pybind.cc 103.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/executor.h"
38
#include "paddle/fluid/framework/executor_cache.h"
39
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
43
#include "paddle/fluid/framework/io/fs.h"
44
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
45
#include "paddle/fluid/framework/ir/cost_model.h"
46
#include "paddle/fluid/framework/ir/generate_pass.h"
47
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
50
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
51
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/op_info.h"
53
#include "paddle/fluid/framework/op_registry.h"
54
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/framework/parallel_executor.h"
56
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/prune.h"
58
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
59
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
60
#include "paddle/fluid/framework/scope_pool.h"
61
#include "paddle/fluid/framework/selected_rows_utils.h"
62
#include "paddle/fluid/framework/tensor_util.h"
63
#include "paddle/fluid/framework/trainer.h"
64
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
65
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
67
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
J
Jiabin Yang 已提交
69
#include "paddle/fluid/prim/utils/utils.h"
70 71 72
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
73
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
74
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
75
#include "paddle/fluid/operators/common_infer_shape_functions.h"
76
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
77
#include "paddle/fluid/operators/py_func_op.h"
78
#include "paddle/fluid/platform/cpu_helper.h"
79
#include "paddle/fluid/platform/device/device_wrapper.h"
80
#include "paddle/fluid/platform/device_context.h"
81
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/platform/enforce.h"
83
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
84
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
85 86
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
87 88 89
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
90
#include "paddle/fluid/pybind/cuda_streams_py.h"
91
#include "paddle/fluid/pybind/custom_device_py.h"
92
#include "paddle/fluid/pybind/distributed_py.h"
93
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
94
#include "paddle/fluid/pybind/imperative.h"
95
#include "paddle/fluid/pybind/io.h"
96
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
97
#include "paddle/fluid/pybind/xpu_streams_py.h"
98
#include "paddle/phi/backends/cpu/cpu_info.h"
99 100
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
101
#include "paddle/utils/none.h"
102 103 104
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
105
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
106
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
107
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
108
#include "paddle/fluid/pybind/box_helper_py.h"
109
#include "paddle/fluid/pybind/communication.h"
110
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
111
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
112
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
113
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
114
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
115
#include "paddle/fluid/pybind/generator_py.h"
116
#include "paddle/fluid/pybind/global_value_getter_setter.h"
117
#include "paddle/fluid/pybind/gloo_context_py.h"
118
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
119
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
120
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
121
#include "paddle/fluid/pybind/ir.h"
122
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
123
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
124
#include "paddle/fluid/pybind/pybind_variant_caster.h"
125
#include "paddle/phi/backends/device_manager.h"
126

127
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
128
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
129
#endif
130
#include "paddle/fluid/framework/data_type.h"
131 132
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
133 134
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
135
#include "paddle/fluid/pybind/reader_py.h"
136
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
137
#include "paddle/fluid/pybind/tensor_py.h"
138
#include "paddle/fluid/string/to_string.h"
139 140
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
141
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
142
#endif
143
#ifndef PADDLE_WITH_HIP
144
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
145
#endif
146
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
147 148
#endif

149
#ifdef PADDLE_WITH_ASCEND_CL
150
#include "paddle/fluid/platform/collective_helper.h"
151 152
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
153 154
#endif

155
#ifdef PADDLE_WITH_XPU
156
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
157
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
158 159
#endif

160
#ifdef PADDLE_WITH_CUSTOM_DEVICE
161
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
162 163 164
#include "paddle/phi/capi/capi.h"
#endif

165
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
166

J
jianghaicheng 已提交
167
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
168 169
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
170
#endif
171

172 173 174 175
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
176 177 178 179
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
180
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
181 182 183
#include "paddle/fluid/pybind/fleet_py.h"
#endif

184 185 186 187
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
188
#if defined(PADDLE_WITH_RPC)
189 190 191
#include "paddle/fluid/pybind/rpc.h"
#endif

192
#include "paddle/fluid/eager/api/utils/global_utils.h"
193
#include "paddle/fluid/imperative/layout_autotune.h"
194 195
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
196 197
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
198 199
#include "pybind11/stl.h"

200
DECLARE_bool(use_mkldnn);
201

Q
Qiao Longfei 已提交
202 203
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
204 205 206
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
207

208
namespace paddle {
209
namespace pybind {
210

0
0x45f 已提交
211
PyTypeObject *g_framework_scope_pytype = nullptr;
212
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
213
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
214

215 216 217 218 219 220 221 222
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

223
bool IsCompiledWithCUDA() {
224 225 226 227 228 229 230
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

231 232 233 234 235 236 237 238
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

256 257
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
258 259 260 261 262 263
  return false;
#else
  return true;
#endif
}

264 265 266 267 268 269 270 271
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

272 273 274 275 276 277 278 279
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

280 281 282 283 284 285 286 287
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
302 303 304 305 306 307 308 309
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

310 311 312 313 314 315 316 317
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

318 319 320 321 322 323 324 325
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

326 327 328 329 330 331 332 333
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

334 335 336 337 338 339 340 341
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

342 343 344 345
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
346
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
347 348 349 350 351 352
    return true;
  else
    return false;
#endif
}

353 354 355 356
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
357
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
358 359 360 361 362 363
    return true;
  else
    return false;
#endif
}

364 365 366 367
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
368 369
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
370 371 372 373 374 375 376
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
377 378
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
379 380 381
#endif
}

382
bool IsCompiledWithBrpc() {
383
#ifndef PADDLE_WITH_DISTRIBUTE
384
  return false;
385
#else
386
  return true;
387
#endif
388 389
}

Y
update  
Yancey1989 已提交
390
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
391
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
392 393 394 395 396 397
  return true;
#else
  return false;
#endif
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
466 467
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
468 469
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
483 484
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
485 486
    }
    vec_res.emplace_back(
487
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
488 489 490 491 492 493 494 495 496 497 498 499
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
500 501
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
502 503 504 505 506 507 508 509 510 511 512 513
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
514 515 516
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
517 518 519 520
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
521 522
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
523 524 525 526
  }
  return vec_res;
}

O
OccupyMars2025 已提交
527
static void inline CreateVariableIfNotExist(
528 529
    const py::handle &py_handle,
    const framework::Scope &scope,
530 531 532 533 534 535
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
536 537
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
538 539 540 541 542 543 544 545 546 547 548 549 550
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
551 552 553
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
554 555 556 557 558
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
559 560 561 562 563
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
564 565
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
566
        PADDLE_ENFORCE_NOT_NULL(
567 568 569
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
570 571 572
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
573
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
574
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
575 576
        tensor_temp->mutable_data(
            exe->GetPlace(),
577
            framework::TransToPhiDataType(var_desc.GetDataType()));
578 579 580
      }
    }
  } else {
581 582
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
583 584 585 586 587
  }

  return;
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
604 605
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
606 607 608 609 610 611 612
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
613 614 615 616
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
617
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
618 619 620 621 622 623 624 625
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

626
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
627
  BindImperative(&m);
628
  BindEager(&m);
J
Jack Zhou 已提交
629
  BindEagerStringTensor(&m);
630
  BindCudaStream(&m);
J
james 已提交
631
  BindXpuStream(&m);
632
  BindJit(&m);
633
  BindCustomDevicePy(&m);
634

Y
Yu Yang 已提交
635
  // Not used, just make sure cpu_info.cc is linked.
636
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
637

Y
Refine  
Yu Yang 已提交
638
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
639

640 641
  AssertStaticGraphAndDygraphGradMakerNoDiff();

642
  m.doc() = "C++ core of PaddlePaddle";
643

644 645 646 647
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

648
  BindException(&m);
Y
Yu Yang 已提交
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

665 666 667 668 669 670 671 672 673 674
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
675 676
  m.def("set_num_threads", &platform::SetNumThreads);

677 678
  m.def("disable_signal_handler", &DisableSignalHandler);

679 680 681 682 683 684 685 686
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

687
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
688
  m.def("cudnn_version", &platform::DnnVersion);
689 690 691 692 693 694
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
695
#endif
696

Z
Zeng Jinle 已提交
697 698 699 700
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

701 702
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
703
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
704 705 706 707 708 709
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
710
      .def_static("gen_new_memory_pool_id",
711 712 713 714 715
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
716 717
#endif

Z
Zeng Jinle 已提交
718 719 720 721
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
722 723 724
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
725 726

    PADDLE_ENFORCE_NOT_NULL(
727 728 729 730
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
731

6
633WHU 已提交
732 733
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
734
    phi::DenseTensor tensor;
6
633WHU 已提交
735

S
Siming Dai 已提交
736
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
737
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
738
    }
739
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
740
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
741
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
742 743 744 745
    }
#endif
    return tensor;
  });
H
hong 已提交
746

747
  m.def("_create_loaded_parameter",
748 749
        [](const py::handle &vec_var_list,
           const Scope &scope,
750
           const Executor *executor) {
O
OccupyMars2025 已提交
751
          CreateVariableIfNotExist(vec_var_list, scope, executor);
752 753
        });

754 755 756 757 758 759
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
760 761
  });

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

787 788 789 790 791 792
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
793

S
sneaxiy 已提交
794
  m.def(
S
sneaxiy 已提交
795
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
796 797 798 799
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
800 801 802
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
819
            }
820
            all_kernels_info.emplace(op_type, kernel_types);
821
          }
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
838
                }
839 840
              } else {
                kernel_types.emplace_back(kernel_type_str);
841
              }
842
            }
843 844 845
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
846
          }
847
        }
848

849 850 851 852
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
853 854 855
           Return the registered kernels in paddle.

           Args:
856
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
857
           )DOC");
858

859 860 861 862 863 864
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
865 866 867 868 869
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
870

S
sneaxiy 已提交
871 872 873
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
874
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
875

876
  m.def("_set_fuse_parameter_group_size",
877
        &paddle::framework::ir::SetFuseParameterGroupsSize);
878
  m.def("_set_fuse_parameter_memory_size",
879
        &paddle::framework::ir::SetFuseParameterMemorySize);
880

S
sneaxiy 已提交
881 882 883
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

884 885
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
886 887
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

888 889 890
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
932 933 934 935 936 937 938 939 940 941 942 943 944
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
945 946 947 948 949
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
950

951
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
952 953 954

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
955
      .def(py::init<>())
956
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
957
      .def("set_int",
958 959
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
960 961 962 963 964 965 966
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
967 968
      .def(
          "get_tensor",
969 970
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
971 972
          },
          py::return_value_policy::reference)
973 974
      .def("get_bytes",
           [](Variable &self) {
975 976 977 978 979 980
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
981
           })
S
Steffy-zxf 已提交
982
      .def("set_string_list",
983
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
984 985
             *self.GetMutable<Strings>() = str_list;
           })
986
      .def("set_vocab",
987 988
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
989 990
             *self.GetMutable<Vocab>() = vocab;
           })
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1017
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1018 1019 1020 1021 1022 1023
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1024
#endif
1025 1026 1027
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1028 1029
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1040 1041
                scope_vec->size(),
                0,
1042 1043 1044 1045 1046
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1047 1048 1049 1050
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1051

S
sneaxiy 已提交
1052
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1053

0
0x45f 已提交
1054
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1068
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1069 1070 1071 1072 1073
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1074 1075 1076
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1077 1078
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1079 1080 1081 1082 1083 1084 1085
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1086
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1087

1088
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1089
           current scope, the variable would be created. Otherwise,
1090
           return the existing variable.
S
sneaxiy 已提交
1091 1092

           Args:
1093 1094
               name (str): the variable name.

S
sneaxiy 已提交
1095
           Returns:
1096
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1097
           )DOC",
1098
          py::return_value_policy::reference)
1099 1100 1101
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1102
           R"DOC(
1103
           Find variable named :code:`name` in the current scope or
1104
           its parent scope. Return None if not found.
1105

S
sneaxiy 已提交
1106 1107
           Args:
               name (str): the variable name.
1108

S
sneaxiy 已提交
1109
           Returns:
1110
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1111
           )DOC",
1112
           py::return_value_policy::reference)
1113
      .def("size", &Scope::Size)
1114 1115 1116
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1117 1118
           R"DOC(
           Find variable named :code:`name` in the current scope or
1119
           its parent scope. Return None if not found.
1120 1121 1122 1123 1124 1125 1126 1127

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1128
      .def(
1129 1130
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1131
          R"DOC(
S
sneaxiy 已提交
1132 1133 1134 1135 1136
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1137
          py::return_value_policy::reference)
1138 1139
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1140 1141
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1142
           )DOC")
1143 1144
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1145

1146 1147 1148 1149 1150 1151 1152 1153
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1154
        Create a new scope.
1155

S
sneaxiy 已提交
1156 1157 1158
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1159
      py::return_value_policy::reference);
S
sneaxiy 已提交
1160

Y
Yu Yang 已提交
1161 1162
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1163 1164
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1165 1166 1167 1168
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1169
        PADDLE_ENFORCE_EQ(
1170 1171
            info.Proto().SerializeToString(&str),
            true,
1172 1173
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1174 1175 1176
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1177 1178
    return ret_values;
  });
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1217 1218 1219 1220 1221 1222 1223 1224
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1225
              res = op_checker->GetDefaultAttrsMap();
1226 1227 1228 1229
            }
          }
          return res;
        });
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1246 1247 1248 1249 1250
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
          auto grad_comp_op_maker = op_info.GradCompOpMaker();

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
                "Neither operator %s's GradOpMaker nor GradCompOpMaker has "
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

          // In PrimEnabled mode, the priority of GradCompOpMaker is greater
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
          // priority of GradCompOpMaker is less than GradCompMaker for better
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1277
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
J
Jiabin Yang 已提交
1278
            if (grad_comp_op_maker != nullptr) {
1279
              VLOG(3) << "Runing composite fun for " << op_desc.Type();
J
Jiabin Yang 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1302 1303 1304 1305 1306 1307 1308 1309
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1310 1311 1312
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1313 1314 1315 1316 1317
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1318 1319 1320
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1321
  m.def("infer_no_need_buffer_slots",
1322 1323
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1351 1352 1353 1354 1355 1356
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1357 1358
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1359

1360
            Args:
1361 1362 1363
                   program (ProgramDesc): The original program.

             Returns:
1364
                   tuple(ProgramDesc, map<int, int>): The first part is
1365 1366 1367 1368
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1369 1370 1371 1372
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1373 1374
    VLOG(4) << s;
    return s;
1375 1376 1377 1378 1379 1380
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1381
  });
1382 1383 1384 1385
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1386 1387 1388
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1389 1390
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1391

Y
Yu Yang 已提交
1392
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1393
      .def_static("create",
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1409 1410 1411 1412
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1413
                    return context;
Q
qijun 已提交
1414
                  })
1415 1416 1417 1418
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1419
#ifndef PADDLE_WITH_XPU
1420 1421 1422
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1423
#else
W
Wilber 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1437 1438 1439 1440
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1441
      return context;
1442
#endif
1443 1444 1445 1446 1447
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1448
#ifndef PADDLE_WITH_MLU
1449 1450 1451
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1452 1453
#else
                    return new paddle::platform::MLUDeviceContext(place);
1454
#endif
1455 1456 1457 1458 1459
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1460
#ifndef PADDLE_WITH_ASCEND_CL
1461 1462 1463
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1464 1465
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1466
#endif
1467 1468 1469 1470
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1471
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1472 1473 1474 1475
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1476 1477
#else
                return new paddle::platform::CustomDeviceContext(place);
1478
#endif
1479 1480 1481 1482 1483
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1484
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1485 1486 1487
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1488
#else
L
Leo Chen 已提交
1489
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1502 1503 1504 1505
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1506 1507 1508 1509
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1510 1511
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1512
#endif
1513 1514 1515 1516 1517
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1518
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1519 1520 1521
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1522 1523 1524
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1525
          });
1526
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1527 1528
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1529 1530 1531
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1532
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1533
#else
R
ronnywang 已提交
1534
          VLOG(1) << string::Sprintf(
1535 1536 1537 1538
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1539
              "PaddlePaddle by: pip install paddlepaddle\n");
1540 1541 1542 1543 1544 1545
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1546
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1547
#else
R
ronnywang 已提交
1548
          VLOG(1) << string::Sprintf(
1549 1550 1551 1552
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1553
              "PaddlePaddle by: pip install paddlepaddle\n");
1554 1555 1556 1557 1558 1559
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1560
    devices = phi::DeviceManager::GetAllDeviceList();
1561
#else
R
ronnywang 已提交
1562
          VLOG(1) << string::Sprintf(
1563 1564 1565 1566
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1567
              "PaddlePaddle by: pip install paddlepaddle\n");
1568 1569 1570 1571 1572 1573
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1574
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1575
#else
R
ronnywang 已提交
1576
          VLOG(1) << string::Sprintf(
1577 1578 1579 1580 1581 1582
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1583
              "PaddlePaddle by: pip install paddlepaddle\n");
1584 1585 1586
#endif
    return devices;
  });
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1606

Y
Yu Yang 已提交
1607
  py::class_<OperatorBase>(m, "Operator")
1608 1609 1610 1611 1612 1613 1614
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1615 1616
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1617 1618 1619 1620 1621 1622
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1623
      .def("run",
1624 1625
           [](OperatorBase &self,
              const Scope &scope,
1626 1627 1628 1629
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1630
      .def("run",
1631 1632
           [](OperatorBase &self,
              const Scope &scope,
1633 1634 1635 1636
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1637
      .def("run",
1638 1639
           [](OperatorBase &self,
              const Scope &scope,
1640 1641 1642 1643
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1644
      .def("run",
1645 1646
           [](OperatorBase &self,
              const Scope &scope,
1647 1648 1649 1650
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1651
      .def("run",
1652 1653
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1654
              const platform::CUDAPinnedPlace &place) {
1655
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1656 1657
             self.Run(scope, place);
           })
1658
      .def("run",
1659 1660
           [](OperatorBase &self,
              const Scope &scope,
1661 1662 1663 1664
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1665
      .def("run",
1666 1667
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1668 1669 1670 1671
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1672 1673 1674 1675 1676
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1677 1678
             return op.Outputs();
           })
Q
qijun 已提交
1679 1680
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1681
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1682
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1683 1684 1685 1686
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1687

1688 1689 1690
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1691 1692
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1693 1694 1695 1696 1697 1698
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1699 1700
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1701

1702 1703
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1704
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1705
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1706
      .def("close", &Executor::Close)
1707 1708
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1709
           py::call_guard<py::gil_scoped_release>())
1710 1711
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1712
           py::call_guard<py::gil_scoped_release>())
1713
      .def("init_for_dataset",
1714 1715 1716 1717
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1718
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1719
             pybind11::gil_scoped_release release;
1720 1721 1722 1723 1724 1725 1726
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1727
      .def("run_prepared_ctx",
1728 1729 1730
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1731
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1732
              std::map<std::string, FetchType *> *fetch_targets,
1733 1734
              bool create_local_scope = true,
              bool create_vars = true,
1735 1736 1737
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1738 1739 1740 1741 1742 1743 1744 1745
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1746
           })
1747
      .def("run_prepared_ctx",
1748 1749 1750 1751 1752
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1753 1754
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1755 1756
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1757
           })
1758
      .def("prepare",
1759 1760 1761
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1762 1763 1764 1765
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1766 1767
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1768 1769
           })
      .def("create_variables", &Executor::CreateVariables)
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1786

1787
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1788
      .def(py::init<>())
1789 1790 1791 1792 1793
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1794

1795
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1796
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1797
      .def("run",
1798
           [](StandaloneExecutor &self,
1799
              Scope *scope,
1800
              std::vector<std::string> feed_names,
1801 1802 1803 1804
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1805
               ret = self.Run(scope, feed_names, fetch_names);
1806 1807 1808
             }
             return py::cast(std::move(ret));
           })
1809 1810
      .def("dry_run",
           [](StandaloneExecutor &self,
1811
              Scope *scope,
1812
              const std::unordered_map<std::string, py::array> &input_dict) {
1813
             std::vector<phi::DenseTensor> feed_tensors;
1814 1815 1816
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1817
               phi::DenseTensor t;
1818 1819 1820 1821 1822 1823
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1824
             framework::interpreter::CostInfo cost_info;
1825 1826
             {
               pybind11::gil_scoped_release release;
1827
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1828 1829
             }
             return cost_info;
H
hong 已提交
1830 1831
           });

D
dzhwinter 已提交
1832
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1833
  m.def("init_glog", framework::InitGLOG);
1834 1835 1836 1837
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1838 1839 1840 1841 1842 1843 1844 1845
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1846 1847
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1848
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1849
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1850
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1851
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1852
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1853
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1854
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1855
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1856
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1857
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1858 1859
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1860
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1861
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1862
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1863
  m.def("supports_bfloat16", SupportsBfloat16);
1864
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1865 1866
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1867
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1868
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1869
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1870 1871 1872
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1892 1893 1894
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1895 1896
  m.def(
      "run_cmd",
1897 1898
      [](const std::string &cmd,
         int time_out = -1,
1899
         int sleep_inter = -1) -> const std::string {
1900 1901
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1902
      },
1903 1904 1905
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1906 1907
  m.def(
      "shell_execute_cmd",
1908 1909 1910
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1911
         bool redirect_stderr = false) -> std::vector<std::string> {
1912 1913
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1914
      },
1915 1916 1917
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1918
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1919

1920
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1921 1922
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1923
    return platform::GetGPUComputeCapability(place.device) >= 53;
1924
  });
1925 1926 1927 1928
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1929
#endif
1930

S
Steffy-zxf 已提交
1931
  m.def("set_feed_variable",
1932 1933
        static_cast<void (*)(  // NOLINT
            Scope *,
1934
            const phi::DenseTensor &,
1935 1936
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1937
  m.def("set_feed_variable",
1938 1939
        static_cast<void (*)(  // NOLINT
            Scope *,
1940
            const std::vector<std::string> &,
1941 1942
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1943
  m.def("get_fetch_variable",
1944 1945
        [](const Scope &scope,
           const std::string &var_name,
1946 1947 1948
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1949
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1950
          } else {
R
Ruibiao Chen 已提交
1951
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1952 1953
          }
        });
1954
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1955

X
Xin Pan 已提交
1956 1957
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1958 1959 1960 1961
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1962
  BindCostModel(&m);
1963
  BindConstValue(&m);
1964
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1965
  BindFleetExecutor(&m);
1966
  BindTCPStore(&m);
1967
  BindCommContextManager(&m);
1968
  BindAutoParallel(&m);
1969
  BindJitProperty(&m);
Y
Yu Yang 已提交
1970

Y
Yu Yang 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1980
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1981
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1982 1983 1984

    Examples:
        .. code-block:: python
1985

Z
Zeng Jinle 已提交
1986 1987 1988
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1989 1990 1991 1992
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1993 1994
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1995 1996 1997 1998
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1999 2000
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2001
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2002 2003
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2004 2005 2006
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2007 2008 2009
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2010 2011
      .def(
          "append",
2012
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2013 2014 2015 2016
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2017 2018
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2019
             Append a LoDensor to LoDTensorArray.
2020

2021 2022 2023 2024 2025
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2037
           )DOC")
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2049

2050
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2051
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2052
        )DOC")
2053 2054 2055 2056 2057 2058
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2059
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2060
                res[i] = py::cast(std::move(data));
2061 2062 2063
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2064
              } else {
R
Ruibiao Chen 已提交
2065
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2077

2078 2079
      .def(
          "append",
2080
          [](FetchList &self, const phi::DenseTensor &t) {
2081
            self.emplace_back();
2082
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2083 2084 2085 2086 2087 2088 2089 2090 2091
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2092
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2093 2094 2095 2096 2097 2098
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2099 2100

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2101
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2102
        )DOC")
2103 2104 2105 2106 2107 2108 2109 2110
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2111
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2112 2113
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2114
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2129

Y
Yu Yang 已提交
2130
  m.def("op_support_gpu", OpSupportGPU);
2131
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2132
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2133
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2134 2135 2136 2137 2138 2139 2140 2141
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2142 2143 2144 2145 2146 2147
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2148 2149

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2175
      });
D
dangqingqing 已提交
2176

2177
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2178 2179 2180
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2181 2182 2183
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2184 2185 2186
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2187
#endif
P
peizhilin 已提交
2188
#endif
Y
Yu Yang 已提交
2189

2190 2191
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2192
  m.def("npu_finalize", []() {
2193 2194
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2195 2196 2197
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2198
      platform::NPUDeviceGuard guard(devices[i]);
2199 2200 2201 2202
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2223 2224 2225 2226
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2227 2228 2229 2230
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2231 2232 2233 2234 2235 2236
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2237 2238 2239 2240
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2241
      .value("kAll", platform::ProfilerState::kAll)
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2253
  m.def("set_tracer_option", platform::SetTracerOption);
2254 2255
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2256
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2257
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2258
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2259
    PADDLE_ENFORCE_EQ(
2260 2261
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2262 2263 2264
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2265
    callable.inc_ref();
2266 2267 2268 2269 2270 2271 2272 2273
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2274
  });
2275
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2276 2277 2278
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2279

2280
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2281 2282
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2283 2284
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2285 2286
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2287 2288 2289 2290 2291 2292 2293 2294 2295
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2296

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2360 2361
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2362 2363 2364 2365
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2366 2367 2368
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2369 2370 2371 2372 2373
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2374 2375 2376
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2377 2378

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2379 2380
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2381
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2382
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2383 2384
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2385 2386 2387 2388 2389 2390
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2414 2415 2416 2417 2418 2419 2420 2421
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2440 2441
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2442 2443
  m.def("enable_op_info_recorder", &paddle::platform::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &paddle::platform::DisableOpInfoRecorder);
2444

2445
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2446 2447
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2448 2449
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2450
#endif  // PADDLE_WITH_CUDA
2451 2452 2453 2454 2455 2456 2457 2458
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2459

J
jianghaicheng 已提交
2460 2461
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2462 2463 2464
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2465 2466 2467 2468 2469 2470 2471
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2472
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2473 2474
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2475
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2486 2487 2488 2489
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2512 2513
                         option.get_type(),
                         option_name));
2514 2515 2516 2517 2518 2519 2520
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2521 2522
                         option_name,
                         option.first.cast<std::string>(),
2523 2524
                         option.second.cast<std::uint64_t>());
                   }
2525 2526 2527 2528 2529 2530
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2576 2577
                           option.second.get_type(),
                           option_key));
2578
                     }
2579 2580
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2581 2582 2583 2584 2585 2586
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2587 2588
                     element.second.get_type(),
                     option_name));
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2619 2620
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2621 2622 2623
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2624 2625
#endif

2626 2627 2628 2629 2630 2631 2632 2633
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2634
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2635 2636 2637 2638 2639 2640 2641
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

2642
  m.def("get_low_precision_op_list", [] {
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
2654 2655
  });

2656 2657
  m.def("autotune_status", [] {
    py::dict res;
2658
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2659 2660 2661 2662 2663 2664 2665
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2666 2667
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2668

2669 2670
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2671

2672 2673
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2674

D
dongdaxiang 已提交
2675
  BindFleetWrapper(&m);
2676
  BindIO(&m);
2677 2678 2679
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2680

T
Thunderbrook 已提交
2681
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2682
  BindHeterWrapper(&m);
2683
  BindMetrics(&m);
T
Thunderbrook 已提交
2684
#endif
T
Thunderbrook 已提交
2685
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2686
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2687 2688 2689
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2690
#endif
2691
  BindGlooWrapper(&m);
H
hutuxian 已提交
2692
  BindBoxHelper(&m);
H
hutuxian 已提交
2693 2694 2695
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2696
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2697
  BindNCCLWrapper(&m);
2698 2699 2700
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2701
#endif
F
flame 已提交
2702 2703
  BindGraph(&m);
  BindNode(&m);
2704
  BindPass(&m);
F
flame 已提交
2705
  BindInferenceApi(&m);
2706
  BindCompatible(&m);
2707
  BindDataset(&m);
Y
yaoxuefeng 已提交
2708
  BindGenerator(&m);
2709
#ifndef PADDLE_NO_PYTHON
2710 2711
  BindDistributed(&m);
#endif
2712 2713 2714
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2715
  BindAscendDevice(&m);
2716
#endif
Y
Yanghello 已提交
2717 2718 2719
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2720

T
tangwei12 已提交
2721
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2722 2723
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2724
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2725 2726
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2727 2728 2729 2730 2731
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2732 2733 2734 2735
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2736
#ifdef PADDLE_WITH_HETERPS
2737 2738
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2739 2740 2741
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2742
#endif
X
Xinger 已提交
2743
#if defined(PADDLE_WITH_RPC)
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2756
}
2757
}  // namespace pybind
2758
}  // namespace paddle