self, throw_on_error):
2185
        """
2186 2187
        Get debug string.

2188
        Args:
2189 2190
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2191

2192 2193
        Returns:
            str: The debug string.
2194 2195

        """
2196
        protostr = self.desc.serialize_to_string()
2197
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2198 2199
        return _debug_string_(proto, throw_on_error)

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2293
    def __str__(self):
2294
        return self._to_readable_code()
2295 2296 2297

    __repr__ = __str__

F
fengjiayi 已提交
2298 2299
    @property
    def type(self):
2300
        return self.desc.type()
F
fengjiayi 已提交
2301 2302

    def input(self, name):
2303
        r"""
2304
        Get the input arguments according to the input parameter name.
2305

2306 2307
        Args:
            name(str): The input parameter name.
2308

2309 2310 2311
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2312
        """
F
fengjiayi 已提交
2313 2314
        return self.desc.input(name)

W
Wu Yi 已提交
2315
    def _rename_input(self, old_name, new_name):
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2326
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2327

W
Wu Yi 已提交
2328
    def _rename_output(self, old_name, new_name):
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2339
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2340

F
fengjiayi 已提交
2341 2342 2343 2344
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2345 2346 2347 2348 2349 2350 2351 2352
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2353
    def output(self, name):
2354
        r"""
2355
        Get output arguments by the output parameter name.
2356

2357 2358
        Args:
            name(str): The output parameter name.
2359

2360 2361 2362
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2363
        """
F
fengjiayi 已提交
2364 2365 2366 2367 2368 2369
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2370 2371 2372 2373 2374 2375 2376 2377
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2378
    def has_attr(self, name):
2379
        """
2380 2381
        Whether this Operator has the attribute with name or not.

2382
        Args:
2383
            name(str): the attribute name.
2384

2385 2386
        Returns:
            bool: True if has this attribute.
2387 2388

        """
F
fengjiayi 已提交
2389 2390 2391
        return self.desc.has_attr(name)

    def attr_type(self, name):
2392
        """
2393
        Get the type of attribute by attribute's name.
2394

2395 2396
        Args:
            name(str): the attribute name.
2397

2398 2399
        Returns:
            core.AttrType: the attribute type.
2400
        """
F
fengjiayi 已提交
2401 2402
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2403
    def _set_attr(self, name, val):
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2414 2415
        self._update_desc_attr(name, val)

2416 2417 2418
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2430 2431
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2432 2433
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2434
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2435 2436 2437 2438
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2439
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2440

F
fengjiayi 已提交
2441 2442 2443 2444 2445
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2446
        """
2447 2448
        Get the attribute by name.

2449
        Args:
2450
            name(str): the attribute name.
2451

2452 2453
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2454 2455
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2456
        return self.desc.attr(name)
Y
Yu Yang 已提交
2457

W
Wu Yi 已提交
2458
    def _block_attr_id(self, name):
2459
        """
G
gongweibao 已提交
2460
        Get the block attribute's id by name.
2461

2462 2463
        Args:
            name(str): the attribute name.
2464

2465 2466
        Returns:
            int: the block index.
2467
        """
W
Wu Yi 已提交
2468
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2469

W
Wu Yi 已提交
2470
    def _block_attr(self, name):
G
gongweibao 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2481
        id = self._block_attr_id(name)
G
gongweibao 已提交
2482 2483 2484
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2485
    def _blocks_attr(self, name):
G
gongweibao 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2496
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2497 2498 2499 2500 2501
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2502
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2513
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2514

J
JiayiFeng 已提交
2515
    def all_attrs(self):
F
fengjiayi 已提交
2516
        """
2517 2518 2519
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2520
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2521 2522 2523 2524
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2525 2526
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2527
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2528 2529 2530
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2531
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2532 2533 2534 2535
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2536 2537
        return attr_map

2538 2539 2540
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2541 2542 2543 2544

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2545 2546 2547
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2548 2549 2550 2551 2552 2553 2554 2555

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2556 2557
            return False

2558 2559 2560 2561 2562 2563
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2564

Y
Yu Yang 已提交
2565
class Block(object):
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2580
        use `Program._create_block()` to create a block.
2581 2582 2583 2584

    Examples:
        .. code-block:: python

2585 2586 2587
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2588 2589 2590 2591 2592 2593 2594 2595 2596
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2597
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2598
        self.desc = program.desc.block(idx)
2599
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2600
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2601
        self.program = program
2602
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2603

2604
    def __str__(self):
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2651

F
fengjiayi 已提交
2652 2653
    def to_string(self, throw_on_error, with_details=False):
        """
2654 2655
        Get debug string.

F
fengjiayi 已提交
2656 2657
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2658
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2659
            with_details(bool): more details about variables and parameters
2660 2661
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2662

2663 2664
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2665 2666 2667 2668
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2669
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2670 2671
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2672
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2673
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2674
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2675
            for op in self.ops:
F
fengjiayi 已提交
2676 2677
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2678 2679 2680
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2681 2682
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2683 2684
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2685 2686 2687

    __repr__ = __str__

Y
Yu Yang 已提交
2688 2689
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2690
        return self.desc.parent
Y
Yu Yang 已提交
2691

Y
Yu Yang 已提交
2692 2693 2694 2695
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2696
    def _set_forward_block_idx(self, idx):
2697 2698 2699 2700 2701 2702 2703 2704 2705
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2706
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2707

2708 2709 2710 2711 2712 2713 2714 2715
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2716 2717
    @property
    def idx(self):
Y
Yu Yang 已提交
2718
        return self.desc.id
Y
Yu Yang 已提交
2719

Q
Qiao Longfei 已提交
2720
    def var(self, name):
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2734
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2735 2736 2737
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2738 2739
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2740
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2741
        return v
Q
Qiao Longfei 已提交
2742

X
Xin Pan 已提交
2743
    def _find_var_recursive(self, name):
2744 2745 2746 2747 2748 2749 2750
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2751
            Variable: the Variable with the giving name. Or None if not found.
2752
        """
Y
Yu Yang 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2777
        return None
Y
Yu Yang 已提交
2778

X
Xin Pan 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2798

Q
Qiao Longfei 已提交
2799
    def all_parameters(self):
2800
        return list(self.iter_parameters())
2801

2802
    def iter_parameters(self):
M
minqiyang 已提交
2803
        return (item[1] for item in six.iteritems(self.vars)
2804
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2805

Y
Yu Yang 已提交
2806
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2807 2808 2809
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2810 2811 2812
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2813
        return var
Y
Yu Yang 已提交
2814

Q
Qiao Longfei 已提交
2815 2816 2817
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2818
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2819 2820
        """
        Rename variable in vars and ops' inputs and outputs
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2833
        """
M
minqiyang 已提交
2834 2835
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2836

T
typhoonzero 已提交
2837
        if not self.has_var(name):
2838
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2839 2840
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2841
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2842 2843 2844 2845 2846 2847
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2848
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2849 2850 2851 2852
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2853
        orig_var_type = v.type
M
minqiyang 已提交
2854
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2855
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2856
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2857
        if var_type == "Parameter":
L
Leo Chen 已提交
2858 2859
            if in_dygraph_mode():
                var = ParamBase(
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2870 2871
                var = Parameter(
                    self,
2872 2873 2874 2875 2876 2877 2878 2879 2880
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2881
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2882 2883
            var = Variable(
                self,
T
typhoonzero 已提交
2884
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2885 2886 2887 2888
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2889
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2890 2891 2892
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2893
        self._sync_with_cpp()
2894
        return var
T
typhoonzero 已提交
2895

2896 2897 2898
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2899
        self.desc._remove_var(cpt.to_bytes(name))
2900 2901
        del self.vars[name]

Y
Yu Yang 已提交
2902 2903
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2904
        param = None
L
Leo Chen 已提交
2905
        if in_dygraph_mode():
2906
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2907 2908
        else:
            param = Parameter(global_block, *args, **kwargs)
2909 2910 2911 2912 2913 2914
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2915
        if 'initializer' in kwargs:
2916 2917 2918 2919 2920

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2921 2922 2923 2924 2925
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2937
                # TODO already inited, do nothing, should log a warning
2938 2939 2940
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2941
        return param
Y
Yu Yang 已提交
2942

Y
Yu Yang 已提交
2943
    def append_op(self, *args, **kwargs):
2944 2945 2946 2947 2948 2949
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2950
        if in_dygraph_mode():
2951
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2952
            type = kwargs.get("type", None)
2953 2954 2955
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2956
                type=type,
M
minqiyang 已提交
2957 2958
                inputs=None,
                outputs=None,
2959
                attrs=attrs)
2960

M
minqiyang 已提交
2961 2962 2963
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2964
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2965 2966

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2967
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2968 2969
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2970
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2971
        else:
2972 2973 2974 2975 2976 2977 2978 2979 2980
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2981
            self.ops.append(op)
M
minqiyang 已提交
2982

2983 2984
        return op

W
Wu Yi 已提交
2985
    def _insert_op(self, index, *args, **kwargs):
2986 2987 2988 2989 2990 2991 2992 2993 2994
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2995 2996
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2997 2998 2999 3000
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3018 3019 3020 3021 3022 3023 3024 3025 3026
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3027 3028
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3029
        self.desc._remove_op(index, index + 1)
3030 3031
        del self.ops[index]

W
Wu Yi 已提交
3032
    def _slice_ops(self, start, end):
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3043
        return self.ops[start:end]
Y
Yancey1989 已提交
3044

W
Wu Yi 已提交
3045
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3046
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3047 3048
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3049
            op = Operator(
J
Jiabin Yang 已提交
3050
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3051

J
Jiabin Yang 已提交
3052
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3053
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3054 3055
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3056
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3057
        else:
3058 3059 3060 3061 3062 3063 3064 3065
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3066
            self.ops.insert(0, op)
3067

Y
Yu Yang 已提交
3068 3069
        return op

W
Wu Yi 已提交
3070
    def _sync_with_cpp(self):
3071
        """
3072 3073
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3074
        """
Q
Qiao Longfei 已提交
3075 3076 3077 3078 3079
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3080
        # sync variables removed from c++ end
3081
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3082
            if not self.desc.find_var(cpt.to_bytes(var)):
3083 3084
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3085
        # sync operators from cpp
3086 3087 3088 3089
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3106 3107 3108 3109 3110

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3111
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3112 3113 3114 3115 3116 3117 3118

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3132 3133 3134 3135
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3136
    def _copy_param_info_from(self, other):
3137
        """
3138 3139
        Copy the information of parameters from the other block.

3140
        Args:
3141 3142 3143 3144 3145
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3146 3147 3148 3149 3150

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3151 3152
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3153
        for p in other.iter_parameters():
3154 3155 3156
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3157 3158
                # if the Parameter is pruned, v may be None
                continue
3159
            assert isinstance(v, Variable)
3160
            new_p = None
L
Leo Chen 已提交
3161 3162
            if in_dygraph_mode():
                new_p = ParamBase(
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3174 3175
                new_p = Parameter(
                    block=self,
3176 3177 3178
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3179 3180
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3181 3182 3183 3184 3185 3186
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3187 3188
            self.vars[new_p.name] = new_p

3189
    def _clone_variable(self, var, force_persistable=True):
3190 3191
        """
        Clone a variable into current block.
3192

3193 3194
        Args:
            var: the variable to be cloned.
3195 3196 3197
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3198 3199

        Returns:
3200
            Variable: the new  variable cloned from 'var' in current block.
3201 3202
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3203 3204 3205 3206 3207
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3208 3209
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3210
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3211 3212 3213 3214 3215 3216
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3217
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3218 3219
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3220 3221 3222 3223 3224 3225 3226
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3227
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3228 3229
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3230
        return ret_var
3231

Y
Yu Yang 已提交
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3328
    def remove_input_by_id(self, node_id):
3329 3330 3331 3332 3333 3334
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3335
        self.node.remove_input(node_id)
3336

3337
    def remove_input(self, node):
3338 3339 3340 3341
        """
        Remove a node from inputs.

        Args:
3342
            node(IrNode): the node being removed.
3343
        """
3344
        self.node.remove_input(node.node)
3345

3346
    def append_input(self, node):
3347 3348 3349 3350
        """
        Append a node in inputs.

        Args:
3351
            node(IrNode): the node being appended.
3352
        """
3353
        self.node.append_input(node.node)
3354 3355 3356 3357 3358 3359 3360 3361

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3362
    def remove_output_by_id(self, node_id):
3363 3364 3365 3366 3367 3368
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3369
        self.node.remove_output(node_id)
3370

3371
    def remove_output(self, node):
3372 3373 3374 3375
        """
        Remove a node from outputs.

        Args:
3376
            node(IrNode): the node being removed.
3377
        """
3378
        self.node.remove_output(node.node)
3379

3380
    def append_output(self, node):
3381 3382 3383 3384
        """
        Append a node in outputs.

        Args:
3385
            node(IrNode): the node being appended.
3386
        """
3387
        self.node.append_output(node.node)
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3435
            "The node variable description can not be None."
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3446
            "The node variable description can not be None."
3447 3448
        return self.node.var().persistable()

3449 3450 3451 3452 3453 3454 3455 3456
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3457
            "The node variable description can not be None."
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3468
            "The node variable description can not be None."
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3479
            "The node variable description can not be None."
3480 3481
        return self.node.var().shape()

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3529
            "The node operator description can not be None."
3530 3531
        self.node.op()._rename_input(old_input_name, new_input_name)

3532 3533 3534 3535 3536 3537 3538 3539 3540
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3541
            "The node operator description can not be None."
3542 3543
        self.node.op()._rename_output(old_output_name, new_output_name)

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3555
            "The node operator description can not be None."
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3569
            "The node operator description can not be None."
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3580
            "The node operator description can not be None."
3581 3582
        return self.node.op().set_type(new_type)

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3598
            "The node operator description can not be None."
3599 3600 3601 3602
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3603
                all(isinstance(v, Block) for v in val):
3604 3605
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3606
                isinstance(val, core.ProgramDesc):
3607 3608 3609 3610
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3611 3612 3613 3614 3615 3616 3617 3618
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3619
            "The node operator description can not be None."
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3630
            "The node operator description can not be None."
3631 3632
        return self.node.op().output_arg_names()

3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3654 3655
class IrGraph(object):
    """
3656
    Python IrGraph. Beneath it is a core.Graph, which is used for
3657
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3658 3659
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3660 3661 3662 3663
    """

    def __init__(self, graph, for_test=False):
        """
3664 3665
        Construct an IrGraph using core.Graph.

3666 3667 3668 3669 3670 3671 3672 3673 3674
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3675 3676 3677 3678
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3679 3680 3681
        Warns:
            The method only clones the graph structure, not its attributes.

3682 3683 3684
        Returns:
            IrGraph: A new and duplicated graph.
        """
3685
        g = self.graph.clone()
3686 3687
        return IrGraph(g, self._for_test)

3688
    def is_test(self):
3689 3690 3691
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3692 3693
        return self._for_test

W
WangZhen 已提交
3694
    def all_nodes(self):
3695 3696 3697
        """
        Return all nodes included in the graph as a set.
        """
3698
        return {IrNode(node) for node in self.graph.nodes()}
3699

3700
    def all_var_nodes(self):
3701 3702 3703
        """
        Return all variable nodes included in the graph as a set.
        """
3704
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3705

3706
    def all_persistable_nodes(self):
3707 3708 3709
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3710 3711 3712 3713 3714
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3715
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3716

3717
    def all_op_nodes(self):
3718 3719 3720
        """
        Return all operator nodes included in the graph as a set.
        """
3721
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3722

3723
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3735
            IrVarNode: the created persistable variable node.
3736
        """
3737 3738 3739 3740 3741
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3742
        return IrVarNode(self.graph.create_var_node(var_desc))
3743 3744

    def create_var_node(self, name, var_type, shape, var_dtype):
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3756
            IrVarNode: the created variable node.
3757 3758
        """

3759 3760 3761 3762
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3763
        return IrVarNode(self.graph.create_var_node(var_desc))
3764

3765 3766 3767 3768 3769 3770
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3771
    def create_var_node_from_desc(self, var_desc):
3772 3773 3774 3775 3776 3777 3778 3779
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3780
            IrVarNode: the created variable node.
3781
        """
3782
        return IrVarNode(self.graph.create_var_node(var_desc))
3783 3784

    def create_op_node(self, op_type, attrs, inputs, outputs):
3785 3786 3787 3788 3789 3790 3791
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3792
            outputs(dict): the outputs of the operator node.
3793 3794

        Returns:
3795
            IrOpNode: the created operator node.
3796
        """
3797 3798
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3799
        for attr, value in six.iteritems(attrs):
3800
            self._update_desc_attr(op_desc, attr, value)
3801
        for input_name, var_nodes in six.iteritems(inputs):
3802 3803 3804 3805
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3806
        for output_name, var_nodes in six.iteritems(outputs):
3807 3808 3809 3810
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3811
        return IrOpNode(self.graph.create_op_node(op_desc))
3812 3813

    def create_op_node_from_desc(self, op_desc):
3814 3815 3816 3817 3818 3819 3820
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3821
            IrOpNode: the created operator node.
3822
        """
3823
        return IrOpNode(self.graph.create_op_node(op_desc))
3824 3825

    def update_input_link(self, old_input_node, new_input_node, op_node):
3826 3827 3828 3829
        """
        Update the input's link of a operator node.

        Args:
3830 3831 3832
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3833
        """
3834
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3835 3836
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3837 3838 3839 3840
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3841
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3842

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3853 3854
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3855 3856 3857 3858 3859 3860
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3861
    def link_to(self, node_in, node_out):
3862 3863 3864 3865
        """
        Connect two nodes.

        Args:
3866 3867
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3868
        """
3869
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3870
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3871 3872
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3873 3874

    def safe_remove_nodes(self, remove_nodes):
3875 3876 3877 3878 3879 3880 3881
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3882
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3883 3884 3885 3886
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3887 3888
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3889

Z
Zhen Wang 已提交
3890 3891 3892 3893 3894 3895 3896 3897
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3898
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3899 3900 3901 3902
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3903
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3904 3905 3906
                        ]
                    else:
                        var_nodes[each_var_name].append(
3907 3908
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3909 3910
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3911
    def has_circle(self):
3912 3913 3914 3915 3916 3917
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3918 3919 3920
        return core.has_circle(self.graph)

    def graph_num(self):
3921 3922 3923 3924 3925 3926
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3927 3928 3929
        return core.graph_num(self.graph)

    def topology_sort(self):
3930 3931 3932
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3933
        Notes: the `graph` can not contain a circle.
3934 3935

        Returns:
Z
Zhen Wang 已提交
3936
            list(IrNode): nodes in topology order.
3937
        """
3938
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3939
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3940 3941

    def build_adjacency_list(self):
3942 3943 3944 3945
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3946
            dict{IrNode: set(IrNode)}: the adjacency list.
3947
        """
3948 3949 3950 3951 3952
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3953

3954 3955 3956 3957 3958 3959 3960 3961
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3962
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3963 3964 3965 3966 3967
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3968 3969 3970
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3971
                                          + ' -o ' + pdf_save_path, shell=True)
3972 3973 3974 3975 3976
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3977
        remove_ctr_vars = set()
3978
        if remove_ctr_var:
3979
            for node in self.all_var_nodes():
3980 3981 3982
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3983 3984
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3985 3986
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3987 3988 3989 3990 3991 3992
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3993 3994 3995 3996
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3997 3998
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3999 4000 4001 4002 4003 4004 4005
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4006 4007 4008
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4009
        WARN: When the graph includes backward operator nodes, the
4010 4011 4012 4013 4014 4015
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4016
        convert_pass = core.get_pass('graph_to_program_pass')
4017 4018
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4019 4020 4021 4022
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4050
class Program(object):
D
dzhwinter 已提交
4051
    """
4052
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4053
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4054
    it will contain nested block.
4055

J
Jiabin Yang 已提交
4056 4057 4058
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4059

J
Jiabin Yang 已提交
4060
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4061
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4062 4063 4064 4065 4066 4067 4068
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4069
    **Notes**:
4070 4071 4072
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4073 4074

    Returns:
J
Jiabin Yang 已提交
4075
        Program: An empty Program.
D
dzhwinter 已提交
4076 4077

    Examples:
4078 4079
        .. code-block:: python

4080 4081 4082 4083
            import paddle
            import paddle.static as static

            paddle.enable_static()
4084

4085 4086 4087 4088 4089
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4090
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4091 4092 4093

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4094 4095 4096

    """

4097 4098
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4099 4100
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4101 4102
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4103
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4104
        self.__op_role_var = []
T
tangwei12 已提交
4105

4106 4107
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4108
        self._is_distributed = False
4109
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4110
        self._is_chief = False
4111 4112 4113
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4114
        self._endpoints = []
4115 4116 4117
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4118
        self._trainers_endpoints = []
4119
        # the distributed lookup table names
T
tangwei12 已提交
4120
        self._distributed_lookup_table = None
4121 4122 4123

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4124 4125
        self._use_lamb = False

4126 4127 4128
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4129

4130 4131 4132
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4133
        self._program_config = None
4134

H
hutuxian 已提交
4135 4136 4137
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4138 4139 4140
        # appending gradients times
        self._appending_grad_times = 0

4141 4142 4143 4144
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4145 4146 4147
        # compiled program, i.e. Graph
        self._graph = None

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4158 4159
                import paddle
                import paddle.static as static
4160

4161 4162 4163
                paddle.enable_static()

                prog = static.default_main_program()
4164 4165 4166 4167 4168
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4169
                prog1 = static.default_main_program()
4170 4171 4172 4173 4174 4175 4176 4177
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4178
    @property
4179
    def _op_role(self):
Y
yuyang18 已提交
4180 4181 4182 4183 4184 4185 4186 4187
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4188
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4189 4190 4191 4192
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4193 4194
        return self._current_role

4195 4196
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4197 4198 4199
        self._current_role = role

    @property
4200
    def _op_role_var(self):
Y
yuyang18 已提交
4201
        """
4202
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4203

4204
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4205 4206 4207

        Notes: This is a very low-level API. Users should not use it directly.
        """
4208
        return self.__op_role_var
Y
yuyang18 已提交
4209

4210
    @signature_safe_contextmanager
4211 4212 4213 4214 4215
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4216 4217 4218 4219
        try:
            yield
        finally:
            self._current_role = tmp_role
4220

S
rename  
sneaxiy 已提交
4221
    @signature_safe_contextmanager
W
Wu Yi 已提交
4222
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4223 4224 4225 4226 4227 4228 4229
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4230
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4231 4232 4233

        Examples:

4234
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4235
            >>> p, g = backward(...)
W
Wu Yi 已提交
4236
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4237 4238
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4239
        tmp_role = self._current_role
4240
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4241

Y
yuyang18 已提交
4242 4243
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4244
        self.__op_role_var = [
4245 4246 4247
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4248 4249 4250 4251 4252
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4253

S
rename  
sneaxiy 已提交
4254
    @signature_safe_contextmanager
X
Xin Pan 已提交
4255
    def _lr_schedule_guard(self, is_with_opt=False):
4256 4257 4258 4259 4260 4261 4262
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4263 4264 4265 4266
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4267 4268 4269

        Examples:

4270
            >>> import paddle.fluid as fluid
4271 4272 4273 4274
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4275 4276

        tmp_role = self._current_role
4277
        tmp_var = self.__op_role_var
4278

4279 4280
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4281 4282
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4283
        # TODO(typhoonzero): how to set target learning rate var
4284
        self.__op_role_var = []
4285 4286 4287 4288 4289
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4290

4291
    def __str__(self):
Y
yuyang18 已提交
4292 4293 4294 4295 4296 4297 4298 4299 4300
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4321 4322
            import paddle
            import paddle.static as static
4323

4324 4325 4326
            paddle.enable_static()

            cur_program = static.Program()
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4343
            program_str += '\n'
4344
        return program_str
Y
Yang Yang(Tony) 已提交
4345

F
fengjiayi 已提交
4346 4347 4348
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4349

J
Jiabin Yang 已提交
4350 4351 4352
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4353

J
Jiabin Yang 已提交
4354
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4355

H
haowang101779990 已提交
4356
        Returns:
J
Jiabin Yang 已提交
4357
            str: The debug string describe current Program.
Y
yuyang18 已提交
4358 4359

        Raises:
J
Jiabin Yang 已提交
4360
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4361

4362 4363 4364
        Examples:
            .. code-block:: python

4365 4366 4367 4368
                import paddle
                import paddle.static as static

                paddle.enable_static()
4369

4370 4371 4372
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4373
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4374
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4375
                print("program string without detail: {}".format(prog_string))
4376
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4377
        """
4378 4379 4380 4381 4382 4383 4384 4385 4386
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4387 4388 4389 4390 4391 4392
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4393 4394
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4395 4396
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4397

W
Wu Yi 已提交
4398
    def _get_desc(self):
Y
yuyang18 已提交
4399 4400 4401 4402 4403 4404 4405
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4406 4407
        return self.desc

X
version  
Xin Pan 已提交
4408 4409 4410
    def _version(self):
        return self.desc._version()

4411
    def clone(self, for_test=False):
Y
yuyang18 已提交
4412
        """
4413 4414 4415 4416
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4417

4418
        Create a new Program with forward content of original one when ``for_test=True``.
4419
        Create a new Program as same as the original one when ``for_test=False``.
4420

4421
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4422 4423 4424
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4425

4426 4427
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4428 4429
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4430
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4431

J
Jiabin Yang 已提交
4432
        For Example:
4433
          ::
L
Luo Tao 已提交
4434

4435 4436 4437 4438 4439 4440
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4441
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4442
            loss = paddle.mean(pred)
4443
            # Here we use clone before Momentum
4444 4445
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4446
            optimizer.minimize(loss)
4447

J
Jiabin Yang 已提交
4448
        Args:
4449

4450 4451
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4452

J
Jiabin Yang 已提交
4453
        Returns:
4454
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4455

Y
yuyang18 已提交
4456 4457 4458

        Examples:

4459 4460 4461 4462 4463 4464 4465
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4482
            1. To clone a test program, the sample code is:
4483 4484 4485
                .. code-block:: python

                    import six
4486 4487 4488 4489 4490 4491
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4504 4505
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4506 4507 4508

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4509 4510 4511
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4512
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4513 4514
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4515
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4516 4517
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4518
                            test_program = train_program.clone(for_test=True)
4519
                    print_prog(test_program)
J
Jiabin Yang 已提交
4520 4521 4522 4523

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4524
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4525 4526 4527 4528
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4529 4530 4531
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4532 4533 4534
                            sgd.minimize(avg_loss)


4535
            2. The clone method can be avoid if you create program for training and program for testing individually.
4536 4537 4538
                .. code-block:: python

                    import six
4539 4540 4541 4542 4543 4544
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4556

4557
                    def network():
4558
                        img = static.data(name='image', shape=[None, 784])
4559
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4560 4561
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4562
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4563 4564
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4565 4566
                        return avg_loss

4567 4568 4569 4570 4571
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4572
                            avg_loss = network()
4573
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4574
                            sgd.minimize(avg_loss)
4575
                    # the test startup program is not used.
4576 4577
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4578 4579
                            avg_loss = network()
                    print_prog(test_program_2)
4580

4581
            The two code snippets above will generate and print same programs.
4582
        """
4583 4584 4585 4586 4587

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4588
        pruned_origin_block_id_map = None
4589
        if for_test:
4590 4591 4592 4593 4594 4595 4596 4597 4598
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4599
        else:
4600
            p = Program()
G
gongweibao 已提交
4601 4602
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4603
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4604 4605 4606
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4607 4608

            p._current_role = self._current_role
4609
            p.__op_role_var = self.__op_role_var
4610
            p._appending_grad_times = self._appending_grad_times
4611 4612
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4613

4614 4615
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4616
            p._sync_with_cpp()
4617

W
Wu Yi 已提交
4618
        p._copy_param_info_from(self)
4619
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4620
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4621
        return p
4622

4623
    def _prune(self, targets):
Y
yuyang18 已提交
4624 4625 4626 4627 4628 4629 4630 4631
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4632
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4633 4634 4635 4636
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4637
        """
4638
        return self._prune_with_input([], targets)
4639 4640

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4641
        """
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4652
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4653 4654 4655 4656 4657 4658
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4659 4660 4661 4662
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4663 4664
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4665 4666
        if not isinstance(targets, list):
            targets = [targets]
4667 4668 4669

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4670 4671 4672
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4673

4674 4675 4676 4677
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4678 4679 4680
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4681
                else:
4682 4683 4684
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4685 4686 4687 4688 4689 4690 4691 4692

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4709 4710 4711 4712 4713 4714 4715 4716
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4717

4718
        res = Program()
4719 4720 4721
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4722 4723 4724
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4725
        res._sync_with_cpp()
4726 4727 4728 4729 4730

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4731 4732
        return res

X
Xin Pan 已提交
4733
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4734
        """
F
fengjiayi 已提交
4735 4736 4737 4738 4739
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4740
        3. change the :code:`is_test`
Y
yuyang18 已提交
4741 4742 4743
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4744
        Args:
X
Xin Pan 已提交
4745 4746
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4747

Y
yuyang18 已提交
4748 4749 4750 4751 4752 4753
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4754
        res = Program()
4755
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4756 4757 4758 4759

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4760
        if prune_read_op:
4761 4762 4763 4764 4765 4766 4767 4768 4769
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4770
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4771 4772

        # change all `is_test` attributes to True
M
minqiyang 已提交
4773
        for i in six.moves.range(res.desc.num_blocks()):
4774
            block = res.desc.block(i)
M
minqiyang 已提交
4775
            for j in six.moves.range(block.op_size()):
4776 4777
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4778
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4779 4780 4781
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4782
        res._sync_with_cpp()
4783 4784
        return res

4785 4786
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4787
        """
4788 4789 4790
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4791

4792 4793
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4794

J
Jiabin Yang 已提交
4795
        Args:
Y
yuyang18 已提交
4796

J
Jiabin Yang 已提交
4797
            binary_str_type (str): the binary prootbuf string.
4798

J
Jiabin Yang 已提交
4799 4800
        Returns:
            Program: A deserialized Program.
4801 4802 4803 4804

        Examples:
            .. code-block:: python

4805 4806 4807 4808
                import paddle
                import paddle.static as static

                paddle.enable_static()
4809

4810 4811 4812 4813
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4814

4815
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4816

4817
                    z = paddle.matmul(x=x, y=y)
4818

4819 4820
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4821

4822
                    print(static.default_main_program())
4823
                    print(prog_restored)
Y
yuyang18 已提交
4824
        """
4825 4826
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4827
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4828
        p._sync_with_cpp()
4829
        return p
Y
Yu Yang 已提交
4830

4831
    @staticmethod
4832
    def _construct_from_desc(desc):
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4848 4849
    @property
    def random_seed(self):
Y
yuyang18 已提交
4850
        """
J
Jiabin Yang 已提交
4851
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4852 4853
        the random seed from random device.

4854 4855
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4856 4857 4858

        Returns:
            int64: Random seed in current Program
4859

4860 4861 4862 4863

        Examples:
            .. code-block:: python

4864 4865 4866
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4867

4868 4869 4870
                paddle.enable_static()

                prog = static.default_main_program()
4871
                random_seed = prog.random_seed
4872
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4873 4874 4875
                print(random_seed)
                ## 0
                ## the default random seed is 0
4876

4877
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4878
                prog.random_seed = 1
4879
                z_var = F.dropout(x_var, 0.7)
4880

4881
                print(prog.random_seed)
4882 4883
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4884
        """
D
dzhwinter 已提交
4885 4886
        return self._seed

Q
qiaolongfei 已提交
4887 4888
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4889
        """
4890 4891
        The number of :ref:`api_guide_Block_en`  in this Program.

4892 4893
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4894 4895 4896

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4897

4898 4899 4900 4901

        Examples:
            .. code-block:: python

4902 4903 4904 4905
                import paddle
                import paddle.static as static

                paddle.enable_static()
4906

4907
                prog = static.default_main_program()
4908 4909
                num_blocks = prog.num_blocks
                print(num_blocks)
4910

4911 4912
                # print result:
                # 1
Y
yuyang18 已提交
4913
        """
Q
qiaolongfei 已提交
4914 4915
        return self.desc.num_blocks()

D
dzhwinter 已提交
4916 4917 4918
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4919 4920 4921
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4922 4923
        self._seed = seed

Y
Yu Yang 已提交
4924
    def __repr__(self):
4925
        return self.__str__()
4926

Y
Yu Yang 已提交
4927
    def global_block(self):
Y
yuyang18 已提交
4928
        """
4929 4930
        .. note::
            This API has no effect in Dygraph mode.
4931 4932 4933

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4934 4935
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4936

4937 4938 4939 4940

        Examples:
            .. code-block:: python

4941 4942 4943 4944
                import paddle
                import paddle.static as static

                paddle.enable_static()
4945

4946
                prog = static.default_main_program()
4947 4948
                gb_block = prog.global_block()
                print(gb_block)
4949

Y
yuyang18 已提交
4950
        """
Y
Yu Yang 已提交
4951 4952
        return self.blocks[0]

Q
Qiao Longfei 已提交
4953
    def block(self, index):
Y
yuyang18 已提交
4954
        """
4955 4956
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4957

4958 4959
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4960 4961
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4962

J
Jiabin Yang 已提交
4963 4964
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4965 4966 4967 4968

        Examples:
            .. code-block:: python

4969 4970 4971 4972
                import paddle
                import paddle.static as static

                paddle.enable_static()
4973

4974
                prog = static.default_main_program()
4975 4976
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4977
        """
Q
Qiao Longfei 已提交
4978 4979
        return self.blocks[index]

Y
Yu Yang 已提交
4980
    def current_block(self):
Y
yuyang18 已提交
4981
        """
4982 4983
        .. note::
            This API has no effect in Dygraph mode.
4984

J
Jiabin Yang 已提交
4985 4986
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4987

J
Jiabin Yang 已提交
4988 4989
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4990

4991 4992 4993
        Examples:
            .. code-block:: python

4994 4995 4996 4997
                import paddle
                import paddle.static as static

                paddle.enable_static()
4998

4999
                prog = static.default_main_program()
5000 5001
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5002
        """
Y
Yu Yang 已提交
5003 5004
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5005
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5006 5007 5008 5009 5010
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5011

Y
yuyang18 已提交
5012 5013 5014 5015 5016
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5017
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5018 5019 5020
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5021 5022 5023 5024
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5025
    def _rollback(self):
Y
yuyang18 已提交
5026 5027 5028 5029 5030
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5031 5032
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5033
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5044 5045 5046
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5047
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5048

W
Wu Yi 已提交
5049
    def _copy_param_info_from(self, other):
5050
        """
5051
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5052

Y
yuyang18 已提交
5053 5054 5055
        Notes: This is a very low level API. Users should not invoke it
        directly.

5056 5057 5058 5059 5060 5061 5062
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5063 5064 5065
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5066

W
Wu Yi 已提交
5067
        self.global_block()._copy_param_info_from(other.global_block())
5068

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5080 5081 5082
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5083 5084
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5085
        self._parameters_on_pservers = other._parameters_on_pservers
5086
        self._endpoints = other._endpoints
5087
        self._ps_endpoint = other._ps_endpoint
5088 5089
        self._distributed_lookup_table = other._distributed_lookup_table

5090
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5091 5092
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5093

Y
yuyang18 已提交
5094 5095 5096
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5097 5098
        Args:
            other(Program): Other program
5099 5100 5101 5102
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5103 5104 5105 5106 5107

        Returns:
            None
        """
        if not isinstance(other, Program):
5108 5109 5110
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5111

5112 5113 5114 5115 5116
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5117 5118 5119

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5120 5121
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5122
            for var in list(block.vars.values()):
5123 5124 5125 5126 5127 5128 5129
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5130

5131
    def list_vars(self):
Y
yuyang18 已提交
5132
        """
5133
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5134

J
Jiabin Yang 已提交
5135
        Returns:
5136
            iterable Tensors: The Generator will yield every Tensor in this program.
5137 5138 5139 5140

        Examples:
            .. code-block:: python

5141 5142
                import paddle
                import paddle.static as static
5143

5144 5145 5146 5147 5148
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5149 5150
                for var in prog.list_vars():
                    print(var)
5151
                
5152 5153
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5154
        """
5155
        for each_block in self.blocks:
5156
            for each_var in list(each_block.vars.values()):
5157 5158
                yield each_var

5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5169 5170 5171 5172
                import paddle
                import paddle.static as static

                paddle.enable_static()
5173

5174 5175
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5176
                hidden = static.nn.fc(x=data, size=10)
5177 5178
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5179 5180 5181 5182 5183 5184 5185

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5186 5187
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5198

5199
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5200
class Parameter(Variable):
5201
    """
5202
    Parameter is derived from Variable. A parameter is a persistable
5203
    Variable, and will be updated by optimizers after each iteration.
5204
    The training of a neural network is essentially the updating of
5205 5206
    its parameters.

5207
    Relative to a general Variable, a Parameter has several its own
5208 5209
    member variables:

5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5220 5221
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5222 5223
    """

5224 5225 5226 5227 5228 5229
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5230 5231 5232 5233 5234
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5235
        if len(shape) == 0:
5236 5237
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5238 5239 5240

        for each in shape:
            if each < 0:
5241 5242 5243
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5244 5245

        Variable.__init__(
5246 5247 5248 5249 5250 5251 5252
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5253 5254 5255 5256
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5257 5258
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5259
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5260

5261 5262
        self.need_clip = kwargs.get('need_clip', True)

5263 5264
        self.is_distributed = False

F
fengjiayi 已提交
5265
    def __str__(self):
5266
        return self._to_readable_code()
F
fengjiayi 已提交
5267

F
update  
fengjiayi 已提交
5268 5269 5270
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5271

F
update  
fengjiayi 已提交
5272 5273 5274 5275 5276 5277 5278 5279
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5280 5281 5282 5283 5284 5285 5286 5287 5288
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5289 5290 5291 5292 5293 5294
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5295
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5296
            for attr_name in additional_attr:
5297 5298
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5299 5300
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5301 5302 5303 5304
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5305

5306 5307
class ParamBase(core.VarBase):
    """
5308 5309 5310
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5311 5312 5313
    The training of a neural network is essentially the updating of
    its ParamBase.

5314
    Relative to a general Tensor, a ParamBase has several its own
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5327 5328
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5359 5360
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5361 5362 5363 5364 5365 5366 5367

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5368 5369
        self.need_clip = kwargs.get('need_clip', True)

5370
        self.is_distributed = False
5371
        # self.block = default_main_program().global_block()
5372

5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5386
    def __str__(self):
5387
        """
5388
        Convert a ParamBase object to a readable string.
5389

5390
        Returns(str): A readable string.
5391 5392 5393 5394

        Examples:
            .. code-block:: python

5395
                import paddle
5396 5397 5398 5399 5400 5401 5402
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5403
        """
5404 5405
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5406

5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
                
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5437 5438 5439
    __repr__ = __str__


Y
Yu Yang 已提交
5440
# program is a global instance.
Y
Yu Yang 已提交
5441 5442
_main_program_ = Program()
_startup_program_ = Program()
5443

5444

5445
def default_startup_program():
Y
Yu Yang 已提交
5446
    """
Y
yuyang18 已提交
5447 5448
    Get default/global startup program.

5449 5450 5451 5452 5453
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
  
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5454

5455 5456
    Returns:
        Program: current default startup program.
5457

5458
    Returns type: 
5459 5460 5461 5462

    Examples:
        .. code-block:: python

5463
            import paddle
5464

5465
            paddle.enable_static()
5466 5467 5468 5469
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5470
    """
Y
Yu Yang 已提交
5471
    return _startup_program_
5472

5473

5474
def default_main_program():
Y
Yu Yang 已提交
5475
    """
5476
    This API can be used to get ``default main program`` which store the 
5477
    descriptions of Ops and tensors.
5478
    
5479
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5480
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5481

5482 5483
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5484
    :code:`default_main_program` when the program is not specified.
5485

5486
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
5487
    
Y
Yu Yang 已提交
5488
    Returns:
5489
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5490 5491 5492 5493

    Examples:
        ..  code-block:: python

5494
            import paddle
5495

5496
            paddle.enable_static()
5497
            # Sample Network:
5498 5499 5500
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5501

5502 5503 5504
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5505
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5506
    """
Y
Yu Yang 已提交
5507
    return _main_program_
Y
Yu Yang 已提交
5508 5509 5510 5511 5512


def switch_main_program(program):
    """
    Switch the main program to a new program.
5513

Y
Yu Yang 已提交
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5528
    Switch the startup program to a new program
Y
Yu Yang 已提交
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5541
@signature_safe_contextmanager
Y
Yu Yang 已提交
5542 5543
def program_guard(main_program, startup_program=None):
    """
5544 5545
    :api_attr: Static Graph

5546 5547 5548
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5549

G
guofei 已提交
5550
    Args:
5551 5552
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5553 5554 5555 5556
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5557
    Examples:
5558 5559
       .. code-block:: python
       
5560
          import paddle
Y
yuyang18 已提交
5561

5562 5563 5564 5565 5566
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5567
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5568 5569 5570

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5571

Y
Yu Yang 已提交
5572
    Examples:
5573
       .. code-block:: python
Y
yuyang18 已提交
5574

5575
          import paddle
5576

5577 5578 5579 5580 5581
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
G
guofei 已提交
5582
    
Y
Yu Yang 已提交
5583
    """
5584
    from .data_feeder import check_type
5585 5586
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5587 5588
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5589
        check_type(startup_program, 'startup_program', Program,
5590
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5591
        startup_program = switch_startup_program(startup_program)
5592 5593 5594 5595 5596 5597
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5598 5599


W
Wu Yi 已提交
5600
def _get_var(name, program=None):
X
xuwei06 已提交
5601
    """
Y
yuyang18 已提交
5602
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5603

X
xuwei06 已提交
5604 5605 5606
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5607
        If None, default_global_program() will be used.
X
xuwei06 已提交
5608 5609 5610 5611 5612 5613 5614

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5615
    assert isinstance(program, Program)
X
xuwei06 已提交
5616 5617

    return program.global_block().var(name)
5618 5619


S
rename  
sneaxiy 已提交
5620
@signature_safe_contextmanager
L
lujun 已提交
5621 5622 5623 5624
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5625
    core._switch_tracer(tracer)
M
minqiyang 已提交
5626

5627 5628 5629 5630 5631
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5632 5633


S
rename  
sneaxiy 已提交
5634
@signature_safe_contextmanager
L
lujun 已提交
5635
def _dygraph_place_guard(place):
5636 5637 5638
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5639

5640 5641 5642
    try:
        yield
    finally:
5643
        _global_expected_place_ = tmp_place
5644 5645 5646 5647


def load_op_library(lib_filename):
    """
5648 5649
    :api_attr: Static Graph
    
5650 5651 5652
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5653
    Please note, the type of custom operators can't have the same type
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5720 5721 5722 5723 5724
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5725 5726 5727 5728
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5729 5730
    if index:
        device = ":".join([device, index])
5731
    pre_device = switch_device(device)
5732 5733 5734 5735
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value