trainer.py 30.7 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24
import numpy as np
M
Mark Ma 已提交
25
import typing
F
Feng Ni 已提交
26 27
from PIL import Image, ImageOps, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
28 29

import paddle
W
wangguanzhong 已提交
30 31
import paddle.distributed as dist
from paddle.distributed import fleet
32
from paddle import amp
K
Kaipeng Deng 已提交
33
from paddle.static import InputSpec
34
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
35 36 37

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
38
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
39
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
40 41
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
42
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
43
import ppdet.utils.stats as stats
44
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
45

46
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
47
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
48 49

from ppdet.utils.logger import setup_logger
50
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
51 52 53

__all__ = ['Trainer']

54 55
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
56 57 58 59 60 61 62

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
63
        self.optimizer = None
64
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
65

G
George Ni 已提交
66
        # build data loader
67 68 69 70 71 72 73 74 75
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
76 77 78 79 80 81
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
82 83
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
84

F
FlyingQianMM 已提交
85
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
86 87
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
88
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
89

K
Kaipeng Deng 已提交
90
        # build model
91 92 93 94 95
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
96

97
        #normalize params for deploy
C
Chang Xu 已提交
98 99 100 101 102
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
103

104 105
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
106 107
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
108
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
109 110 111 112
                self.model,
                decay=ema_decay,
                use_thres_step=True,
                cycle_epoch=cycle_epoch)
113

K
Kaipeng Deng 已提交
114 115 116 117 118
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
119 120 121 122 123 124
            reader_name = '{}Reader'.format(self.mode.capitalize())
            # If metric is VOC, need to be set collate_batch=False.
            if cfg.metric == 'VOC':
                cfg[reader_name]['collate_batch'] = False
            self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                              self._eval_batch_sampler)
K
Kaipeng Deng 已提交
125
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
126 127 128 129 130

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
131
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
132

M
minghaoBD 已提交
133 134 135 136
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
M
minghaoBD 已提交
137

W
wangguanzhong 已提交
138 139
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
140

K
Kaipeng Deng 已提交
141 142 143
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
144
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
145 146 147 148 149 150 151 152 153 154 155

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
156
            if self.cfg.get('use_vdl', False):
157
                self._callbacks.append(VisualDLWriter(self))
158 159
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
160 161 162
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
163 164
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
165
            self._compose_callback = ComposeCallback(self._callbacks)
166
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
167 168
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
169 170 171 172
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
173 174
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
175 176
            self._metrics = []
            return
177
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
178
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
179
            # TODO: bias should be unified
180
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
181 182
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
183
            save_prediction_only = self.cfg.get('save_prediction_only', False)
184 185 186

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
187 188
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
189 190 191 192

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
193
            dataset = self.dataset
194 195 196 197
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
198
                dataset = eval_dataset
199

200
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
201 202 203 204 205 206 207 208 209 210 211
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
212
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
213 214 215 216 217 218 219 220 221
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
222
                        save_prediction_only=save_prediction_only)
223
                ]
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
253 254 255
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
256
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
257
                    class_num=self.cfg.num_classes,
258 259
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
260
            ]
261 262 263 264 265 266 267 268 269
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
270 271 272 273
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
274
            save_prediction_only = self.cfg.get('save_prediction_only', False)
275
            self._metrics = [
276 277 278 279 280 281
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
282
            ]
Z
zhiboniu 已提交
283 284 285 286
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
287
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
288
            self._metrics = [
289 290 291 292 293 294
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
295
            ]
G
George Ni 已提交
296 297
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
298
        else:
299
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
300
                self.cfg.metric))
K
Kaipeng Deng 已提交
301 302 303 304 305 306 307
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
308
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
322
    def load_weights(self, weights):
323 324
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
325
        self.start_epoch = 0
326
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
327 328
        logger.debug("Load weights {} to start training".format(weights))

329 330 331 332 333 334 335
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
336
    def resume_weights(self, weights):
337 338 339 340 341 342
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
343
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
344

K
Kaipeng Deng 已提交
345
    def train(self, validate=False):
K
Kaipeng Deng 已提交
346
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
347
        Init_mark = False
K
Kaipeng Deng 已提交
348

349
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
350 351
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
352 353
            self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.model)
W
wangxinxin08 已提交
354

355
        model = self.model
356
        if self.cfg.get('fleet', False):
357
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
358
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
359
        elif self._nranks > 1:
G
George Ni 已提交
360 361 362 363
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
364 365

        # initial fp16
366
        if self.cfg.get('fp16', False):
367 368
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
369

K
Kaipeng Deng 已提交
370 371 372 373 374 375 376 377 378 379 380 381
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
382
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
383 384 385
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
386
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
387

388 389
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
390
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
391
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
392 393 394
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
395
            model.train()
K
Kaipeng Deng 已提交
396 397 398 399
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
400
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
401
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
402
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
403

404
                if self.cfg.get('fp16', False):
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
422 423
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
424 425
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
426 427 428
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
429
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
430 431 432 433
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
434 435
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
436
                iter_tic = time.time()
K
Kaipeng Deng 已提交
437

438 439
            # apply ema weight on model
            if self.use_ema:
440
                weight = copy.deepcopy(self.model.state_dict())
441
                self.model.set_dict(self.ema.apply())
M
minghaoBD 已提交
442 443
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
444

K
Kaipeng Deng 已提交
445 446
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
447
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
448
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
449 450 451 452 453 454 455 456
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
457 458 459
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
460 461 462 463
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
464 465 466 467 468 469
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
470
                with paddle.no_grad():
471
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
472 473
                    self._eval_with_loader(self._eval_loader)

474 475 476 477
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

478 479
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
480
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
481 482 483
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
484 485
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
486
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
487 488 489
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
K
Kaipeng Deng 已提交
490
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
491 492 493 494 495 496 497 498 499
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
500 501 502 503 504
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
505 506 507 508 509 510 511 512 513
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
514
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
515 516 517
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
518
    def evaluate(self):
519 520
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
521

C
cnn 已提交
522 523 524 525 526
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
527 528 529 530 531 532
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
533 534
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
535

K
Kaipeng Deng 已提交
536 537 538
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
539
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
540 541
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
542
        results = []
K
Kaipeng Deng 已提交
543 544 545 546
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
547

K
Kaipeng Deng 已提交
548
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
549 550 551 552
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
553
            for key, value in outs.items():
554 555
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
556 557 558
            results.append(outs)
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
559 560
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
561

562
        for outs in results:
K
Kaipeng Deng 已提交
563 564
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
565

K
Kaipeng Deng 已提交
566 567 568 569
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
570
                image = ImageOps.exif_transpose(image)
571
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
572

573
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
574 575 576 577
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
578 579
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
580 581 582 583
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
584
                    int(im_id), catid2name, draw_threshold)
585
                self.status['result_image'] = np.array(image.copy())
586 587
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
588 589 590 591 592
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
593 594
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
595 596 597 598 599 600 601
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
602 603 604 605 606 607 608 609 610 611 612 613
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
614
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
615
        image_shape = None
616 617
        im_shape = [None, 2]
        scale_factor = [None, 2]
618 619 620 621 622 623
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
624
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
625
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
626
        if image_shape is None:
G
Guanghua Yu 已提交
627
            image_shape = [None, 3, -1, -1]
628

G
Guanghua Yu 已提交
629 630
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
631 632 633
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
634

635
        if hasattr(self.model, 'deploy'):
636
            self.model.deploy = True
637 638 639 640
        export_post_process = self.cfg.get('export_post_process', False)
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process
            image_shape = [None] + image_shape[1:]
641 642 643
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
K
Kaipeng Deng 已提交
644

K
Kaipeng Deng 已提交
645 646 647 648 649 650 651
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
652
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
653
            "im_shape": InputSpec(
654
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
655
            "scale_factor": InputSpec(
656
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
657
        }]
G
George Ni 已提交
658 659 660 661 662
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
663 664 665 666 667 668 669 670 671 672 673 674
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
675
        # TODO: Hard code, delete it when support prune input_spec.
676
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
677 678 679 680 681
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
682 683 684 685 686 687 688 689
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
690

G
Guanghua Yu 已提交
691 692
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
693 694 695

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
696 697 698 699 700
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
701
            self.cfg.slim.save_quantized_model(
702 703
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
704 705
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
706

G
Guanghua Yu 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))