trainer.py 25.3 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24 25 26 27
import numpy as np
from PIL import Image

import paddle
W
wangguanzhong 已提交
28 29
import paddle.distributed as dist
from paddle.distributed import fleet
30
from paddle import amp
K
Kaipeng Deng 已提交
31
from paddle.static import InputSpec
32
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
33 34 35

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
36
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
37
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
G
George Ni 已提交
38
from ppdet.metrics import RBoxMetric, JDEDetMetric
K
Kaipeng Deng 已提交
39
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
40 41
import ppdet.utils.stats as stats

42
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter
K
Kaipeng Deng 已提交
43 44 45
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
46
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
47 48 49

__all__ = ['Trainer']

50 51
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
52 53 54 55 56 57 58

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
59
        self.optimizer = None
60
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
61

G
George Ni 已提交
62
        # build data loader
63 64 65 66 67 68 69 70 71
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
72 73 74 75 76 77 78 79
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

F
FlyingQianMM 已提交
80 81 82 83
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
            cfg['FairMOTEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

K
Kaipeng Deng 已提交
84
        # build model
85 86 87 88 89
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
90

91 92 93 94 95
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            self.ema = ModelEMA(
                cfg['ema_decay'], self.model, use_thres_step=True)

K
Kaipeng Deng 已提交
96 97 98 99 100 101 102 103
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
104 105 106 107 108 109 110 111

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

W
wangguanzhong 已提交
112 113
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
114

K
Kaipeng Deng 已提交
115 116 117
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
118
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
119 120 121 122 123 124 125 126 127 128 129

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
130
            if self.cfg.get('use_vdl', False):
131
                self._callbacks.append(VisualDLWriter(self))
K
Kaipeng Deng 已提交
132 133 134
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
135 136
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
137
            self._compose_callback = ComposeCallback(self._callbacks)
138
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
139 140
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
141 142 143 144
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
145 146
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
147 148
            self._metrics = []
            return
149
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
K
Kaipeng Deng 已提交
150
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
151
            # TODO: bias should be unified
152
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
153 154
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
155
            save_prediction_only = self.cfg.get('save_prediction_only', False)
156 157 158

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
159 160
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
161 162 163 164 165 166 167 168 169

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

170
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
W
wangxinxin08 已提交
171 172
            self._metrics = [
                COCOMetric(
173
                    anno_file=anno_file,
K
Kaipeng Deng 已提交
174
                    clsid2catid=clsid2catid,
175
                    classwise=classwise,
S
shangliang Xu 已提交
176
                    output_eval=output_eval,
177
                    bias=bias,
178
                    IouType=IouType,
179
                    save_prediction_only=save_prediction_only)
W
wangxinxin08 已提交
180
            ]
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
210 211 212
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
213
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
214
                    class_num=self.cfg.num_classes,
215 216
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
217
            ]
218 219 220 221 222 223 224 225 226
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
227 228 229 230
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
231
            save_prediction_only = self.cfg.get('save_prediction_only', False)
232
            self._metrics = [
233 234 235 236 237 238
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
239
            ]
Z
zhiboniu 已提交
240 241 242 243
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
244
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
245
            self._metrics = [
246 247 248 249 250 251
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
252
            ]
G
George Ni 已提交
253 254
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
255
        else:
256
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
257
                self.cfg.metric))
K
Kaipeng Deng 已提交
258 259 260 261 262 263 264
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
265
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
279
    def load_weights(self, weights):
280 281
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
282
        self.start_epoch = 0
283
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
284 285
        logger.debug("Load weights {} to start training".format(weights))

286 287 288 289 290 291 292
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
293
    def resume_weights(self, weights):
294 295 296 297 298 299
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
300
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
301

K
Kaipeng Deng 已提交
302
    def train(self, validate=False):
K
Kaipeng Deng 已提交
303
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
304
        Init_mark = False
K
Kaipeng Deng 已提交
305

306
        model = self.model
307
        if self.cfg.get('fleet', False):
308
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
309
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
310
        elif self._nranks > 1:
G
George Ni 已提交
311 312 313 314
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
315 316

        # initial fp16
317
        if self.cfg.get('fp16', False):
318 319
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
320

K
Kaipeng Deng 已提交
321 322 323 324 325 326 327 328 329 330 331 332
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
333 334 335
        if self.cfg.get('print_flops', False):
            self._flops(self.loader)

K
Kaipeng Deng 已提交
336
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
337
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
338 339 340
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
341
            model.train()
K
Kaipeng Deng 已提交
342 343 344 345 346 347
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

348
                if self.cfg.get('fp16', False):
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
366 367 368 369 370 371

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
372
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
373 374 375 376
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
377 378
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
379
                iter_tic = time.time()
K
Kaipeng Deng 已提交
380

381 382
            # apply ema weight on model
            if self.use_ema:
383
                weight = copy.deepcopy(self.model.state_dict())
384 385
                self.model.set_dict(self.ema.apply())

K
Kaipeng Deng 已提交
386 387
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
388
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
389
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
390 391 392 393 394 395 396 397 398 399 400 401
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
402 403 404 405 406 407
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
408
                with paddle.no_grad():
409
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
410 411
                    self._eval_with_loader(self._eval_loader)

412 413 414 415
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

K
Kaipeng Deng 已提交
416
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
417 418 419
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
420 421
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
422 423
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
424
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
444
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
445 446 447
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
448
    def evaluate(self):
449 450
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
451

C
cnn 已提交
452 453 454 455 456
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
457 458 459 460 461 462
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
463 464
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
465

K
Kaipeng Deng 已提交
466 467 468
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
469 470
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
471 472 473 474
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
475

K
Kaipeng Deng 已提交
476 477
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
478
            for key, value in outs.items():
479 480
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
K
Kaipeng Deng 已提交
481 482 483

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
484

K
Kaipeng Deng 已提交
485 486 487 488
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
489
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
490

491
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
492 493 494 495
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
496 497
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
498 499 500 501
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
502
                    int(im_id), catid2name, draw_threshold)
503
                self.status['result_image'] = np.array(image.copy())
504 505
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
506 507 508 509 510
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
511 512
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
513 514 515 516 517 518 519
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
533
        self.model.eval()
K
Kaipeng Deng 已提交
534 535 536 537 538
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
539 540 541 542 543 544
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
545
            image_shape = inputs_def.get('image_shape', None)
546
        # set image_shape=[3, -1, -1] as default
K
Kaipeng Deng 已提交
547
        if image_shape is None:
548
            image_shape = [3, -1, -1]
K
Kaipeng Deng 已提交
549

K
Kaipeng Deng 已提交
550
        self.model.eval()
551
        if hasattr(self.model, 'deploy'): self.model.deploy = True
K
Kaipeng Deng 已提交
552

K
Kaipeng Deng 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]
G
George Ni 已提交
566 567 568 569 570
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
K
Kaipeng Deng 已提交
571

Z
zhiboniu 已提交
572
        static_model = paddle.jit.to_static(self.model, input_spec=input_spec)
G
Guanghua Yu 已提交
573 574 575
        # NOTE: dy2st do not pruned program, but jit.save will prune program
        # input spec, prune input spec here and save with pruned input spec
        pruned_input_spec = self._prune_input_spec(
Z
zhiboniu 已提交
576 577
            input_spec, static_model.forward.main_program,
            static_model.forward.outputs)
G
Guanghua Yu 已提交
578 579 580

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
581 582 583 584 585
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
586
            self.cfg.slim.save_quantized_model(
587 588
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
589 590
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec
G
Guanghua Yu 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))