trainer.py 35.2 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
35
from paddle import amp
K
Kaipeng Deng 已提交
36
from paddle.static import InputSpec
37
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
38 39 40

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
41
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
42
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
43 44
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
45
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
46
import ppdet.utils.stats as stats
47
from ppdet.utils.fuse_utils import fuse_conv_bn
48
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
49

50
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
G
Guanghua Yu 已提交
51
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
52 53

from ppdet.utils.logger import setup_logger
54
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
55 56 57

__all__ = ['Trainer']

58
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
59

K
Kaipeng Deng 已提交
60 61 62 63 64 65 66

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
67
        self.optimizer = None
68
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
69

G
George Ni 已提交
70
        # build data loader
W
wangguanzhong 已提交
71
        capital_mode = self.mode.capitalize()
72
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
73 74
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
75
        else:
W
wangguanzhong 已提交
76 77
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
78 79 80 81 82

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

83 84 85 86
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
87
        if self.mode == 'train':
W
wangguanzhong 已提交
88
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
89 90 91 92
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
93 94
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
95

F
FlyingQianMM 已提交
96
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
97 98
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
99
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
100

K
Kaipeng Deng 已提交
101
        # build model
102 103 104 105 106
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
107

F
Feng Ni 已提交
108 109 110
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
111 112
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
113

114
        #normalize params for deploy
C
Chang Xu 已提交
115 116 117
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
118 119 120 121 122 123 124
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
125 126
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
127

128 129
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
130 131
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
F
Feng Ni 已提交
132
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
133
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
134 135
                self.model,
                decay=ema_decay,
F
Feng Ni 已提交
136
                ema_decay_type=ema_decay_type,
G
Guanghua Yu 已提交
137
                cycle_epoch=cycle_epoch)
138

K
Kaipeng Deng 已提交
139 140 141
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
142 143 144 145 146 147 148 149 150 151 152
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
153
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
154 155 156 157 158

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
159
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
160

M
minghaoBD 已提交
161 162 163 164
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
M
minghaoBD 已提交
165

W
wangguanzhong 已提交
166 167
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
168

K
Kaipeng Deng 已提交
169 170 171
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
172
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
173 174 175 176 177 178 179 180 181 182 183

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
184
            if self.cfg.get('use_vdl', False):
185
                self._callbacks.append(VisualDLWriter(self))
186 187
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
188 189
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
190 191 192
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
193 194
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
195
            self._compose_callback = ComposeCallback(self._callbacks)
196
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
197 198
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
199 200 201 202
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
203 204
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
205 206
            self._metrics = []
            return
207
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
208
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
209
            # TODO: bias should be unified
W
wangxinxin08 已提交
210
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
211 212
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
213
            save_prediction_only = self.cfg.get('save_prediction_only', False)
214 215 216

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
217 218
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
219 220 221 222

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
223
            dataset = self.dataset
224 225 226 227
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
228
                dataset = eval_dataset
229

230
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
231 232 233 234 235 236 237 238 239 240 241
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
242
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
243 244 245 246 247 248 249 250 251
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
252
                        save_prediction_only=save_prediction_only)
253
                ]
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
283 284 285
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
286
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
287
                    class_num=self.cfg.num_classes,
288 289
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
290
            ]
291 292 293 294 295 296 297 298 299
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
300 301 302 303
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
304
            save_prediction_only = self.cfg.get('save_prediction_only', False)
305
            self._metrics = [
306 307 308 309 310 311
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
312
            ]
Z
zhiboniu 已提交
313 314 315 316
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
317
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
318
            self._metrics = [
319 320 321 322 323 324
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
325
            ]
G
George Ni 已提交
326 327
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
328
        else:
329
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
330
                self.cfg.metric))
K
Kaipeng Deng 已提交
331 332 333 334 335 336 337
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
338
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
352
    def load_weights(self, weights):
353 354
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
355
        self.start_epoch = 0
356
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
357 358
        logger.debug("Load weights {} to start training".format(weights))

359 360 361 362 363 364 365
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
366
    def resume_weights(self, weights):
367 368 369 370 371
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
372 373
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
374
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
375

K
Kaipeng Deng 已提交
376
    def train(self, validate=False):
K
Kaipeng Deng 已提交
377
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
378
        Init_mark = False
W
wangguanzhong 已提交
379
        if validate:
W
wangguanzhong 已提交
380 381
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
382

383
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
384 385
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
386 387
            self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.model)
W
wangxinxin08 已提交
388

389
        model = self.model
390
        if self.cfg.get('fleet', False):
391
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
392
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
393
        elif self._nranks > 1:
G
George Ni 已提交
394 395 396 397
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
398

W
Wenyu 已提交
399 400
        # enabel auto mixed precision mode
        if self.cfg.get('amp', False):
401
            scaler = amp.GradScaler(
402 403
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=1024)
K
Kaipeng Deng 已提交
404

K
Kaipeng Deng 已提交
405 406 407 408 409 410 411 412 413 414 415 416
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
417
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
418 419 420
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
421
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
422

423 424
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
425
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
426
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
427 428 429
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
430
            model.train()
K
Kaipeng Deng 已提交
431 432 433 434
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
435
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
436
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
437
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
438

W
Wenyu 已提交
439
                if self.cfg.get('amp', False):
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
457 458
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
459 460
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
461 462 463
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
464
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
465 466 467 468
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
469
                if self.use_ema:
S
shangliang Xu 已提交
470
                    self.ema.update()
F
Feng Ni 已提交
471
                iter_tic = time.time()
K
Kaipeng Deng 已提交
472

M
minghaoBD 已提交
473 474
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
475

S
shangliang Xu 已提交
476 477 478 479 480 481 482 483
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
484 485
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
486
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
487 488 489 490 491 492 493
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
494 495 496
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
497 498 499 500
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
501 502 503 504 505 506
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
507

K
Kaipeng Deng 已提交
508
                with paddle.no_grad():
509
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
510 511
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
512 513
            if is_snapshot and self.use_ema:
                # reset original weight
514
                self.model.set_dict(weight)
S
shangliang Xu 已提交
515
                self.status.pop('weight')
516

517 518
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
519
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
520 521 522
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
523 524
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
525
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
526 527 528
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
529
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
530 531 532 533 534 535 536 537 538
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
539 540 541 542 543
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
544 545 546 547 548 549 550 551 552
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
553
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
554 555 556
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
557
    def evaluate(self):
558 559
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
560

C
cnn 已提交
561 562 563 564
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
565
                save_results=False):
K
Kaipeng Deng 已提交
566 567 568
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
604 605 606
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
607 608
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
609

K
Kaipeng Deng 已提交
610 611 612
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
613
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
614 615
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
616
        results = []
F
Feng Ni 已提交
617
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
618 619 620
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
621

W
Wenyu 已提交
622 623 624
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
625
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
626 627 628 629
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
630
            for key, value in outs.items():
631 632
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
633
            results.append(outs)
W
Wenyu 已提交
634

635 636
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
637 638
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
639

W
Wenyu 已提交
640 641 642 643
        for _m in metrics:
            _m.accumulate()
            _m.reset()

644
        for outs in results:
K
Kaipeng Deng 已提交
645 646
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
647

K
Kaipeng Deng 已提交
648 649 650 651
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
652
                image = ImageOps.exif_transpose(image)
653
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
654

655
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
656 657 658 659
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
660 661
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
662 663 664 665
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
666
                    int(im_id), catid2name, draw_threshold)
667
                self.status['result_image'] = np.array(image.copy())
668 669
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
670 671 672 673 674
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
675

K
Kaipeng Deng 已提交
676 677 678 679 680 681 682 683 684 685 686 687
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
688
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
689
        image_shape = None
690 691
        im_shape = [None, 2]
        scale_factor = [None, 2]
692 693 694 695 696 697
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
698
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
699
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
700
        if image_shape is None:
G
Guanghua Yu 已提交
701
            image_shape = [None, 3, -1, -1]
702

G
Guanghua Yu 已提交
703 704
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
705 706 707
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
708

709
        if hasattr(self.model, 'deploy'):
710
            self.model.deploy = True
S
shangliang Xu 已提交
711

712 713 714 715
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
716

717 718 719 720 721 722
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
723 724 725
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
726 727 728 729 730 731
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
732

K
Kaipeng Deng 已提交
733 734 735 736 737 738 739
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
740
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
741
            "im_shape": InputSpec(
742
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
743
            "scale_factor": InputSpec(
744
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
745
        }]
G
George Ni 已提交
746 747 748 749 750
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
751 752 753 754 755 756 757 758 759 760 761 762
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
763
        # TODO: Hard code, delete it when support prune input_spec.
764
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
765 766 767 768 769
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
770 771 772 773
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
774 775 776 777 778

        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

G
Guanghua Yu 已提交
779 780 781 782
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
783

G
Guanghua Yu 已提交
784 785
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
786 787 788

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
789 790 791 792 793
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
794
            self.cfg.slim.save_quantized_model(
795 796
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
797 798
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
799

G
Guanghua Yu 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
868 869 870
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images