nn.py 325.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
C
chengduo 已提交
172 173
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
174
    'lstm',
Y
Yu Yang 已提交
175 176
]

J
jerrywgz 已提交
177 178
kIgnoreIndex = -100

Y
Yu Yang 已提交
179 180 181 182 183 184 185

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
186
       is_test=False,
187
       name=None):
Y
Yu Yang 已提交
188
    """
189
    **Fully Connected Layer**
Y
Yu Yang 已提交
190

191 192 193 194 195 196 197 198
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
199
    to the output as well.
C
caoying03 已提交
200

C
caoying03 已提交
201
    This process can be formulated as follows:
202 203 204

    .. math::

205
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
206 207 208

    In the above equation:

C
caoying03 已提交
209 210 211 212
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
213
    * :math:`Act`: The activation function.
C
caoying03 已提交
214
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
215 216

    Args:
R
ranqiu 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
232 233
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
234
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
235
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
236
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
237

238
    Returns:
F
fengjiayi 已提交
239
        Variable: The transformation result.
240 241

    Raises:
C
caoying03 已提交
242
        ValueError: If rank of the input tensor is less than 2.
243 244 245 246

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
247
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
248
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
249
    """
C
caoying03 已提交
250

C
caoying03 已提交
251
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
252 253 254 255

    dtype = helper.input_dtype()

    mul_results = []
256 257
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
258 259 260
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
261

Y
Yu Yang 已提交
262
        w = helper.create_parameter(
263
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
264
        tmp = helper.create_variable_for_type_inference(dtype)
265
        helper.append_op(
266 267 268
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
269
            outputs={"Out": tmp},
M
mozga-intel 已提交
270 271
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
272 273 274 275
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
276
    else:
X
Xin Pan 已提交
277
        pre_bias = helper.create_variable_for_type_inference(dtype)
278
        helper.append_op(
279 280 281
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
282
            attrs={"use_mkldnn": False})
283 284 285 286
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
287 288


289 290 291
def embedding(input,
              size,
              is_sparse=False,
292
              is_distributed=False,
293 294 295
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
296
    """
297 298
    **Embedding Layer**

299
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
300 301
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
302 303 304

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
305 306

    Args:
307 308 309 310 311
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
312
        is_distributed(bool): Whether to run lookup table from remote parameter server.
313 314
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
315
            with zeros whenever lookup encounters it in :attr:`input`. If
316
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
317 318
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
319
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
320

321 322 323
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
324

325 326
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
327

C
chengduoZH 已提交
328
          dict_size = len(dataset.ids)
329
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
330
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
331 332 333
    """

    helper = LayerHelper('embedding', **locals())
334 335 336
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
337 338
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
339 340
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
341
    tmp = helper.create_variable_for_type_inference(dtype)
342 343
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
344 345 346 347 348
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
349 350 351
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
352
            'remote_prefetch': remote_prefetch,
353 354
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
355 356 357
    return tmp


W
wopeizl 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
374

W
wopeizl 已提交
375 376 377 378 379 380 381 382 383 384 385
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
386

W
wopeizl 已提交
387 388 389 390
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
391

W
wopeizl 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
478 479


P
phlrain 已提交
480 481 482 483 484 485
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
486
         dropout_prob=0.0,
P
phlrain 已提交
487 488 489 490 491
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
492
    """
P
phlrain 已提交
493
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
494 495 496 497 498

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
538 539
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
540 541 542 543 544 545
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
546
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
547

L
liuhongyu 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
573
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
574 575 576 577 578 579
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
580 581 582
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
642 643 644 645 646 647 648 649 650 651 652
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
653 654
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
655 656 657
    """
    **Dynamic LSTMP Layer**

658 659 660 661 662 663
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
664 665 666 667 668

    The formula is as follows:

    .. math::

669
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
670

671
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
672

673
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
674

675
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
676

677
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
678

679
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
680

681
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
682

Y
Yibing Liu 已提交
683 684 685 686 687 688
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
689
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
690
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
691
          bias vector).
Y
Yibing Liu 已提交
692 693 694
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
695
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
696
    * :math:`h`: The hidden state.
697
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
698 699
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
700
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
701
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
702
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
703 704
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
705 706 707 708

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
709

Y
Yibing Liu 已提交
710 711 712 713 714 715 716 717 718 719 720 721
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
722
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
723 724
                               hidden-hidden weight and projection weight.

725 726
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
727 728
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
729 730
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
731
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
732 733 734 735 736

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
737
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
738 739 740 741 742 743
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
744
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
745 746 747
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
748
                                - The shape is (1 x 7D).
C
chengduo 已提交
749 750 751 752 753

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
754 755 756 757 758 759 760 761 762
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
763
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
764 765
                              default "tanh".
        proj_activation(str): The activation for projection output.
766
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
767 768
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
769 770
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
771 772

    Returns:
773 774 775 776
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
777 778

    Examples:
779

Y
Yibing Liu 已提交
780 781
        .. code-block:: python

782 783 784 785
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
786
            hidden_dim, proj_dim = 512, 256
787
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
788
                                     act=None, bias_attr=None)
789 790 791
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
792 793 794 795
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
796
    """
797

C
chengduo 已提交
798
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
799
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
800
    size = size // 4
Y
Yibing Liu 已提交
801 802 803 804 805 806 807 808 809 810
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
811 812 813 814 815 816
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
845 846 847 848 849 850 851 852 853
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
854
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
855

856
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
857
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
858

G
guosheng 已提交
859 860 861 862 863 864 865 866 867
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
868

G
guosheng 已提交
869
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
870

G
guosheng 已提交
871
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
872 873
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
874 875 876 877
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
878
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
879 880

    Args:
881 882
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
883
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
884
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
885 886
            is the hidden size.
        size(int): The dimension of the gru cell.
887
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
888 889
            hidden-hidden weight matrix. Note:

890
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
891
              :math:`D` is the hidden size.
892
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
893
              The first part are weights of the update gate and reset gate with
894
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
895
              candidate hidden state with shape :math:`(D \\times D)`.
896 897 898 899 900

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
901
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
902
            the bias in the update gate, reset gate and candidate calculations.
903 904 905
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
906 907
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
908
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
909 910 911
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
912
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
913
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
914 915 916 917
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
918 919

    Returns:
G
guosheng 已提交
920
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
921
            and sequence length is the same with the input.
922

G
guosheng 已提交
923
    Examples:
924

G
guosheng 已提交
925 926
        .. code-block:: python

927 928 929 930
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
931
            hidden_dim = 512
932
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
933
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
934 935 936 937 938 939 940 941 942
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
943
    batch_size = input.shape[0]
G
guosheng 已提交
944
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
945
    if h_0:
G
guosheng 已提交
946
        assert h_0.shape == (
Y
Yancey 已提交
947 948 949
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
950

X
Xin Pan 已提交
951 952 953 954
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
973 974 975
def gru_unit(input,
             hidden,
             size,
976 977
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
978
             activation='tanh',
979
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
980
    """
981
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
982

983 984
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
985

986
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
987

988
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
989

990
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
991 992

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
993 994 995
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
996 997
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

998 999
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1000 1001 1002
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1003 1004 1005

    Args:
        input (Variable): The fc transformed input value of current step.
1006
        hidden (Variable): The hidden value of gru unit from previous step.
1007
        size (integer): The input dimension value.
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1022
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1023
            the bias in the update gate, reset gate and candidate calculations.
1024 1025 1026
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1027 1028
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1029 1030 1031 1032
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1033

1034 1035 1036 1037 1038 1039
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1040

1041
             # assuming we have x_t_data and prev_hidden of size=10
1042
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1043 1044
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1057
    size = size // 3
Y
Yu Yang 已提交
1058 1059

    # create weight
1060 1061
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1062

X
Xin Pan 已提交
1063 1064 1065
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1066
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1067
    # create bias
1068
    if helper.bias_attr:
Y
Yu Yang 已提交
1069 1070 1071
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1072
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1073 1074 1075

    helper.append_op(
        type='gru_unit',
1076
        inputs=inputs,
Y
Yu Yang 已提交
1077 1078 1079 1080 1081 1082
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1083 1084
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1085 1086 1087 1088 1089
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1090
@templatedoc()
1091
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1092 1093 1094 1095 1096 1097 1098
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1099
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1100 1101 1102 1103
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1104 1105 1106
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1107 1108

    """
Y
Yu Yang 已提交
1109 1110 1111 1112 1113 1114
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1115 1116 1117 1118 1119 1120 1121 1122
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1138 1139 1140 1141
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1142

W
wopeizl 已提交
1143 1144
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1145

W
wopeizl 已提交
1146
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1147

W
wopeizl 已提交
1148
        label(${label_type}): ${label_comment}
1149

W
wopeizl 已提交
1150 1151
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1152

W
wopeizl 已提交
1153 1154
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1155

W
wopeizl 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1166
                "Transition": transition,
W
wopeizl 已提交
1167 1168
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1169

W
wopeizl 已提交
1170
    return viterbi_path
Y
Yu Yang 已提交
1171 1172


Y
yi.wu 已提交
1173
@templatedoc()
F
fengjiayi 已提交
1174
def cos_sim(X, Y):
Y
Yu Yang 已提交
1175
    """
Y
yi.wu 已提交
1176 1177 1178
    ${comment}

    Args:
1179 1180
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1181

Y
yi.wu 已提交
1182
    Returns:
1183
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1184
    """
F
fengjiayi 已提交
1185
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1186 1187 1188
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1199 1200 1201 1202 1203
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1204
            dropout_implementation="downgrade_in_infer"):
1205 1206 1207 1208 1209
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1210
    training. The dropout operator randomly sets (according to the given dropout
1211 1212 1213 1214
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1215 1216
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1217 1218 1219 1220 1221 1222 1223
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1235
                                           dropout op can be removed from the program.
P
phlrain 已提交
1236
                                           the program will be efficient
1237

P
phlrain 已提交
1238

1239 1240

    Returns:
1241
        Variable: A tensor variable is the shape with `x`.
1242 1243

    Examples:
1244

1245 1246
        .. code-block:: python

1247 1248
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1249 1250
    """

F
fengjiayi 已提交
1251
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1252 1253 1254
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1255 1256 1257 1258

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1259 1260 1261 1262 1263
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1264 1265 1266 1267
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1268 1269
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1270
        })
1271 1272 1273
    return out


J
jerrywgz 已提交
1274
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1275
    """
Y
Yibing Liu 已提交
1276 1277
    **Cross Entropy Layer**

1278 1279 1280
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1281 1282

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1283
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1284

Y
Yibing Liu 已提交
1285
        .. math::
Y
yangyaming 已提交
1286

Y
Yibing Liu 已提交
1287 1288 1289
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1290 1291
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1292 1293 1294 1295 1296

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1297
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1298 1299 1300
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1301 1302
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1303
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1304

Y
Yibing Liu 已提交
1305
    Args:
Y
yangyaming 已提交
1306
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1307 1308 1309 1310
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1311
        label (Variable|list): the ground truth which is a 2-D tensor. When
1312 1313 1314 1315
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1316
        soft_label (bool): a flag indicating whether to
1317
                                           interpretate the given labels as soft
1318
                                           labels. Default: `False`.
M
minqiyang 已提交
1319 1320
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1321
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1322 1323 1324 1325 1326

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1327 1328 1329 1330 1331
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1332 1333 1334 1335 1336 1337

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1338
    """
F
fengjiayi 已提交
1339
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1340
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1341 1342 1343 1344 1345
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1346 1347
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1348 1349 1350
    return out


F
fengjiayi 已提交
1351
def square_error_cost(input, label):
Y
Yu Yang 已提交
1352
    """
1353 1354
    **Square error cost layer**

1355 1356
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1371 1372
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1373 1374

    Returns:
G
guosheng 已提交
1375
        Variable: The tensor variable storing the element-wise squared error \
1376
                  difference of input and label.
1377 1378 1379 1380 1381 1382 1383 1384

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1385
    """
F
fengjiayi 已提交
1386
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1387
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1388 1389 1390 1391 1392 1393
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1394
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1395
    helper.append_op(
F
fengjiayi 已提交
1396 1397
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1398 1399 1400
    return square_out


Y
yi.wu 已提交
1401
@templatedoc()
Y
Yu Yang 已提交
1402 1403 1404 1405
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1406
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1407
    """
Y
yi.wu 已提交
1408
    **Chunk Evaluator**
Y
yi.wu 已提交
1409

Y
yangyaming 已提交
1410
    This function computes and outputs the precision, recall and
1411
    F1-score of chunk detection.
Y
yi.wu 已提交
1412

Y
yi.wu 已提交
1413 1414 1415 1416 1417 1418 1419 1420
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1421

Y
yi.wu 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1447

Y
yi.wu 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1472
    Args:
1473 1474 1475 1476 1477
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1478

Y
yi.wu 已提交
1479
    Returns:
Y
update  
yi.wu 已提交
1480 1481 1482
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1483

Y
yi.wu 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1496
    """
F
fengjiayi 已提交
1497
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1498 1499

    # prepare output
X
Xin Pan 已提交
1500 1501 1502 1503 1504 1505 1506
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1507 1508 1509 1510 1511 1512 1513 1514

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1515 1516 1517 1518
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1519 1520 1521
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1522 1523
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1524
        })
1525 1526
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1527 1528


1529
@templatedoc()
Y
Yu Yang 已提交
1530 1531 1532 1533 1534 1535 1536
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1537 1538
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1539 1540 1541 1542
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1543 1544 1545 1546 1547 1548 1549

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1563

1564 1565
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1566 1567 1568 1569 1570 1571 1572
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1573
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1584
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1585 1586 1587 1588 1589 1590
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1591
def sequence_softmax(input, use_cudnn=False, name=None):
1592 1593 1594
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1595
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1612 1613 1614
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1615

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1627 1628
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1629
    softmax_out = helper.create_variable_for_type_inference(dtype)
1630 1631 1632 1633 1634 1635 1636 1637
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1638
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1639
    """
1640
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1641
    has the same shape as the input.
Q
qiaolongfei 已提交
1642

1643 1644 1645 1646 1647 1648
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1649
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1650 1651 1652 1653 1654 1655 1656

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1657
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1658 1659 1660 1661 1662 1663 1664 1665

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1666 1667 1668
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1681 1682
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1683
    softmax_out = helper.create_variable_for_type_inference(dtype)
1684 1685 1686 1687 1688 1689 1690 1691
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1692 1693 1694
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1695 1696
           stride=1,
           padding=0,
1697
           dilation=1,
Y
Yu Yang 已提交
1698 1699 1700
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1701
           use_cudnn=True,
1702 1703
           act=None,
           name=None):
Y
Yu Yang 已提交
1704
    """
C
chengduoZH 已提交
1705
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1706 1707
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1708
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1709 1710 1711 1712 1713 1714 1715
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1716 1717 1718
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1719

1720
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1721

C
chengduoZH 已提交
1722 1723
    .. math::

C
refine  
chengduoZH 已提交
1724
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1725

T
tensor-tang 已提交
1726
    Where:
C
chengduoZH 已提交
1727

1728 1729 1730 1731 1732
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1733
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1734 1735 1736

    Example:

1737 1738
        - Input:

W
weixing02 已提交
1739
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1740

W
weixing02 已提交
1741
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1742

1743
        - Output:
T
tensor-tang 已提交
1744

W
weixing02 已提交
1745
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1746

C
chengduoZH 已提交
1747
        Where
1748 1749

        .. math::
C
chengduoZH 已提交
1750

W
weixing02 已提交
1751 1752
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1753 1754

    Args:
1755
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1756
        num_filters(int): The number of filter. It is as same as the output
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1785 1786
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1787 1788
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1789
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1790
            will be named automatically. Default: None
C
chengduoZH 已提交
1791 1792

    Returns:
G
guosheng 已提交
1793
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1794 1795
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1796
    Raises:
1797 1798
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1799

C
chengduoZH 已提交
1800 1801 1802
    Examples:
        .. code-block:: python

1803 1804
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1805 1806 1807
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1808
    assert param_attr is not False, "param_attr should not be False here."
1809
    l_type = 'conv2d'
X
xzl 已提交
1810 1811
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1812
        l_type = 'depthwise_conv2d'
1813 1814 1815 1816

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1817 1818 1819 1820 1821
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1822
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1823

C
chengduoZH 已提交
1824 1825 1826
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1827
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1828

C
chengduoZH 已提交
1829 1830
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1831 1832

    input_shape = input.shape
M
minqiyang 已提交
1833
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1834 1835

    def _get_default_param_initializer():
C
chengduo 已提交
1836 1837
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1838 1839 1840 1841 1842 1843 1844 1845
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1846
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1862
    helper.append_op(
1863
        type=l_type,
Y
Yu Yang 已提交
1864 1865 1866 1867 1868
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1869 1870 1871
        attrs={
            'strides': stride,
            'paddings': padding,
1872
            'dilations': dilation,
C
chengduoZH 已提交
1873
            'groups': groups,
1874
            'use_cudnn': use_cudnn,
1875
            'use_mkldnn': False,
C
chengduoZH 已提交
1876
        })
Y
Yu Yang 已提交
1877 1878 1879 1880 1881 1882

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1900 1901 1902 1903 1904 1905
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1915 1916
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1917 1918 1919
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1920
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1946
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1947 1948
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1949
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1950 1951
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1952
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1953 1954
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1955
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1956 1957 1958 1959 1960 1961
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1972 1973
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1974 1975
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1976
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1977
            will be named automatically. Default: None.
C
chengduoZH 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1990 1991
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1992 1993 1994
    """

    l_type = 'conv3d'
C
chengduo 已提交
1995
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2006
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2020 2021 2022
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2023 2024 2025 2026 2027 2028 2029 2030
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2031
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2046
            'use_mkldnn': False
C
chengduoZH 已提交
2047 2048
        })

2049
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2050 2051 2052 2053

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2054
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2055
    """
Y
yangyaming 已提交
2056 2057 2058
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2070
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2071 2072 2073 2074 2075
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2076
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2077 2078 2079 2080 2081 2082 2083

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2084 2085
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2086

L
Luo Tao 已提交
2087 2088
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2089
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2090
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2091
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2092 2093 2094 2095 2096 2097 2098

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2099

Y
yangyaming 已提交
2100
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2101 2102 2103 2104 2105
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2106 2107
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2108
    """
F
fengjiayi 已提交
2109
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2110
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2111 2112
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2113 2114 2115 2116 2117 2118

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2119 2120
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2121

Y
yangyaming 已提交
2122 2123 2124 2125 2126
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2127 2128 2129
    return pool_out


C
add doc  
chengduoZH 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2149
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2150 2151 2152 2153 2154
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2155
def sequence_first_step(input):
L
Luo Tao 已提交
2156
    """
L
Luo Tao 已提交
2157
    This function gets the first step of sequence.
L
Luo Tao 已提交
2158 2159 2160 2161

    .. code-block:: text

       x is a 1-level LoDTensor:
2162
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2163 2164 2165 2166 2167
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2168
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2169
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2170

L
Luo Tao 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2180

Y
yangyaming 已提交
2181
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2182 2183 2184
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2185 2186 2187
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2188
def sequence_last_step(input):
L
Luo Tao 已提交
2189
    """
L
Luo Tao 已提交
2190
    This function gets the last step of sequence.
L
Luo Tao 已提交
2191 2192 2193 2194

    .. code-block:: text

       x is a 1-level LoDTensor:
2195
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2196 2197 2198 2199 2200
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2201
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2202
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2203

L
Luo Tao 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2213

Y
yangyaming 已提交
2214
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2215 2216 2217
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2218 2219 2220
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2221 2222 2223 2224
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2225
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2226 2227 2228 2229 2230
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2231

Y
Yibing Liu 已提交
2232 2233
	- Case:

2234
            Given the input Variable **input**:
2235

2236 2237 2238
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2239

2240
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2241

2242
            the output Variable will be
2243

2244 2245 2246
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2247 2248

    NOTE: The first dimension size of **input**, **offset** and **length**
2249
          should be equal. The **offset** should start from 0.
2250

Y
Yibing Liu 已提交
2251
    Args:
2252
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2253
                         sequences.
Y
Yibing Liu 已提交
2254 2255 2256 2257 2258 2259
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2260
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2271
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2272 2273 2274 2275
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2276
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2291
@templatedoc()
Y
Yu Yang 已提交
2292
def pool2d(input,
C
chengduoZH 已提交
2293 2294
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2295 2296
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2297
           global_pooling=False,
C
chengduoZH 已提交
2298
           use_cudnn=True,
2299
           ceil_mode=False,
2300 2301
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2302
    """
F
fengjiayi 已提交
2303
    ${comment}
2304 2305

    Args:
2306 2307 2308
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2309
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2310
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2311 2312
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2313
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2314 2315 2316 2317 2318 2319
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2320 2321 2322
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2323
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2324
                        layer will be named automatically.
2325
        exclusive (bool): Whether to exclude padding points in average pooling
2326
                          mode, default is true
F
fengjiayi 已提交
2327

2328
    Returns:
F
fengjiayi 已提交
2329
        Variable: The pooling result.
F
fengjiayi 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2343 2344 2345 2346
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2347
                            global_pooling=False)
Y
Yu Yang 已提交
2348 2349 2350 2351 2352
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2353

C
chengduoZH 已提交
2354 2355 2356 2357 2358
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2359 2360 2361 2362
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2363 2364
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2365

C
Add doc  
chengduoZH 已提交
2366
    l_type = 'pool2d'
2367 2368

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2369
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2370
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2371 2372

    helper.append_op(
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2384 2385
            "use_mkldnn": False,
            "exclusive": exclusive,
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2399 2400
           name=None,
           exclusive=True):
2401 2402
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2403
    pooling configurations mentioned in input parameters.
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2416
        exclusive (bool): Whether to exclude padding points in average pooling
2417
                          mode, default is true
2418

2419
    Returns:
2420
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2421 2422 2423 2424 2425
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2426

C
chengduoZH 已提交
2427 2428 2429 2430 2431
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2432 2433 2434
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2435

C
chengduoZH 已提交
2436 2437
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2438

2439 2440
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2441
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2442
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2443 2444

    helper.append_op(
2445
        type=l_type,
Y
Yu Yang 已提交
2446 2447 2448 2449 2450 2451 2452
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2453
            "paddings": pool_padding,
2454
            "use_cudnn": use_cudnn,
2455
            "ceil_mode": ceil_mode,
2456 2457
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2470
               data_layout='NCHW',
Y
Yang Yang 已提交
2471
               in_place=False,
2472 2473
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2474
               moving_variance_name=None,
2475
               do_model_average_for_mean_and_var=False,
2476 2477
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2478
    """
Q
qiaolongfei 已提交
2479 2480 2481 2482
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2483

Q
qiaolongfei 已提交
2484
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2485

Q
qiaolongfei 已提交
2486 2487
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2488 2489 2490
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2503

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2517
    Args:
Q
qiaolongfei 已提交
2518
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2519 2520 2521 2522
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2523 2524 2525 2526 2527 2528 2529 2530
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2531
        data_layout(string, default NCHW): NCHW|NHWC
2532
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2533 2534 2535 2536
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2537
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2538
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2539 2540 2541 2542 2543
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2544 2545

    Returns:
Q
qiaolongfei 已提交
2546
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2547 2548 2549 2550 2551 2552 2553

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2554
    """
C
chengduo 已提交
2555
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2576 2577 2578
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2579 2580

    bias = helper.create_parameter(
2581
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2582 2583 2584
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2585

2586 2587
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2588 2589 2590
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2591
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2592
        shape=param_shape,
2593 2594 2595 2596 2597 2598 2599
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2600
            trainable=False,
W
wanghaoshuang 已提交
2601
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2602
        shape=param_shape,
2603 2604
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2605 2606 2607 2608 2609 2610

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2611 2612 2613 2614
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2615

X
Xin Pan 已提交
2616 2617
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2635 2636 2637 2638
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2639
            "use_mkldnn": False,
2640 2641
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2642
        })
Y
Yu Yang 已提交
2643 2644 2645 2646

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2647
@templatedoc()
G
guosheng 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2658
    ${comment}
G
guosheng 已提交
2659 2660 2661

    The formula is as follows:

Y
yuyang18 已提交
2662
    ..  math::
G
guosheng 已提交
2663 2664 2665 2666 2667 2668 2669

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2670 2671 2672 2673 2674 2675 2676 2677
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2678

G
guosheng 已提交
2679 2680
    Args:
        input(Variable): The input tensor variable.
2681
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2682
            normalization. Default True.
2683
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2684 2685
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2686
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2687
            Default 1.
2688
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2689
            division by zero. Default 1e-05.
G
guosheng 已提交
2690
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2691 2692
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2693 2694
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2695
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2696 2697
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2698
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2699
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2700
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2701 2702 2703
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2704 2705

    Returns:
Y
yuyang18 已提交
2706
        ${y_comment}
G
guosheng 已提交
2707 2708 2709

    Examples:

Y
yuyang18 已提交
2710 2711 2712
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2728
    if shift:
G
guosheng 已提交
2729 2730 2731 2732 2733 2734
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2735 2736 2737 2738 2739
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2833 2834 2835 2836
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2837 2838 2839
                     padding=0,
                     stride=1,
                     dilation=1,
2840
                     groups=None,
C
caoying03 已提交
2841
                     param_attr=None,
2842
                     bias_attr=None,
C
chengduoZH 已提交
2843
                     use_cudnn=True,
2844
                     act=None,
C
caoying03 已提交
2845
                     name=None):
Y
Yu Yang 已提交
2846
    """
2847 2848 2849 2850 2851 2852 2853 2854
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2855 2856
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2857 2858 2859
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2860 2861 2862 2863 2864

    For each input :math:`X`, the equation is:

    .. math::

2865
        Out = \sigma (W \\ast X + b)
2866

2867
    Where:
2868 2869 2870

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2871 2872 2873 2874
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2875

2876 2877 2878 2879
    Example:

        - Input:

2880
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2881

2882
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2883 2884 2885

        - Output:

2886
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2887 2888

        Where
Y
Yu Yang 已提交
2889

2890 2891
        .. math::

2892 2893 2894 2895
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2896 2897

    Args:
2898 2899 2900 2901
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2902 2903 2904 2905
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2934
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2935 2936 2937
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2938
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2939
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2940 2941

    Returns:
2942
        Variable: The tensor variable storing the convolution transpose result.
2943 2944

    Raises:
2945 2946
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2947 2948 2949 2950

    Examples:
       .. code-block:: python

2951 2952
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2953
    """
C
chengduo 已提交
2954
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2955 2956 2957 2958 2959 2960 2961 2962
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2963 2964 2965
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2966 2967 2968
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2969

C
chengduoZH 已提交
2970 2971
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2972

Y
Yu Yang 已提交
2973 2974 2975 2976 2977
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2978

Y
Yu Yang 已提交
2979 2980
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2981

C
chengduoZH 已提交
2982
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2983
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2984
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2985
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2986
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2987 2988 2989
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2990

2991 2992 2993 2994 2995 2996 2997
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2998
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2999
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3000

Y
Yu Yang 已提交
3001 3002 3003
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3004
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3005
    helper.append_op(
3006
        type=op_type,
Y
Yu Yang 已提交
3007 3008
        inputs={'Input': [input],
                'Filter': [img_filter]},
3009
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3010
        attrs={
3011
            'output_size': output_size,
3012 3013 3014 3015 3016
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3017 3018
        })

3019 3020 3021
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3022 3023


3024
def conv3d_transpose(input,
Y
Yu Yang 已提交
3025 3026 3027
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3028 3029 3030
                     padding=0,
                     stride=1,
                     dilation=1,
3031
                     groups=None,
C
caoying03 已提交
3032
                     param_attr=None,
3033
                     bias_attr=None,
C
chengduoZH 已提交
3034
                     use_cudnn=True,
3035
                     act=None,
C
caoying03 已提交
3036
                     name=None):
Y
Yu Yang 已提交
3037
    """
3038
    **Convlution3D transpose layer**
3039

3040
    The convolution3D transpose layer calculates the output based on the input,
3041
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3042 3043 3044 3045 3046 3047
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3048 3049 3050
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3051 3052 3053 3054 3055

    For each input :math:`X`, the equation is:

    .. math::

3056
        Out = \sigma (W \\ast X + b)
3057 3058 3059

    In the above equation:

3060 3061
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3062 3063 3064 3065
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3066

3067 3068 3069 3070
    Example:

        - Input:

3071
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3072

3073
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3074 3075 3076

        - Output:

3077
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3078 3079

        Where
Y
Yu Yang 已提交
3080

3081 3082
        .. math::

3083 3084 3085
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3086 3087

    Args:
3088
        input(Variable): The input image with [N, C, D, H, W] format.
3089 3090 3091
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3092
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3093 3094
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3095
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3096 3097 3098
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3099 3100
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3101
        stride(int|tuple): The stride size. If stride is a tuple, it must
3102 3103
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3104
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3105 3106 3107
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3108 3109 3110 3111 3112
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3122 3123
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3124 3125
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3126 3127
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3128 3129

    Returns:
3130
        Variable: The tensor variable storing the convolution transpose result.
3131 3132

    Raises:
3133 3134
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3135 3136 3137 3138

    Examples:
       .. code-block:: python

3139 3140
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3141
    """
C
chengduo 已提交
3142
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3143 3144
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3145
    if not isinstance(input, Variable):
3146
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3147 3148
    input_channel = input.shape[1]

3149 3150 3151
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3152

C
chengduoZH 已提交
3153 3154 3155
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3156 3157 3158 3159 3160 3161
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3162 3163 3164
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3165

3166
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3167
                         padding[0] - 1) // dilation[0] + 1
3168
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3169
                         padding[1] - 1) // dilation[1] + 1
3170
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3171
                         padding[2] - 1) // dilation[2] + 1
3172
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3173
    else:
3174 3175
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3176

3177
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3178
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3179 3180 3181
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3182
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3183
    helper.append_op(
3184
        type=l_type,
Y
Yu Yang 已提交
3185 3186
        inputs={'Input': [input],
                'Filter': [img_filter]},
3187
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3188 3189 3190 3191
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3192
            'groups': groups,
C
chengduoZH 已提交
3193 3194
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3195

3196 3197
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3198
    return out
Y
yangyaming 已提交
3199 3200


Y
yangyaming 已提交
3201
def sequence_expand(x, y, ref_level=-1, name=None):
3202
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3203 3204 3205 3206
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3207 3208 3209 3210 3211

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3212
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3213
                x.data = [[a], [b], [c], [d]]
3214 3215 3216
                x.dims = [4, 1]

            y is a LoDTensor:
3217 3218
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3219

Y
yangyaming 已提交
3220
            ref_level: 0
3221

Y
yangyaming 已提交
3222
            then output is a 1-level LoDTensor:
3223
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3224
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3225 3226 3227 3228
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3229
                x.data = [[a], [b], [c]]
3230 3231 3232
                x.dims = [3, 1]

            y is a LoDTensor:
3233
                y.lod = [[2, 0, 3]]
3234

Y
yangyaming 已提交
3235
            ref_level: -1
3236

Y
yangyaming 已提交
3237 3238 3239
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3240 3241 3242
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3243 3244
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3245
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3246
                        will be named automatically.
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3257
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3258
    """
Y
yangyaming 已提交
3259
    helper = LayerHelper('sequence_expand', input=x, **locals())
3260
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3261
    tmp = helper.create_variable_for_type_inference(dtype)
3262
    helper.append_op(
Y
yangyaming 已提交
3263 3264 3265 3266 3267
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3268
    return tmp
3269 3270


C
chengduo 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3327
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3328 3329 3330 3331 3332 3333 3334 3335
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3336
@templatedoc()
3337
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3338 3339 3340 3341 3342
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3343 3344 3345
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3346
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3347 3348 3349 3350
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3351 3352 3353
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3354

F
fengjiayi 已提交
3355
    Returns:
M
minqiyang 已提交
3356
        Variable: The padded sequence batch and the original lengths before
3357
                  padding. All sequences has the same length.
M
minqiyang 已提交
3358

F
fengjiayi 已提交
3359 3360 3361 3362 3363 3364 3365
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3366
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3367
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3368 3369 3370 3371 3372
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3373 3374
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3375 3376 3377 3378

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3379 3380 3381 3382 3383 3384
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3385 3386
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3387
        attrs={'padded_length': maxlen})
3388
    return out, length
F
fengjiayi 已提交
3389 3390


3391
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3392
    """
3393
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3394

3395 3396
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3406 3407 3408
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3409
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3410 3411 3412 3413 3414 3415

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3416
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3417 3418 3419 3420 3421 3422

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3423 3424
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3439
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3451 3452 3453 3454 3455 3456 3457 3458 3459
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3460 3461
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3462 3463 3464

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3465 3466

    This layer does the search in beams for one time step. Specifically, it
3467 3468 3469 3470 3471 3472
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3473

3474 3475 3476 3477 3478 3479 3480 3481
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3482

3483
    Args:
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3509

3510
    Returns:
3511 3512
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3513 3514 3515 3516

    Examples:
        .. code-block:: python

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3534 3535 3536 3537
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3538 3539 3540
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3541 3542 3543 3544 3545

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3546
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3564 3565 3566 3567 3568 3569 3570
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3581

3582 3583 3584 3585 3586 3587
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3588

3589 3590
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3591

3592 3593 3594 3595 3596 3597
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3598 3599
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3615 3616 3617 3618
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3619
              param_attr=None,
C
caoying03 已提交
3620 3621
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3622 3623 3624 3625
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3626
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3627

3628
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3629

3630
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3631

3632
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3633 3634 3635

            h_t & = o_t tanh(c_t)

3636 3637 3638 3639 3640 3641
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3642 3643 3644

        .. math::

3645
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3646 3647 3648 3649 3650 3651 3652 3653

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3654
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3655 3656

    Args:
Y
yangyaming 已提交
3657 3658 3659 3660 3661 3662
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3663
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3676 3677
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3678 3679

    Returns:
Y
yangyaming 已提交
3680
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3681 3682

    Raises:
3683 3684 3685 3686
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3687 3688 3689 3690 3691 3692

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3693
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3694
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3695
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3712
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3713 3714 3715 3716
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3717 3718
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3719 3720 3721
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3722
    size = cell_t_prev.shape[1]
3723
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3724 3725
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3726
                param_attr=param_attr,
3727
                bias_attr=bias_attr)
Y
yangyaming 已提交
3728
    dtype = x_t.dtype
X
Xin Pan 已提交
3729 3730
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3740
    return h, c
G
guosheng 已提交
3741 3742


C
caoying03 已提交
3743
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3744
    """
Y
yangyaming 已提交
3745
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3746 3747 3748

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3749
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3750 3751
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3752 3753
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3754
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3755
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3756
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3757 3758
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3759 3760 3761

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3762

G
guosheng 已提交
3763 3764 3765 3766 3767 3768
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3769
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3770 3771 3772 3773
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3774 3775 3776 3777

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3778
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3779 3780 3781
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3782 3783
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3784
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3785 3786
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3787 3788 3789 3790 3791
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3792
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3793 3794 3795 3796
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3797 3798


C
caoying03 已提交
3799
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3800
    """
Y
Yibing Liu 已提交
3801
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3802 3803 3804

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3805 3806 3807
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3808
            must be in the range :math:`[-rank(input), rank(input))`. If
3809
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3810
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3811 3812
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3813
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3814
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3815
                       will be named automatically.
G
guosheng 已提交
3816 3817

    Returns:
Y
Yibing Liu 已提交
3818
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3819

G
guosheng 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3830 3831
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3832 3833 3834 3835 3836 3837 3838

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3839 3840
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3841
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3842 3843
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3844 3845 3846 3847 3848
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3849
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3850 3851 3852 3853
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3854 3855


C
caoying03 已提交
3856
def reduce_max(input, dim=None, keep_dim=False, name=None):
3857
    """
Y
yangyaming 已提交
3858
    Computes the maximum of tensor elements over the given dimension.
3859 3860 3861

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3862
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3863 3864 3865
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3866
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3867 3868
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3869
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3870 3871
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3872 3873 3874

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3875

3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3887 3888 3889 3890 3891 3892 3893

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3894 3895
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3896
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3897 3898
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3899 3900 3901 3902 3903
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3904
            'dim': dim if dim != None else [0],
3905 3906 3907 3908 3909 3910
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3911
def reduce_min(input, dim=None, keep_dim=False, name=None):
3912
    """
Y
yangyaming 已提交
3913
    Computes the minimum of tensor elements over the given dimension.
3914 3915 3916

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3917
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3918 3919 3920
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3921
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3922 3923
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3924
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3925 3926
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3927 3928 3929

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3930

3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3942 3943 3944 3945 3946 3947 3948

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3949 3950
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3951
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3952 3953
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3954 3955 3956 3957 3958
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3959
            'dim': dim if dim != None else [0],
3960 3961 3962 3963
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3964 3965


3966 3967 3968 3969 3970 3971
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3972
        dim (list|int|None): The dimensions along which the product is performed. If
3973 3974
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3975 3976
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3977 3978 3979
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3980
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3981
            layer will be named automatically.
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3996
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3997
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3998 3999 4000 4001 4002 4003 4004

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4005 4006
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4007
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4008 4009
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4010 4011 4012 4013 4014
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4015
            'dim': dim if dim != None else [0],
4016 4017 4018 4019 4020 4021
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4022
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4023
    """
C
caoying03 已提交
4024
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4025 4026 4027

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4028 4029 4030 4031 4032
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4033
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4034
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4035
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4036 4037
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4038 4039

    Returns:
D
dzhwinter 已提交
4040
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4041 4042 4043 4044 4045 4046 4047 4048 4049

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4050 4051
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4067
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4090
    .. math::
4091 4092

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4093 4094 4095 4096 4097

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4098
        x(Variable|list): The input tensor to l2_normalize layer.
4099
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4100 4101
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4102
        epsilon(float): The epsilon value is used to avoid division by zero, \
4103
            the defalut value is 1e-10.
4104
        name(str|None): A name for this layer(optional). If set None, the layer \
4105
            will be named automatically.
C
caoying03 已提交
4106 4107

    Returns:
4108
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4109 4110

    Examples:
4111

C
caoying03 已提交
4112 4113
        .. code-block:: python

4114 4115 4116 4117
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4118 4119
    """

F
fengjiayi 已提交
4120 4121
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4122 4123
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4124 4125
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4126
    helper.append_op(
4127 4128 4129 4130
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4131
        attrs={
4132 4133
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4134 4135
        })
    return out
4136 4137


S
sneaxiy 已提交
4138
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4139
    """
Y
ying 已提交
4140 4141 4142 4143
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4144

C
chengduoZH 已提交
4145
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4146
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4147

4148 4149 4150 4151 4152
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4153
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4154

C
chengduoZH 已提交
4155
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4156
      performs in the following way.
G
guosheng 已提交
4157

4158
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4159
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4160
        last two dimensions and a batched matrix multiply supporting broadcast
4161
        applies on the two tensors.
G
guosheng 已提交
4162

Y
ying 已提交
4163 4164
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4165
    removed after matrix multiplication.
G
guosheng 已提交
4166 4167 4168

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4169 4170 4171
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4172
        alpha (float): The scale of output. Default 1.0.
4173
        name(str|None): A name for this layer(optional). If set None, the layer
4174
            will be named automatically.
G
guosheng 已提交
4175 4176

    Returns:
4177
        Variable: The product Tensor variable.
G
guosheng 已提交
4178

G
guosheng 已提交
4179 4180 4181
    Examples:
        .. code-block:: python

4182
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4183 4184
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4185

4186 4187
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4188

4189 4190
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4191

4192 4193
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4194 4195 4196 4197

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4198 4199
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4200

Y
ying 已提交
4201
            # x: [M], y: [N]
4202
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4203
    """
Y
ying 已提交
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4216
            y_shape = y_shape + [1]
Y
ying 已提交
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4233
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4234
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4235
    helper.append_op(
4236 4237 4238 4239
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4240 4241 4242
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4243
            'alpha': float(alpha),
S
sneaxiy 已提交
4244
        })
4245
    return out
4246 4247


4248
def topk(input, k, name=None):
Q
qingqing01 已提交
4249 4250 4251 4252
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4253
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4254 4255 4256 4257 4258 4259
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4281 4282 4283
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4284
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4285
                 of input.
4286
        name(str|None): A name for this layer(optional). If set None, the layer
4287
                       will be named automatically.
F
fengjiayi 已提交
4288
                       Default: None
Q
qingqing01 已提交
4289 4290

    Returns:
4291 4292 4293
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4294
        within the last dimension of input.
Q
qingqing01 已提交
4295

F
fengjiayi 已提交
4296 4297
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4298 4299 4300 4301 4302 4303 4304

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4305 4306
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4318
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4319
    """
Y
ying 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4329

Y
ying 已提交
4330
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4331

4332
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4333 4334
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4335
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4336

4337
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4338 4339
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4340

4341 4342 4343
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4344
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4345
                          the length of reference string.
4346
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4347
                                     calculating edit distance.
4348
        name (str): The name of this layer. It is optional.
4349

W
wanghaoshuang 已提交
4350
    Returns:
W
wanghaoshuang 已提交
4351
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4352 4353 4354 4355

    Examples:
        .. code-block:: python

T
tink2123 已提交
4356 4357
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4358
            cost = fluid.layers.edit_distance(input=x,label=y)
4359
    """
4360
    helper = LayerHelper("edit_distance", **locals())
4361

4362
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4363
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4364 4365
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4366 4367 4368 4369 4370

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4371
            attrs={"tokens": ignored_tokens})
4372 4373 4374 4375 4376
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4377
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4378
            attrs={"tokens": ignored_tokens})
4379 4380
        label = erased_label

4381
    # edit distance op
X
Xin Pan 已提交
4382 4383
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4384 4385 4386 4387
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4388 4389
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4390 4391
        attrs={"normalized": normalized})

4392
    return edit_distance_out, sequence_num
4393 4394 4395 4396 4397


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4398

Y
ying 已提交
4399 4400 4401 4402
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4420
        input.lod = [[4, 4]]
W
whs 已提交
4421 4422
      
        Computation:
4423

W
whs 已提交
4424 4425 4426 4427 4428 4429
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4430 4431 4432 4433 4434

        output.data = [[2],
                       [1],
                       [3]]

4435
        output.lod = [[2, 1]]
4436

W
whs 已提交
4437

4438 4439
    Args:

Y
ying 已提交
4440 4441 4442 4443 4444 4445 4446 4447 4448
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4449
        name (str): The name of this layer. It is optional.
4450 4451

    Returns:
W
whs 已提交
4452 4453 4454 4455
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4456 4457 4458 4459 4460

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4461

4462
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4463
    """
4464
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4465
    _, topk_indices = topk(input, k=1)
4466 4467

    # ctc align op
X
Xin Pan 已提交
4468
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4469 4470 4471
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4472
        outputs={"Output": [ctc_out]},
4473 4474
        attrs={"merge_repeated": True,
               "blank": blank})
4475
    return ctc_out
4476 4477


W
Wu Yi 已提交
4478
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4479
    """
4480 4481
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4482
    to compute Connectionist Temporal Classification (CTC) loss.
4483 4484
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4485 4486 4487
    input tensor.

    Args:
4488
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4489 4490 4491 4492
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4493
       label (Variable): The ground truth of variable-length sequence,
4494 4495 4496
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4497 4498
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4499 4500 4501
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4502
         follewed by a mean_op.
W
Wu Yi 已提交
4503
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4504 4505

    Returns:
4506 4507
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4508 4509

    Examples:
4510

W
wanghaoshuang 已提交
4511
        .. code-block:: python
4512

4513 4514 4515
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4516 4517

    """
F
fengjiayi 已提交
4518
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4519 4520
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4521 4522 4523 4524 4525 4526
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4527 4528 4529 4530 4531
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4532
    return loss_out
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4548 4549 4550
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4551 4552 4553 4554 4555
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4556

4557
            out.lod  = [[0, 1, 3]]
4558 4559 4560 4561

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4562 4563 4564 4565 4566 4567 4568
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4569 4570 4571

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4572 4573

    Returns:
4574

4575 4576 4577 4578 4579
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4580
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4581
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4582 4583
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4584
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4585 4586 4587 4588 4589 4590
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4591 4592


4593 4594 4595 4596
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4597 4598 4599 4600 4601 4602
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4603
        num_neg_samples=None,
4604 4605 4606
        name=None,
        sampler="uniform",
        custom_dist=None,
4607 4608
        seed=0,
        is_sparse=False):
4609 4610 4611 4612 4613 4614 4615
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4616 4617
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4618
            sample is 1.0.
C
chengduo 已提交
4619 4620 4621 4622 4623 4624 4625 4626 4627
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4628
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4629 4630
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4631 4632 4633
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4634
        custom_dist (float[]): A float[] with size=num_total_classes.
4635 4636 4637 4638
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4639
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4640

4641
    Returns:
Y
Yibing Liu 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4669 4670 4671 4672 4673 4674 4675 4676 4677

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4678

4679
    """
Y
Yang Yu 已提交
4680 4681 4682
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4683 4684

    dim = input.shape[1]
Y
Yang Yu 已提交
4685 4686 4687 4688 4689 4690
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4691
    inputs = {}
C
chengduo 已提交
4692 4693 4694 4695 4696 4697 4698
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4699 4700 4701
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4702

4703 4704 4705 4706
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4707 4708 4709 4710 4711 4712 4713

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4766 4767 4768 4769
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4770 4771 4772 4773 4774
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4775 4776
    attrs = {
        'num_total_classes': int(num_total_classes),
4777 4778
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4779 4780
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4781
    }
Y
Yang Yu 已提交
4782 4783 4784

    helper.append_op(
        type='nce',
C
chengduo 已提交
4785
        inputs=inputs,
Y
Yang Yu 已提交
4786 4787 4788 4789 4790 4791
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4792
    return cost / (num_neg_samples + 1)
4793 4794


C
chengduo 已提交
4795 4796
def hsigmoid(input,
             label,
4797
             num_classes,
C
chengduo 已提交
4798 4799
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4800
             name=None,
4801 4802 4803
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4804
             is_sparse=False):
W
weixing02 已提交
4805 4806
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4807
    process of language model. This operator organizes the classes into a
4808 4809
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4810 4811 4812 4813 4814 4815
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4816
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4817
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4818

4819 4820 4821 4822 4823 4824 4825 4826 4827
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4828
    Args:
M
minqiyang 已提交
4829
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4830 4831 4832 4833
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4834 4835 4836
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4848 4849 4850 4851 4852 4853 4854
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4855
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4856 4857
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4858 4859

    Returns:
J
JiabinYang 已提交
4860
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4861 4862 4863 4864 4865

    Examples:

        .. code-block:: python

G
guosheng 已提交
4866 4867 4868
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4869 4870 4871 4872
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4873 4874
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4875
    dim = input.shape[1]
4876
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4877 4878 4879
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4880 4881 4882 4883
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4884 4885
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4886 4887 4888
    else:
        pass

J
JiabinYang 已提交
4889 4890
    weights = None

4891
    if not is_custom:
J
JiabinYang 已提交
4892 4893 4894 4895 4896 4897 4898 4899
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4900
            shape=[num_classes, dim],
J
JiabinYang 已提交
4901 4902
            is_bias=False,
            dtype=input.dtype)
4903 4904 4905
    inputs = {
        "X": input,
        "W": weights,
4906 4907
        "PTable": path_table,
        "PathCode": path_code,
4908 4909
        "Label": label
    }
W
weixing02 已提交
4910
    if helper.bias_attr:
4911
        if not is_custom:
J
JiabinYang 已提交
4912 4913
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4914
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4915 4916 4917 4918 4919 4920
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4921
                shape=[num_classes, 1],
J
JiabinYang 已提交
4922 4923 4924
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4925 4926
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4927
        inputs=inputs,
W
weixing02 已提交
4928 4929
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4930 4931
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4932 4933 4934
    return out


Y
fix ci.  
ying 已提交
4935
def transpose(x, perm, name=None):
Y
ying 已提交
4936 4937 4938 4939 4940 4941 4942
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4943 4944 4945
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4946 4947 4948 4949 4950 4951 4952

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4953
            # use append_batch_size=False to avoid prepending extra
4954
            # batch size in shape
4955
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4956
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4957
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4958 4959
    """

Y
fix ci.  
ying 已提交
4960
    if len(perm) != len(x.shape):
Y
ying 已提交
4961 4962 4963
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4964 4965 4966 4967 4968 4969
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4970 4971

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4972 4973
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4974
    helper.append_op(
4975
        type='transpose2',
Y
fix ci.  
ying 已提交
4976
        inputs={'X': [x]},
4977 4978
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4979 4980
        attrs={'axis': perm})
    return out
4981 4982


4983 4984 4985 4986 4987 4988 4989
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4990
    """
4991 4992 4993 4994 4995 4996 4997
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5026 5027 5028 5029 5030 5031 5032 5033 5034
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5035 5036 5037
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5038 5039 5040 5041 5042
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5070 5071 5072
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5085
            output.dims = {8, 8}
5086

5087
            output.lod = [[4, 4]]
5088

T
Tink_Y 已提交
5089
    Examples:
5090 5091 5092

        .. code-block:: python

5093 5094
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5095 5096

    """
W
wanghaoshuang 已提交
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5107 5108 5109 5110 5111 5112 5113
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5114
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5115
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5116
    helper.append_op(
5117
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5118
    return out
5119 5120


Y
yuyang18 已提交
5121
@templatedoc()
5122
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5123 5124
    """
    ${comment}
5125 5126

    Args:
Y
yuyang18 已提交
5127
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5128 5129
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5130 5131 5132 5133 5134
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5135
        ${out_comment}.
5136 5137

    Examples:
Y
yuyang18 已提交
5138 5139 5140 5141
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5142 5143 5144 5145 5146 5147
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5148
    out = helper.create_variable_for_type_inference(dtype)
5149 5150 5151 5152 5153
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5154
    return helper.append_activation(out)
5155 5156


Y
yuyang18 已提交
5157
@templatedoc()
5158 5159
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5160 5161 5162 5163 5164 5165 5166
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5167 5168

    Args:
Y
yuyang18 已提交
5169 5170
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5171 5172

    Returns:
Y
yuyang18 已提交
5173
        ${out_comment}.
5174 5175
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5176 5177 5178 5179 5180

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5181
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5182 5183 5184 5185 5186 5187
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5188 5189


5190 5191 5192
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5193
                               ignore_index=kIgnoreIndex,
5194 5195
                               numeric_stable_mode=False,
                               return_softmax=False):
5196 5197
    """
    **Softmax With Cross Entropy Operator.**
5198

5199 5200 5201 5202
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5203

5204 5205 5206
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5207

5208 5209 5210
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5211

5212
    The equation is as follows:
5213

5214
    1) Hard label (one-hot label, so every sample has exactly one class)
5215

5216 5217 5218 5219
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5220

5221 5222 5223
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5224

5225 5226 5227 5228
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5229 5230 5231
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5232

S
sneaxiy 已提交
5233 5234 5235 5236 5237 5238 5239 5240
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5241 5242 5243 5244 5245 5246 5247 5248
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5249 5250
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5251
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5252 5253 5254
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5255 5256 5257
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5258
                                    stable algorithm. Default: False
5259
        return_softmax (bool): A flag indicating whether to return the softmax
5260
                               along with the cross entropy loss. Default: False
5261

5262
    Returns:
5263 5264 5265 5266
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5267
                              2-D tensor with shape [N x K].
5268 5269 5270 5271 5272 5273 5274

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5275 5276
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5277 5278
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5279 5280
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5281 5282 5283 5284 5285 5286
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5287 5288 5289 5290 5291
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5292 5293 5294 5295

    if return_softmax:
        return loss, softmax

5296 5297 5298 5299 5300
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5301 5302
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5303
    For each instance, it computes the smooth L1 loss element by element first
5304
    and then sums all the losses. So the shape of ouput Variable is
5305
    [batch_size, 1].
5306

5307 5308
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5309
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5310
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5311
            L1 loss op with same shape as :attr:`x`.
5312
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5313 5314
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5315
            by this tensor element by element.
5316
        outside_weight (Variable|None): A tensor with rank at least 2. This
5317 5318
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5319
            element by element.
5320
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5321 5322
           scalar with default value 1.0.

5323
    Returns:
5324
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5325 5326 5327 5328 5329

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5330 5331
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5332
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5333
            out = fluid.layers.smooth_l1(x=fc, y=label)
5334
    """
5335

5336
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5337 5338
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5351 5352 5353 5354


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5355
    This layer creates the one-hot representations for input indices.
5356 5357

    Args:
Y
Yibing Liu 已提交
5358 5359
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5360 5361

    Returns:
Y
Yibing Liu 已提交
5362
        Variable: The one-hot representations of input.
5363 5364

    Examples:
C
caoying03 已提交
5365
        .. code-block:: python
5366

Y
Yibing Liu 已提交
5367 5368
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5369 5370
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5371
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5372 5373 5374 5375 5376 5377
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5378 5379


Y
Yu Yang 已提交
5380
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5381
    """
Y
yi.wu 已提交
5382 5383 5384
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5385 5386 5387 5388 5389 5390

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5391 5392
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5393 5394 5395 5396 5397 5398

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5399 5400
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5401 5402
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5403 5404 5405 5406 5407
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5408
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5409
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5410 5411
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5412 5413
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5414 5415 5416
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5417 5418


5419
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5420
    """
C
caoying03 已提交
5421 5422
    Gives a new shape to the input Tensor without changing its data.

5423 5424 5425 5426 5427
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5428

5429
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5430

5431 5432 5433 5434
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5435
    2. 0 means the actual dimension value is going to be copied from the
5436 5437 5438 5439
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5440 5441

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5442
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5443
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5444

5445
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5446 5447
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5448 5449
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5450
    dimensions.
C
caoying03 已提交
5451

5452
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5453 5454 5455 5456
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5457 5458

    Args:
5459
        x(variable): The input tensor.
C
caoying03 已提交
5460 5461
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5462 5463 5464 5465 5466
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5467 5468
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5469 5470 5471 5472 5473 5474 5475
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5476
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5477

5478
    Returns:
G
guosheng 已提交
5479 5480 5481 5482
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5483

X
Xin Pan 已提交
5484 5485 5486
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5487 5488
    Examples:
        .. code-block:: python
G
guosheng 已提交
5489

5490
            data = fluid.layers.data(
5491
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5492
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5493
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5494 5495 5496
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5497
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5498 5499 5500 5501 5502
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5503

5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5519
    helper = LayerHelper("reshape2", **locals())
5520 5521
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5522
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5523
    helper.append_op(
5524
        type="reshape2",
X
Xin Pan 已提交
5525
        inputs=inputs,
D
dzhwinter 已提交
5526
        attrs={"shape": shape},
5527 5528
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5529

D
dzhwinter 已提交
5530
    return helper.append_activation(out)
5531

5532

5533
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5534
    """
M
minqiyang 已提交
5535 5536 5537
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5538
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5539

Y
Yibing Liu 已提交
5540 5541
    Examples:
    Case 1:
M
minqiyang 已提交
5542
      Given
Y
Yibing Liu 已提交
5543 5544 5545 5546 5547 5548 5549 5550
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5551
        and
Y
Yibing Liu 已提交
5552 5553 5554
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5555

Y
Yibing Liu 已提交
5556
    Args:
5557
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5558
        axes (list): List of integers, indicating the dimensions to be squeezed.
5559
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5560 5561 5562 5563 5564 5565 5566 5567

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5568
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5569 5570
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5571 5572
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5573
    helper.append_op(
5574
        type="squeeze2",
5575
        inputs={"X": input},
Y
Yibing Liu 已提交
5576
        attrs={"axes": axes},
5577 5578
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5579

5580 5581 5582
    return out


5583
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5584
    """
M
minqiyang 已提交
5585 5586 5587
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5588

M
minqiyang 已提交
5589 5590
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5591
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5592

Y
Yibing Liu 已提交
5593
    Args:
5594
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5595
        axes (list): List of integers, indicating the dimensions to be inserted.
5596
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5597 5598 5599 5600 5601 5602 5603 5604

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5605
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5606 5607
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5608 5609
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5610
    helper.append_op(
5611
        type="unsqueeze2",
5612
        inputs={"X": input},
Y
Yibing Liu 已提交
5613
        attrs={"axes": axes},
5614 5615
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5616

5617 5618
    return out

5619

Y
yangyaming 已提交
5620
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5621
    """
Y
Yibing Liu 已提交
5622
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5623 5624 5625 5626
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5627
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5628 5629 5630 5631 5632 5633

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5634
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5635 5636 5637
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5638
            target_lod: [4, 2]
Y
yangyaming 已提交
5639 5640

            then we get a 1-level LoDTensor:
5641
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5642 5643 5644 5645 5646 5647
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5648
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5649 5650 5651 5652
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5653
                y.data = [[2, 4]]
Y
yangyaming 已提交
5654 5655 5656
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5657
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5658 5659 5660 5661 5662 5663
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5664
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5665 5666 5667 5668
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5669
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5670 5671 5672 5673
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5674
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5675 5676 5677 5678 5679
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5680
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5681
                           from :attr:`y`.
Y
yangyaming 已提交
5682
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5683
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5684 5685

    Returns:
Y
Yibing Liu 已提交
5686
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5687 5688

    Raises:
Y
Yibing Liu 已提交
5689
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5690 5691 5692 5693 5694 5695 5696 5697 5698

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5699
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5725
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5754 5755
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5768 5769 5770
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5784 5785 5786 5787


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5788
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5789
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5790

G
guosheng 已提交
5791 5792 5793 5794
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5817
                         The length of :attr:paddings must be
G
guosheng 已提交
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5828

G
guosheng 已提交
5829 5830 5831 5832 5833 5834
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5835
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5836 5837 5838 5839 5840 5841 5842
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5843 5844


C
chengduo 已提交
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
5876 5877
		And
            pad_value = -1,
C
chengduo 已提交
5878

T
Tink_Y 已提交
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5914
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5915 5916 5917 5918 5919 5920 5921 5922 5923
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5924 5925 5926 5927 5928 5929 5930
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5931 5932
    called label-smoothing regularization (LSR).

5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5956
                              be :math:`(1, class\_num)`.
5957 5958
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5959
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5979
    smooth_label = helper.create_variable_for_type_inference(dtype)
5980 5981 5982 5983 5984 5985 5986
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5987 5988


W
wopeizl 已提交
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6025 6026


J
jerrywgz 已提交
6027 6028 6029 6030 6031 6032
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6033 6034
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6051 6052 6053
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6054 6055 6056 6057 6058 6059
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6060
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6101 6102
        .. code-block:: python

W
whs 已提交
6103 6104 6105 6106
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6107
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6108 6109 6110 6111 6112 6113
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6114 6115


6116 6117 6118 6119
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6120 6121
                 resample='BILINEAR',
                 actual_shape=None):
6122
    """
Q
qiaolongfei 已提交
6123
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6124

6125
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6126 6127 6128
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6129

6130
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6131

6132
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6133

6134
    Args:
6135
        input (Variable): The input tensor of image resize layer,
6136 6137
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6138
        out_shape(list|tuple|Variable|None): Output shape of image resize
6139 6140
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6141
        scale(float|None): The multiplier for the input height or width.
6142 6143 6144
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6145 6146
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6147
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6148
                       currently.
6149
                       Default: 'BILINEAR'
6150 6151 6152
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6153
                                :attr:`out_shape` and :attr:`scale` specifying
6154 6155 6156 6157 6158 6159 6160
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6161 6162
                                constructing stage.
                                Default: None
6163 6164

    Returns:
Q
update  
qiaolongfei 已提交
6165 6166
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6167

6168 6169 6170
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6171
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6172 6173 6174 6175
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6176 6177 6178
    Examples:
        .. code-block:: python

6179
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6180
    """
6181 6182 6183 6184
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6185 6186
    if resample not in resample_methods:
        raise ValueError(
6187
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6188
        )
6189
    resample_type = resample_methods[resample]
6190
    if out_shape is None and scale is None:
6191
        raise ValueError("One of out_shape and scale must not be None.")
6192
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6193
    dtype = helper.input_dtype()
6194 6195 6196 6197

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6198 6199 6200
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6201
    if out_shape is not None:
6202 6203 6204 6205
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6206
            inputs['OutSize'] = out_shape
6207 6208 6209 6210 6211 6212 6213 6214
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6215 6216 6217 6218
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6219 6220 6221 6222 6223
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6224
    out = helper.create_variable_for_type_inference(dtype)
6225
    helper.append_op(
6226
        type='{}_interp'.format(resample_type),
6227
        inputs=inputs,
6228
        outputs={"Out": out},
6229 6230 6231
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6232
    return out
F
stash  
fengjiayi 已提交
6233 6234


6235
@templatedoc(op_type="bilinear_interp")
6236 6237 6238 6239 6240
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6241
    """
6242 6243
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6244 6245
    in priority order.

6246 6247 6248 6249
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6250 6251
    again in the other direction.

6252
    For details of bilinear interpolation, please refer to Wikipedia:
6253
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6254 6255 6256 6257 6258

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6259

Y
yuyang18 已提交
6260 6261 6262 6263 6264
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6265 6266 6267
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6268
                                :attr:`out_shape` and :attr:`scale` specifying
6269 6270 6271 6272 6273 6274 6275
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6276 6277
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6278 6279 6280

    Returns:
        ${out_comment}.
6281 6282 6283 6284 6285

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6286 6287
    """

6288
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6289 6290


6291
@templatedoc(op_type="nearest_interp")
6292 6293 6294 6295 6296
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6297
    """
6298
    Resize input by performing nearest neighbor interpolation in both the
6299 6300
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6301 6302
    out_shape and scale in priority order.

6303
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6304
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6305 6306 6307 6308 6309

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6310

Y
yuyang18 已提交
6311 6312 6313 6314 6315
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6316 6317 6318
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6319
                                :attr:`out_shape` and :attr:`scale` specifying
6320 6321 6322 6323 6324 6325 6326
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6327 6328
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6329 6330 6331

    Returns:
        ${out_comment}.
6332 6333 6334 6335 6336

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6337 6338
    """

6339
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6340 6341 6342 6343


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6344 6345 6346
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6347 6348 6349 6350 6351 6352 6353
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6354
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6355

6356
    Returns:
Q
update  
qiaolongfei 已提交
6357
        Variable: The output is a 4-D tensor of the shape
6358
        (num_batches, channls, out_h, out_w).
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6369 6370 6371
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6372 6373 6374
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6375 6376
def gather(input, index):
    """
Q
qiaolongfei 已提交
6377 6378
    **Gather Layer**

6379
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6380 6381 6382 6383
    of X indexed by `index` and concatenate them together.

    .. math::

6384
        Out = X[Index]
W
whs 已提交
6385 6386 6387 6388 6389 6390 6391


    .. code-block:: text


                Given:

6392 6393
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6404
        input (Variable): The source input with rank>=1.
W
whs 已提交
6405 6406 6407 6408 6409 6410
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6411

W
whs 已提交
6412 6413 6414 6415 6416 6417
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6418
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6419 6420 6421 6422 6423 6424 6425 6426
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6458
    out = helper.create_variable_for_type_inference(dtype)
6459 6460 6461 6462 6463 6464 6465 6466 6467
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6518
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6519 6520 6521 6522 6523 6524 6525 6526 6527
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6541

6542 6543 6544
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6545
    """
F
stash  
fengjiayi 已提交
6546
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6547
    dtype = x.dtype
X
Xin Pan 已提交
6548
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6549
    if seed is None:
6550
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6551
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6552
    if isinstance(seed, int):
F
fengjiayi 已提交
6553 6554 6555 6556 6557
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6558 6559 6560 6561
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6562
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6563 6564
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6565 6566
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6567
    return out
W
whs 已提交
6568 6569


6570
def log(x, name=None):
W
wanghaoshuang 已提交
6571 6572 6573 6574 6575
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6576
        Out = \\ln(x)
W
wanghaoshuang 已提交
6577 6578

    Args:
6579
        x (Variable): Input tensor.
6580 6581
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6582 6583 6584 6585 6586 6587 6588 6589

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6590
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6591 6592
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6593
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6594
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6595
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6596 6597 6598
    return out


6599
def relu(x, name=None):
W
wanghaoshuang 已提交
6600 6601
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6602
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6603 6604 6605 6606
    the tensor elementwise.

    .. math::

6607
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6608 6609

    Args:
6610
        x (Variable): The input tensor.
6611 6612
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6613 6614 6615 6616 6617 6618 6619 6620

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6621
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6622 6623
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6624
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6625
    out = helper.create_variable_for_type_inference(dtype)
6626 6627
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6628
    return out
6629 6630


C
chengduo 已提交
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6672 6673 6674
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6675 6676 6677 6678
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6679
    .. math::
6680 6681

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6682

6683
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6684 6685 6686 6687 6688
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6689
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6690
                           Its shape should be the same as input.
6691
        num_classes (int): The possible number of labels.
W
whs 已提交
6692 6693 6694 6695

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6696
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6697 6698 6699 6700

    Examples:

        .. code-block:: python
6701

W
whs 已提交
6702 6703 6704 6705
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6706 6707 6708
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6709 6710
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6711 6712
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6713
        outputs={
W
whs 已提交
6714 6715 6716
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6717 6718 6719
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
6788
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
6789 6790 6791 6792 6793

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6794
            isinstance(shape, Variable)):
6795 6796 6797 6798 6799
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6800
    out = helper.create_variable_for_type_inference(x.dtype)
6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6818 6819


W
whs 已提交
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6837

W
whs 已提交
6838
              out_shape = [2, 3, 5, 5]
6839

W
whs 已提交
6840
          Step 1:
6841

W
whs 已提交
6842 6843 6844
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6845

W
whs 已提交
6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6916
            isinstance(out_shape, Variable)):
W
whs 已提交
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6938 6939 6940 6941 6942 6943 6944 6945
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6946

6947 6948
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6949

6950 6951 6952 6953
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6954

6955 6956 6957 6958 6959
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6960 6961 6962

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6998
    out = helper.create_variable_for_type_inference("float32")
6999 7000 7001 7002 7003 7004 7005 7006

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7007 7008


M
minqiyang 已提交
7009 7010
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7011
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7012
    which compares left score and right score passed in.
M
minqiyang 已提交
7013
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7014 7015 7016 7017 7018 7019

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7020
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7021 7022
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7023
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7024 7025 7026
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7027
       Variable: The ranking loss.
M
minqiyang 已提交
7028
    Raises:
M
minqiyang 已提交
7029
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7030 7031 7032 7033 7034 7035 7036
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7037
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7038 7039 7040 7041 7042 7043
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7044 7045
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7069
        .. code-block:: text
W
whs 已提交
7070

T
Tink_Y 已提交
7071
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7072

T
Tink_Y 已提交
7073 7074
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7075

T
Tink_Y 已提交
7076
	      Case 0:
M
minqiyang 已提交
7077

T
Tink_Y 已提交
7078 7079 7080
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7081

T
Tink_Y 已提交
7082 7083 7084
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7085

T
Tink_Y 已提交
7086
	      Case 1:
M
minqiyang 已提交
7087

T
Tink_Y 已提交
7088 7089
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7090

T
Tink_Y 已提交
7091 7092 7093
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7094

T
Tink_Y 已提交
7095
	      Case 2:
M
minqiyang 已提交
7096

T
Tink_Y 已提交
7097 7098
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7099

T
Tink_Y 已提交
7100 7101 7102
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7103 7104


W
whs 已提交
7105 7106
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7107
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7131
    out = helper.create_variable_for_type_inference(dtype)
7132 7133 7134 7135 7136 7137 7138 7139 7140
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7141
    helper.append_op(
7142
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7143 7144 7145 7146

    return out


7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7159 7160 7161 7162 7163

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7164 7165
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7166 7167
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7168
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7189 7190 7191 7192 7193

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7194 7195
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7196 7197
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7198
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7219 7220 7221 7222 7223

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7224 7225
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7226 7227
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7228
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7250 7251 7252 7253 7254

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7255
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7256
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7257 7258
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7259
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7282 7283 7284 7285 7286

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7287 7288
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7289 7290
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7291
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7313 7314 7315 7316 7317

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7318 7319
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7320 7321
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7322
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7323 7324 7325 7326 7327 7328 7329 7330
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7331 7332 7333 7334
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7335
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7336 7337 7338

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7339
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7340
          weight (alpha).
J
jerrywgz 已提交
7341
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7342 7343 7344
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7345
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7346
          will be named automatically.
J
jerrywgz 已提交
7347 7348 7349 7350 7351 7352 7353 7354

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7355
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7369
        attr=helper.param_attr,
J
jerrywgz 已提交
7370 7371 7372 7373
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7374
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7375 7376 7377 7378 7379 7380 7381 7382 7383
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7394
    Returns:
7395
        output(${out_type}): ${out_comment}
7396 7397 7398 7399 7400 7401 7402

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7403 7404
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7405
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7424
    Returns:
7425
        output(${out_type}): ${out_comment}
7426 7427 7428 7429 7430 7431 7432

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7433 7434
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7435
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7453
    Returns:
7454
        output(${out_type}): ${out_comment}
7455 7456 7457 7458 7459 7460 7461

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7462 7463
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7464
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7465 7466 7467 7468 7469 7470 7471 7472
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7486

7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7497 7498
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7514
        ValueError: If axis is not in range [0, rank(x)].
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7531 7532
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7533
    helper.append_op(
7534
        type='flatten2',
7535
        inputs={"X": x},
7536 7537
        outputs={'Out': out,
                 'XShape': x_shape},
7538 7539
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7540 7541


C
chenweihang 已提交
7542
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7543
    """
C
chenweihang 已提交
7544
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7545
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7546 7547
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7548

C
chenweihang 已提交
7549 7550 7551 7552
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7553
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7554 7555 7556 7557 7558 7559
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7560
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7561 7562 7563
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7564 7565 7566
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7578 7579
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7580 7581 7582 7583 7584 7585
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7586
    return out
7587

7588

S
sneaxiy 已提交
7589 7590 7591 7592 7593 7594 7595 7596 7597
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7598

S
sneaxiy 已提交
7599
    .. math::
7600

S
sneaxiy 已提交
7601 7602 7603
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7604
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7605 7606 7607 7608
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7609 7610 7611
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7612 7613
    Returns:
        Variable: The output sequence mask.
7614

S
sneaxiy 已提交
7615 7616
    """

Q
qingqing01 已提交
7617
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7618
    if name is None:
X
Xin Pan 已提交
7619
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7620
    else:
X
Xin Pan 已提交
7621
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7622

Q
qingqing01 已提交
7623 7624 7625
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7626 7627
        outputs={'Y': out},
        attrs={
7628
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7629 7630 7631
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7632 7633


X
Xin Pan 已提交
7634
def stack(x, axis=0):
S
sneaxiy 已提交
7635 7636 7637 7638
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7639 7640 7641 7642 7643 7644 7645

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7646
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7647
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7648 7649

    Args:
7650
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7651
        axis (int|None): The axis along which all inputs are stacked.
7652

S
sneaxiy 已提交
7653 7654
    Returns:
        Variable: The stacked variable.
7655

S
sneaxiy 已提交
7656 7657
    """

X
Xin Pan 已提交
7658 7659 7660 7661 7662 7663
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7664
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7665
    helper.append_op(
S
sneaxiy 已提交
7666 7667
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7668

X
Xin Pan 已提交
7669
    return out
D
dzhwinter 已提交
7670 7671 7672 7673 7674 7675 7676


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7677

D
dzhwinter 已提交
7678 7679 7680
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7681
    raised.
D
dzhwinter 已提交
7682 7683

    Args:
M
minqiyang 已提交
7684
        x (Variable): Input variable.
D
dzhwinter 已提交
7685 7686
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7687

D
dzhwinter 已提交
7688 7689
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7690

D
dzhwinter 已提交
7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7702
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7703 7704 7705 7706 7707 7708 7709 7710

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7723

W
whs 已提交
7724 7725 7726 7727
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7728

W
whs 已提交
7729
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7730

W
whs 已提交
7731
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7732

W
whs 已提交
7733 7734 7735 7736
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7737

W
whs 已提交
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7754
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7755 7756 7757 7758 7759 7760
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7761 7762


G
fix  
gongweibao 已提交
7763 7764 7765
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7766
@templatedoc()
G
fix  
gongweibao 已提交
7767 7768 7769 7770 7771 7772 7773 7774 7775
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7776
    ${comment}
G
fix  
gongweibao 已提交
7777 7778

    Args:
G
gongweibao 已提交
7779 7780 7781
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7782
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7783 7784 7785
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7786 7787
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7788
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7789

7790 7791 7792 7793 7794
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7795 7796 7797
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7798
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7815 7816


G
gongweibao 已提交
7817
@templatedoc()
X
Xin Pan 已提交
7818
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7819
    """
G
gongweibao 已提交
7820
    ${comment}
G
fix  
gongweibao 已提交
7821 7822

    Args:
G
gongweibao 已提交
7823 7824 7825 7826
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7827 7828 7829
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7830
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7831

7832 7833 7834 7835
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7836 7837 7838
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7839
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7840 7841 7842 7843 7844 7845 7846 7847 7848 7849
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7850
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7851 7852 7853 7854 7855
        })

    return out


G
gongweibao 已提交
7856
@templatedoc()
G
fix  
gongweibao 已提交
7857
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7858
    """
G
gongweibao 已提交
7859
    ${comment}
G
fix  
gongweibao 已提交
7860 7861

    Args:
G
gongweibao 已提交
7862 7863 7864 7865
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7866
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7867 7868

    Returns:
G
gongweibao 已提交
7869
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7870

7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7881 7882 7883
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7884
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7896
@templatedoc()
G
fix  
gongweibao 已提交
7897 7898 7899 7900 7901 7902 7903 7904 7905
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7906
    ${comment}
G
fix  
gongweibao 已提交
7907 7908

    Args:
G
gongweibao 已提交
7909 7910
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7911
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7912 7913 7914 7915
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7916
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7917 7918

    Returns:
G
gongweibao 已提交
7919
        out (Variable): ${out_comment}
7920 7921 7922 7923 7924 7925 7926 7927

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7928 7929 7930
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7931
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7950
@templatedoc()
X
Xin Pan 已提交
7951
def sum(x):
G
fix  
gongweibao 已提交
7952
    """
G
gongweibao 已提交
7953
    ${comment}
G
fix  
gongweibao 已提交
7954 7955

    Args:
G
gongweibao 已提交
7956
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7957 7958

    Returns:
G
gongweibao 已提交
7959
        out (Variable): ${out_comment}
7960 7961 7962 7963 7964 7965

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
7966 7967 7968
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7969 7970
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7971 7972 7973 7974
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7975
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7976 7977 7978 7979

    return out


G
gongweibao 已提交
7980
@templatedoc()
G
fix  
gongweibao 已提交
7981 7982
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7983
    ${comment}
G
fix  
gongweibao 已提交
7984 7985

    Args:
G
gongweibao 已提交
7986 7987 7988 7989
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7990 7991

    Returns:
G
gongweibao 已提交
7992
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7993

7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8005 8006 8007
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8008 8009
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8021
@templatedoc()
G
fix  
gongweibao 已提交
8022 8023
def shape(input):
    """
G
gongweibao 已提交
8024
    ${comment}
G
fix  
gongweibao 已提交
8025 8026

    Args:
G
gongweibao 已提交
8027
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8028 8029

    Returns:
G
gongweibao 已提交
8030
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8031

8032 8033 8034 8035 8036 8037
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8038 8039 8040
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8041 8042
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8043
    helper.append_op(
G
fix  
gongweibao 已提交
8044
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8045 8046

    return out
G
merge  
gongweibao 已提交
8047 8048


S
sneaxiy 已提交
8049 8050 8051 8052 8053 8054 8055 8056
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8057 8058
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8059
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8060 8061 8062
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8063

S
sneaxiy 已提交
8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8075
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8076 8077 8078 8079 8080 8081 8082 8083
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8084
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8085
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8086 8087 8088 8089 8090 8091

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8092
    if name is None:
X
Xin Pan 已提交
8093
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8094 8095 8096
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8097 8098 8099 8100 8101 8102 8103 8104 8105 8106

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8107
    return helper.append_activation(out)
S
sneaxiy 已提交
8108 8109


X
Xin Pan 已提交
8110
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8111 8112 8113
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8114
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8115 8116 8117
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8118
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8119 8120 8121
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8122
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8123 8124 8125
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8126
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8127 8128 8129
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8130
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8131 8132 8133
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8134
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8146 8147
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8148
        ])
M
minqiyang 已提交
8149 8150


8151
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8152 8153
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8154 8155
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8156 8157 8158

    if out is None:
        if name is None:
X
Xin Pan 已提交
8159
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8175
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8187 8188 8189 8190 8191 8192 8193 8194 8195

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8196 8197 8198 8199 8200 8201 8202
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8203
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8215 8216 8217 8218 8219 8220 8221 8222 8223

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8224 8225 8226 8227 8228 8229 8230
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8231
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8243 8244 8245 8246 8247 8248 8249 8250 8251

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8252 8253 8254 8255 8256 8257 8258
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8259
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8260 8261 8262 8263 8264 8265 8266 8267 8268 8269
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8270 8271 8272 8273 8274 8275 8276

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8277 8278 8279 8280
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8296 8297 8298 8299 8300 8301 8302

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8303 8304 8305 8306 8307
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8308 8309 8310 8311
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8335 8336 8337 8338 8339 8340 8341

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8342 8343 8344 8345 8346
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8347 8348 8349 8350
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8351 8352 8353 8354 8355 8356 8357 8358

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8377
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8430
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8431 8432 8433 8434 8435 8436 8437 8438 8439
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8440 8441
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8442 8443 8444 8445 8446 8447
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8448 8449 8450 8451
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8452 8453 8454 8455 8456 8457
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8458
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8459 8460 8461 8462 8463 8464 8465 8466 8467
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8468
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8469 8470 8471 8472 8473 8474 8475 8476
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8477
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8498
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8509 8510


J
JiabinYang 已提交
8511
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8512
    """
J
JiabinYang 已提交
8513
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8514 8515 8516

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8517
    The attr blocksize indicates the input block size.
8518 8519

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8520
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8521 8522

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8523
    (but keeping all data)
J
JiabinYang 已提交
8524

J
JiabinYang 已提交
8525
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8526
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8527 8528 8529 8530 8531
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8532
    Args:
J
JiabinYang 已提交
8533
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8534
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8535 8536

    Returns:
J
JiabinYang 已提交
8537
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8538 8539

    Raises:
J
JiabinYang 已提交
8540
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8541 8542 8543 8544 8545 8546

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8547
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8548
                x=data, blocksize=2)
J
JiabinYang 已提交
8549 8550
    """

J
JiabinYang 已提交
8551
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8552

J
JiabinYang 已提交
8553 8554
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8555 8556

    if name is None:
J
JiabinYang 已提交
8557 8558
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8559 8560 8561 8562 8563
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8564
        type="space_to_depth",
J
JiabinYang 已提交
8565
        inputs={"X": x},
J
JiabinYang 已提交
8566
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8567
        outputs={"Out": out})
J
JiabinYang 已提交
8568 8569
    return out

J
JiabinYang 已提交
8570

S
sneaxiy 已提交
8571 8572
@templatedoc()
def sequence_reverse(x, name=None):
8573
    """
S
sneaxiy 已提交
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8585
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8586 8587 8588 8589 8590 8591 8592 8593 8594 8595
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8596 8597


8598 8599 8600 8601 8602 8603
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8604

8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8624
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8637 8638


B
barrierye 已提交
8639
def similarity_focus(input, axis, indexes, name=None):
8640
    """
B
barrierye 已提交
8641
    SimilarityFocus Operator
B
barrierye 已提交
8642 8643

    Generate a similarity focus mask with the same shape of input using the following method:
8644 8645 8646
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8647
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8648 8649 8650 8651 8652 8653 8654
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8655
       each index.
B
barrierye 已提交
8656 8657 8658 8659
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8709
    Args:
8710
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8711
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8712
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8713
            1, 2 or 3.
B
barrierye 已提交
8714
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8715 8716

    Returns:
8717
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8718
            as the input.
8719

B
barrierye 已提交
8720 8721 8722
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8723 8724
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8737 8738 8739 8740 8741
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8742 8743 8744 8745 8746 8747 8748
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8749 8750


M
minqiyang 已提交
8751 8752
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8753 8754
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8755 8756
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8795
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8796
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8797 8798 8799 8800 8801 8802 8803 8804 8805

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8806 8807
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8808 8809
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8810 8811 8812 8813 8814 8815 8816
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8817 8818


D
dengkaipeng 已提交
8819
@templatedoc()
8820 8821
def grid_sampler(x, grid, name=None):
    """
8822
    This operation samples input X by using bilinear interpolation based on
8823
    flow field grid, which is usually gennerated by affine_grid. The grid of
8824 8825 8826 8827
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8828
    interpolation value of 4 nearest corner points.
8829 8830 8831 8832 8833 8834 8835 8836

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8837
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8867 8868

    Args:
8869 8870 8871
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8872 8873

    Returns:
8874
        out(Variable): Output of shape [N, C, H, W] data samples input X
8875 8876 8877 8878 8879 8880 8881 8882 8883
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8884 8885 8886 8887 8888 8889 8890 8891 8892
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8893
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8894 8895
    ipts = {'X': x, 'Grid': grid}

8896
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8897 8898 8899
    return out


G
gmcather 已提交
8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8994 8995 8996 8997 8998 8999 9000 9001 9002 9003


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9004
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9005

Q
Qiao Longfei 已提交
9006
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9007 9008 9009
    For example:

    .. math::
9010
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9011

Q
Qiao Longfei 已提交
9012
    In this formula:
9013 9014
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9015
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9016
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9017 9018 9019
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9020 9021
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9022 9023 9024
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9025
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9026
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9027
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9028 9029 9030 9031
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9032
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9033 9034 9035 9036

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9037
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9038 9039
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9040
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9041 9042 9043 9044

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9045
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out