linalg.py 122.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16 17

import paddle
18
from paddle import _C_ops
19 20
from paddle.common_ops_import import VarDesc

21
from ..common_ops_import import Variable
22 23
from ..fluid.data_feeder import (
    check_dtype,
24 25
    check_type,
    check_variable_and_dtype,
26
)
27
from ..framework import LayerHelper, in_dygraph_mode
28
from .creation import full
29 30 31
from .logic import logical_not
from .manipulation import cast
from .math import add, multiply
32

33 34
__all__ = []

35 36 37
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
90
        return _C_ops.transpose(x, perm)
91
    else:
92 93 94 95 96 97 98 99 100 101
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
102
                'uint16',
103 104 105 106
                'complex64',
                'complex128',
            ],
            'transpose',
107
        )
108 109 110 111
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
112
            raise ValueError(
113 114 115 116
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
                "but received dimension of Input(x) is %s, "
                "the length of Input(perm) is %s." % (len(x.shape), len(perm))
117
            )
118 119 120 121 122 123 124
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
125

126 127 128 129 130 131 132 133 134 135
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
136 137


S
ShenLiang 已提交
138
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
139
    """
140 141
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
142
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
143

S
ShenLiang 已提交
144 145
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
146 147 148 149 150

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
151 152
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
153 154 155 156 157 158 159 160
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

161 162
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
163
      After the matrix multiply, the prepended dimension is removed.
164 165

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
166 167
      the matrix-vector product is obtained.

168 169 170 171 172 173 174 175 176
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
177
      out will be a (j, k, n, p) tensor.
178 179

    Args:
S
ShenLiang 已提交
180 181
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
182 183 184
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication.
        name(str, optional): A name for this layer(optional). If set None, the layer
185 186 187
            will be named automatically.

    Returns:
S
ShenLiang 已提交
188
        Tensor: The output Tensor.
189 190 191

    Examples:

C
Chen Long 已提交
192 193 194 195 196 197 198 199 200
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
201
            # (1,)
C
Chen Long 已提交
202 203 204 205 206 207

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
208
            # (10,)
C
Chen Long 已提交
209 210 211 212 213 214

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
215
            # (10, 5)
C
Chen Long 已提交
216 217 218 219 220 221

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
222
            # (10, 5, 5)
C
Chen Long 已提交
223 224 225 226 227 228

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
229
            # (10, 3, 5, 5)
230 231

    """
232
    if in_dygraph_mode():
233
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
234 235 236 237 238
    else:
        attrs = {
            'trans_x': transpose_x,
            'trans_y': transpose_y,
        }
239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val,
                    name,
                    [
                        'float16',
                        'float32',
                        'float64',
                        'complex64',
                        'complex128',
                    ],
                    'matmul',
                )
255

256
        __check_input(x, y)
257

258 259 260 261 262 263 264 265 266
        helper = LayerHelper('matmul_v2', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
Z
Zhang Ting 已提交
267 268


myq406450149's avatar
myq406450149 已提交
269
def norm(x, p='fro', axis=None, keepdim=False, name=None):
270
    """
S
swtkiwi 已提交
271

272 273 274
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

275
    Note:
276 277 278 279 280
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

281
    Args:
myq406450149's avatar
myq406450149 已提交
282
        x (Tensor): The input tensor could be N-D tensor, and the input data
283
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
284
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
285
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
286
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
287 288
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
289
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
290
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
291
            Default value is `None`.
292 293 294 295 296 297 298 299
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
300
        Tensor: results of norm operation on the specified axis of input tensor,
301
        it's data type is the same as input's Tensor.
302

303 304
    Examples:
        .. code-block:: python
305

306
            import paddle
307 308 309 310 311 312 313 314 315
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
316

317
            # compute frobenius norm along last two dimensions.
318
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
319 320
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
321

322
            # compute 2-order vector norm along last dimension.
323
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
324 325 326
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
327 328

            # compute 2-order  norm along [0,1] dimension.
329
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
330 331
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
332 333

            # compute inf-order  norm
334 335 336 337 338 339 340 341 342
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
343 344

            # compute -inf-order  norm
345 346 347 348 349 350 351 352 353
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
354 355
    """

myq406450149's avatar
myq406450149 已提交
356
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
357 358 359 360 361 362 363 364 365 366 367
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
368 369 370

        if in_dygraph_mode():
            if dim is None:
371 372
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
373 374
        else:
            attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
myq406450149's avatar
myq406450149 已提交
375
            if dim is None:
376 377 378
                attrs['reduce_all'] = True
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'frobenius_norm'
379
            )
380

381 382 383 384
            helper = LayerHelper('frobenius_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
385

386 387 388 389 390 391 392
            helper.append_op(
                type='frobenius_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
393

394 395 396
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
397 398 399 400 401 402 403 404
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
405
        if in_dygraph_mode():
406 407
            if axis is None:
                axis = -1
408
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
409 410 411 412 413 414 415 416
        else:
            if porder is not None:
                check_type(porder, 'porder', (float, int), 'p_norm')
            if axis is not None:
                check_type(axis, 'axis', (int), 'p_norm')
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'p_norm'
            )
417

418 419 420 421 422 423 424 425 426 427 428
            attrs = {
                'axis': axis if axis is not None else -1,
                'porder': float(porder) if porder is not None else 2.0,
                'keepdim': keepdim,
                'asvector': asvector,
                'epsilon': 1e-12,
            }
            helper = LayerHelper('p_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
429

430 431 432 433 434 435 436
            helper.append_op(
                type='p_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
437

438 439 440
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
441
        if in_dygraph_mode():
442
            out = _C_ops.abs(input)
443
            if porder == np.float64('inf'):
444
                return _C_ops.max(out, axis, keepdim)
445
            else:
446
                return _C_ops.min(out, axis, keepdim)
447 448 449 450 451 452 453 454 455 456 457
        else:
            helper = LayerHelper('inf_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            helper.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': out}
            )
            reduce_out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
458

459 460 461 462
            reduce_all = (
                True if axis is None or axis == [] or asvector else False
            )
            axis = axis if axis is not None and axis != [] else [0]
myq406450149's avatar
myq406450149 已提交
463

464 465 466 467 468 469 470 471 472 473 474 475 476
            reduce_type = (
                'reduce_max' if porder == np.float64('inf') else 'reduce_min'
            )
            helper.append_op(
                type=reduce_type,
                inputs={'X': out},
                outputs={'Out': reduce_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
myq406450149's avatar
myq406450149 已提交
477

478
            return reduce_out
myq406450149's avatar
myq406450149 已提交
479

480
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
481 482 483 484
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
485
        if in_dygraph_mode():
486 487 488
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
489
            out = _C_ops.pow(sum_out, float(1.0 / porder))
490 491
            return out

myq406450149's avatar
myq406450149 已提交
492 493
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
494 495
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
496
        abs_out = block.create_variable_for_type_inference(
497 498 499 500 501
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
502
        pow_out = block.create_variable_for_type_inference(
503 504
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
505

506 507 508 509 510 511
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
512
        sum_out = block.create_variable_for_type_inference(
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
531 532
        return out

533 534 535
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
536
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
537 538
            else:
                raise ValueError(
539 540
                    "only valid string values are 'fro', found {}".format(p)
                )
541
        elif isinstance(p, (int, float)):
542 543 544 545 546 547 548 549
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
550
        else:
551
            raise ValueError(
552 553
                "only valid p type is string or float, found {}".format(type(p))
            )
554

myq406450149's avatar
myq406450149 已提交
555 556
    if isinstance(axis, tuple):
        axis = list(axis)
557 558 559
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

560
    # calculate vector norm, where axis is int or list with only one integer
561
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
562 563
        if isinstance(p, str):
            if p == "fro":
564 565 566 567 568 569 570 571
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
572 573 574

            else:
                raise ValueError(
575 576
                    "only valid string values are 'fro', found {}".format(p)
                )
myq406450149's avatar
myq406450149 已提交
577
        elif isinstance(p, (int, float)):
578 579 580 581 582 583 584 585
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
586 587
        else:
            raise ValueError(
588 589 590 591 592
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
593 594
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
595 596 597
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
598 599
        elif p == 0:
            raise ValueError(
I
iLeGend 已提交
600
                "just support axis type int or list (length of list <=1) if p = 0, found {}".format(
601 602 603
                    axis
                )
            )
604
        else:
605 606 607
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
608 609
    else:
        raise ValueError(
610 611 612 613
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
614 615


616
def dist(x, y, p=2, name=None):
617
    r"""
S
swtkiwi 已提交
618

619
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
620
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
621
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
622

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
646 647 648 649 650 651 652

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
653
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
654 655 656 657 658

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
659
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
660 661 662 663 664 665 666 667 668 669 670 671

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
672 673
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
674
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
675 676
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
677 678

    Returns:
679
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
680 681 682 683 684 685

    Examples:
        .. code-block:: python

            import paddle

686 687
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
688 689
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
690

691 692
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
693

694 695
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
696

697 698
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
699
    """
H
hong 已提交
700
    if in_dygraph_mode():
701
        return _C_ops.dist(x, y, p)
H
hong 已提交
702

Z
Zhang Ting 已提交
703 704 705 706 707 708 709 710 711
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
712 713 714
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
715
    return out
L
liuwei1031 已提交
716 717


718 719 720 721 722 723
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
724 725
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
744 745
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
746 747 748

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
749 750
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.16227770])
751 752 753

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
754 755
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [9.24263859])
756 757 758

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
759 760
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
761 762 763

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
764 765
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])
766 767 768

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
769 770
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
771 772 773

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
774 775
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.70710683])
776 777

            # compute conditional number when order of the norm is inf
778 779 780
            out_inf = paddle.linalg.cond(x, p=float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
781 782

            # compute conditional number when order of the norm is -inf
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

799
            a_cond_fro = paddle.linalg.cond(a, p='fro')
800 801 802 803 804 805 806 807 808 809 810 811
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
812
            b_cond_2 = paddle.linalg.cond(b, p=2)
813 814
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
815 816 817

    """

818
    def mat_norm(input, porder=1.0, axis=None):
819 820 821 822 823
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
824 825
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
826
            sum_out = _C_ops.sum(abs_out, axis, None, False)
827 828

            if porder == 1 or porder == np.inf:
829
                return _C_ops.max(sum_out, [-1], False)
830
            if porder == -1 or porder == -np.inf:
831
                return _C_ops.min(sum_out, [-1], False)
832
        else:
833 834
            reduce_all = True if axis is None or axis == [] else False
            axis = axis if axis is not None and axis != [] else [0]
835 836
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
837 838
                dtype=block.input_dtype()
            )
839
            sum_out = block.create_variable_for_type_inference(
840 841
                dtype=block.input_dtype()
            )
842
            out = block.create_variable_for_type_inference(
843 844 845 846 847 848 849 850 851 852 853
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
854
                    'keep_dim': False,
855 856 857
                    'reduce_all': reduce_all,
                },
            )
858
            if porder == 1 or porder == np.inf:
859 860 861 862 863 864
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
865
                        'keep_dim': False,
866 867 868
                        'reduce_all': reduce_all,
                    },
                )
869
            if porder == -1 or porder == -np.inf:
870 871 872 873 874 875
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
876
                        'keep_dim': False,
877 878 879
                        'reduce_all': reduce_all,
                    },
                )
880
            return out
881 882 883 884 885 886

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
887
        if in_dygraph_mode():
888
            pow_out = _C_ops.pow(input, porder)
889 890
            sum_out_1 = _C_ops.sum(pow_out, axis, None, False)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, False)
891
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
892
        else:
893
            reduce_all = True if axis is None or axis == [] else False
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
            block = LayerHelper('norm', **locals())
            pow_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_1 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_2 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            block.append_op(
                type='pow',
                inputs={'X': input},
                outputs={'Out': pow_out},
                attrs={'factor': porder},
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out_1},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': sum_out_1},
                outputs={'Out': sum_out_2},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='pow',
                inputs={'X': sum_out_2},
                outputs={'Out': out},
                attrs={'factor': float(1.0 / porder)},
            )
            return out
940 941 942 943 944 945 946 947 948

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        u, s, vh = svd(input, full_matrices=False)

949
        if in_dygraph_mode():
950
            if porder == "nuc":
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
                return _C_ops.sum(s, axis, None, False)
            max_out = _C_ops.max(s, axis, False)
            min_out = _C_ops.min(s, axis, False)
            if porder == 2:
                return _C_ops.divide(max_out, min_out)
            if porder == -2:
                return _C_ops.divide(min_out, max_out)
        else:
            reduce_all = True if axis is None or axis == [] else False
            block = LayerHelper('norm', **locals())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            if porder == "nuc":
                block.append_op(
                    type='reduce_sum',
                    inputs={'X': s},
                    outputs={'Out': out},
                    attrs={
                        'dim': axis,
                        'keep_dim': False,
                        'reduce_all': reduce_all,
                    },
974
                )
975 976 977 978 979 980 981
                return out
            max_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            min_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
982
            block.append_op(
983
                type='reduce_max',
984
                inputs={'X': s},
985
                outputs={'Out': max_out},
986 987
                attrs={
                    'dim': axis,
988
                    'keep_dim': False,
989 990 991 992
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
993 994 995 996 997 998 999 1000
                type='reduce_min',
                inputs={'X': s},
                outputs={'Out': min_out},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
1001
            )
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
            if porder == 2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': max_out, 'Y': min_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
            if porder == -2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': min_out, 'Y': max_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
1018 1019

    def empty_tensor(input, shape):
1020
        if in_dygraph_mode():
1021
            return input.reshape(shape)
1022 1023 1024
        raise ValueError(
            "only support x is nonempty tensor in static graph mode"
        )
1025 1026 1027

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1028
        raise ValueError(
1029 1030 1031
            "input should be a matrix or batches of matrices, "
            + "but the dimention of received input is {}".format(len(x_shape))
        )
1032
    if p is None:
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1045
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1046 1047
                    x_inv, porder=p, axis=[-2]
                )
1048
            if p in (np.inf, -np.inf):
1049
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1050 1051
                    x_inv, porder=p, axis=[-1]
                )
1052
        else:
1053 1054 1055 1056
            raise ValueError(
                "only support p is {} when input is a ".format(p)
                + "square matrix or batches of square matrices"
            )
1057 1058 1059 1060 1061 1062
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1063 1064 1065
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p)
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1066 1067


L
liuwei1031 已提交
1068 1069 1070
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1071

1072
    Note:
1073 1074
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1075 1076

    Parameters:
S
ShenLiang 已提交
1077 1078
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1079 1080
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1081
    Returns:
1082
        Tensor: the calculated result Tensor.
1083

L
liuwei1031 已提交
1084 1085 1086 1087 1088
    Examples:

    .. code-block:: python

        import paddle
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1099
        z = paddle.dot(x, y)
1100
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1101 1102

    """
1103 1104
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1105 1106
    else:
        op_type = 'dot'
1107

1108 1109
        assert x is not None, 'x cannot be None in {}'.format(op_type)
        assert y is not None, 'y cannot be None in {}'.format(op_type)
L
liuwei1031 已提交
1110

1111 1112 1113 1114 1115 1116
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
        )
L
liuwei1031 已提交
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126
        helper = LayerHelper(op_type, **locals())
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )
        helper.append_op(
            type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
1127
        )
1128
        return out
1129 1130


Z
zhiboniu 已提交
1131 1132 1133 1134 1135
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1136
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1170 1171
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1185 1186
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1187 1188 1189
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1190 1191 1192 1193
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1194 1195 1196
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1197 1198
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1199 1200 1201 1202 1203 1204 1205 1206
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1207 1208 1209 1210 1211
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1212 1213 1214
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1215 1216 1217 1218
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1219 1220 1221
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1222 1223
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1242
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1254 1255
def t(input, name=None):
    """
1256 1257
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1258
    the paddle.transpose function which perm dimensions set 0 and 1.
1259

1260
    Args:
1261
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1262
        name(str, optional): The default value is None.  Normally there is no need for
1263 1264
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1265
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1266

1267
    Examples:
1268

1269 1270 1271
        .. code-block:: python
           :name: code-example
             import paddle
1272

1273
             # Example 1 (0-D tensor)
1274 1275
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1276

1277
             # Example 2 (1-D tensor)
1278 1279 1280
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1281 1282

             # Example 3 (2-D tensor)
1283 1284 1285 1286 1287 1288 1289 1290
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1291

1292 1293 1294 1295 1296
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1297 1298
            "tensor.transpose() instead." % len(input.shape)
        )
1299
    if in_dygraph_mode():
1300
        if len(input.shape) <= 1:
1301 1302 1303
            return input
        # 2-D tensor
        perm = [1, 0]
1304
        out = _C_ops.transpose(input, perm)
1305
        return out
1306 1307 1308 1309 1310 1311 1312
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'transpose',
        )
1313

1314 1315 1316
        helper = LayerHelper('t', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        input_shape = helper.create_variable_for_type_inference(input.dtype)
1317
        if len(input.shape) <= 1:
1318 1319 1320 1321 1322 1323 1324 1325
            out = input
        else:
            helper.append_op(
                type='transpose2',
                inputs={'X': [input]},
                outputs={'Out': [out], 'XShape': [input_shape]},
                attrs={'axis': [1, 0]},
            )
1326 1327
        return out

1328

W
wanghuancoder 已提交
1329
def cross(x, y, axis=9, name=None):
1330
    """
1331
    Computes the cross product between two tensors along an axis.
1332

1333 1334
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1335

1336
    Args:
1337 1338
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1339
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1340
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1341 1342

    Returns:
1343
        Tensor. A Tensor with same data type as `x`.
1344

1345 1346
    Examples:
        .. code-block:: python
1347

1348
            import paddle
1349

Z
Zhou Wei 已提交
1350 1351 1352 1353 1354 1355
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1366
    """
J
Jiabin Yang 已提交
1367
    if in_dygraph_mode():
1368
        axis = K_DEFAULT_DIM if axis is None else axis
1369
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1370
    else:
1371 1372 1373 1374
        helper = LayerHelper("cross", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        attrs = dict()
        attrs['dim'] = axis
J
Jiabin Yang 已提交
1375

1376 1377 1378 1379 1380 1381 1382
        helper.append_op(
            type='cross',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1383 1384


1385
def cholesky(x, upper=False, name=None):
1386
    r"""
G
Guo Sheng 已提交
1387
    Computes the Cholesky decomposition of one symmetric positive-definite
1388 1389
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1390 1391 1392 1393 1394 1395
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1396
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1397 1398 1399 1400 1401
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1402 1403
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1404 1405

    Returns:
1406 1407
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1408

G
Guo Sheng 已提交
1409 1410 1411 1412 1413
    Examples:
        .. code-block:: python

            import paddle

1414 1415 1416 1417
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1418
            out = paddle.linalg.cholesky(x, upper=False)
1419
            print(out)
G
Guo Sheng 已提交
1420
    """
H
hong 已提交
1421
    if in_dygraph_mode():
1422
        return _C_ops.cholesky(x, upper)
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
        check_type(upper, 'upper', bool, 'cholesky')
        helper = LayerHelper('cholesky', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='cholesky',
            inputs={'X': [x]},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
G
Guo Sheng 已提交
1435 1436


1437 1438 1439 1440
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1441
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1442
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1443 1444

    Args:
1445 1446 1447 1448
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1449
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1450 1451
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1452
            the lower triangular of the matrix to compute.
1453 1454 1455 1456
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1457

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1474

1475
    """
1476 1477 1478 1479 1480 1481 1482
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1483 1484 1485
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1486

1487 1488 1489 1490 1491 1492
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1493
        return _C_ops.matrix_rank(x, tol_attr, hermitian, use_default_tol)
1494 1495 1496 1497 1498
    else:
        inputs = {}
        attrs = {}
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
        inputs['X'] = x
1499
        if tol is None:
1500
            attrs['use_default_tol'] = True
1501
        elif isinstance(tol, Variable):
1502
            attrs['use_default_tol'] = False
1503
            if tol.dtype != x.dtype:
1504
                inputs['TolTensor'] = cast(tol, x.dtype)
1505
            else:
1506
                inputs['TolTensor'] = tol
1507
        else:
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
            check_type(tol, 'tol', float, 'matrix_rank')
            attrs['use_default_tol'] = False
            attrs['tol'] = tol
        check_type(hermitian, 'hermitian', bool, 'matrix_rank')
        attrs['hermitian'] = hermitian

        helper = LayerHelper('matrix_rank', **locals())
        out = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
1520 1521


1522 1523 1524 1525 1526 1527 1528 1529 1530
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1531 1532
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1533 1534 1535 1536
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1537
        Tensor: The product Tensor.
1538 1539

    Examples:
S
sunzhongkai588 已提交
1540 1541 1542
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1543

S
sunzhongkai588 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1553 1554 1555 1556 1557 1558
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1559

1560
    """
1561
    if in_dygraph_mode():
1562
        return _C_ops.bmm(x, y)
1563
    else:
W
Weilong Wu 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
        x_shape = x.shape
        y_shape = y.shape
        if not len(x_shape) == len(y_shape) == 3:
            raise ValueError(
                "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[2] != y_shape[1]:
            raise ValueError(
                "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[0] != y_shape[0]:
            raise ValueError(
                "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
1584 1585 1586 1587 1588 1589
        helper = LayerHelper('bmm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
        return out
Q
Qi Li 已提交
1590 1591


1592
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1593
    """
1594
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1595 1596 1597
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1598
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1599
            should be float32, float64, int32, int64.
1600 1601 1602 1603
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1604 1605

    Returns:
1606
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1607

1608
    Examples:
Q
Qi Li 已提交
1609
        .. code-block:: python
1610

Q
Qi Li 已提交
1611
            import paddle
1612

1613
            inputs = paddle.to_tensor([1, 2, 1])
1614 1615
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1616
    """
H
hong 已提交
1617
    if in_dygraph_mode():
1618
        return _C_ops.histogram(input, bins, min, max)
1619 1620 1621 1622
    else:
        helper = LayerHelper('histogram', **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
1623
        )
1624 1625 1626 1627 1628 1629 1630 1631
        out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
        helper.append_op(
            type='histogram',
            inputs={'X': input},
            outputs={'Out': out},
            attrs={'bins': bins, 'min': min, 'max': max},
        )
        return out
S
smallv0221 已提交
1632 1633 1634 1635


def bincount(x, weights=None, minlength=0, name=None):
    """
1636
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1664 1665
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
1666 1667
    else:
        helper = LayerHelper('bincount', **locals())
S
smallv0221 已提交
1668

1669
        check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')
S
smallv0221 已提交
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
        if weights is not None:
            check_variable_and_dtype(
                weights,
                'Weights',
                ['int32', 'int64', 'float32', 'float64'],
                'bincount',
            )
            out = helper.create_variable_for_type_inference(dtype=weights.dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bincount',
            inputs={'X': x, 'Weights': weights},
            outputs={'Out': out},
            attrs={'minlength': minlength},
1686
        )
1687
        return out
1688 1689 1690 1691 1692 1693 1694


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1695
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1696
            should be one of float32, float64.
F
furnace 已提交
1697
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1713 1714
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1715
            out = paddle.mv(x, vec)
1716 1717 1718
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1719
    """
J
Jiabin Yang 已提交
1720
    if in_dygraph_mode():
1721
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1722
    else:
1723

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
        def __check_input(x, vec):
            var_names = {'x': x, 'vec': vec}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float32', 'float64'], 'mv'
                )
            x_shape = list(x.shape)
            vec_shape = list(vec.shape)
            if len(x_shape) != 2:
                raise ValueError(
                    "x should be 2-dimensional. But received x's dimention: {}".format(
                        x_shape
1736
                    )
1737 1738 1739 1740 1741
                )
            if len(vec_shape) != 1:
                raise ValueError(
                    "vec should be 1-dimensional. But received vec's dimention: {}".format(
                        vec_shape
1742
                    )
1743
                )
J
Jiabin Yang 已提交
1744

1745
        __check_input(x, vec)
J
Jiabin Yang 已提交
1746

1747 1748 1749 1750 1751 1752
        helper = LayerHelper('mv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
        )
        return out
1753 1754


1755
def det(x, name=None):
H
huangxu96 已提交
1756
    """
1757

H
huangxu96 已提交
1758
    Calculates determinant value of a square matrix or batches of square matrices.
1759

H
huangxu96 已提交
1760
    Args:
1761
        x (Tensor): the input matrix of size `(n, n)` or the
1762 1763
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.
1764 1765
        name(str, optional): Name of the output. Default is None. It's used
            to print debug info for developers. Details: :ref:`api_guide_Name`
1766

H
huangxu96 已提交
1767
    Returns:
1768
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1769

1770
    Examples:
H
huangxu96 已提交
1771 1772
        .. code-block:: python

1773
            import paddle
H
huangxu96 已提交
1774

1775
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1776

1777
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1778

1779
            print(A)
1780

1781
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1782

1783

H
huangxu96 已提交
1784
    """
C
chentianyu03 已提交
1785
    if in_dygraph_mode():
1786
        return _C_ops.det(x)
1787 1788
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')
C
chentianyu03 已提交
1789

1790 1791 1792 1793 1794
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1795

1796 1797 1798 1799 1800 1801 1802 1803
        assert (
            input_shape[-1] == input_shape[-2]
        ), "Expect squared input," "but received %s by %s matrix.\n" % (
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('determinant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1804

1805 1806 1807 1808
        helper.append_op(
            type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
        )
        return out
H
huangxu96 已提交
1809 1810


1811
def slogdet(x, name=None):
H
huangxu96 已提交
1812
    """
1813

H
huangxu96 已提交
1814
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
1815
    The determinant can be computed with ``sign * exp`` (logabsdet)
1816

H
huangxu96 已提交
1817 1818 1819
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
1820

H
huangxu96 已提交
1821 1822 1823 1824 1825
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
1826
        y (Tensor), A tensor containing the sign of the determinant and the natural logarithm
H
huangxu96 已提交
1827 1828
        of the absolute value of determinant, respectively.

1829
    Examples:
1830
        .. code-block:: python
H
huangxu96 已提交
1831

1832
            import paddle
H
huangxu96 已提交
1833

1834
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1835

1836
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1837

1838
            print(A)
1839

1840 1841
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1842 1843

    """
1844
    if in_dygraph_mode():
1845
        return _C_ops.slogdet(x)
1846 1847
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
1848

1849 1850 1851 1852 1853
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1854

1855 1856 1857 1858 1859 1860 1861 1862
        assert (
            input_shape[-1] == input_shape[-2]
        ), "Expect squared input," "but received %s by %s matrix.\n" % (
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('slogdeterminant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1863

1864 1865 1866 1867 1868 1869
        helper.append_op(
            type='slogdeterminant',
            inputs={'Input': [x]},
            outputs={'Out': [out]},
        )
        return out
H
huangxu96 已提交
1870 1871


1872 1873
def svd(x, full_matrices=False, name=None):
    r"""
1874 1875 1876 1877 1878
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1879 1880
        X = U * diag(S) * VT

1881 1882
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1883
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1884 1885
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
Z
Zman 已提交
1886
        full_matrices (bool, optional): A flag to control the behavor of svd.
1887
            If full_matrices = True, svd op will compute full U and V matrics,
1888
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1889
            If full_matrices = False, svd op will use a economic method to store U and V.
1890
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
Z
Zman 已提交
1891
            Default value is False.
1892
        name (str, optional): Name for the operation (optional, default is None).
1893
            For more information, please refer to :ref:`api_guide_Name`.
1894 1895

    Returns:
Z
Zman 已提交
1896 1897 1898 1899 1900
        - U (Tensor), is the singular value decomposition result U.
        - S (Tensor), is the singular value decomposition result S.
        - VH (Tensor), VH is the conjugate transpose of V, which is the singular value decomposition result V.

        Tuple of 3 tensors(U, S, VH): VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1901

1902 1903 1904 1905
    Examples:
        .. code-block:: python

            import paddle
1906 1907 1908

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1909
            u, s, vh = paddle.linalg.svd(x)
1910 1911 1912 1913 1914
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1915
            print (s)
1916
            #S = [8.14753743, 0.78589688]
1917
            print (vh)
1918 1919
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1920

1921
            # one can verify : U * S * VT == X
1922
            #                  U * UH == I
1923
            #                  V * VH == I
1924
    """
1925

1926
    if in_dygraph_mode():
1927
        return _C_ops.svd(x, full_matrices)
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
        check_type(full_matrices, 'full_matrices', bool, 'svd')
        helper = LayerHelper('svd', **locals())
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
        vh = helper.create_variable_for_type_inference(dtype=x.dtype)
        s = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = dict()
        attrs['full_matrices'] = full_matrices
        helper.append_op(
            type='svd',
            inputs={'X': [x]},
            outputs={'U': u, 'VH': vh, 'S': s},
            attrs=attrs,
        )
        return u, s, vh
1944 1945


1946 1947
def matrix_power(x, n, name=None):
    r"""
1948

1949
    Computes the n-th power of a square matrix or a batch of square matrices.
1950

1951 1952 1953 1954 1955
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1956

1957 1958
    Specifically,

1959
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1960

1961 1962
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1963
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1964 1965 1966 1967 1968 1969

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1970
        name (str, optional): Name for the operation (optional, default is None).
1971 1972 1973
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1974 1975
        - Tensor, The n-th power of the matrix (or the batch of matrices) `x`. Its
          data type should be the same as that of `x`.
1976 1977 1978 1979 1980 1981 1982 1983 1984

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1985
            print(paddle.linalg.matrix_power(x, 2))
1986 1987 1988 1989
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

1990
            print(paddle.linalg.matrix_power(x, 0))
1991 1992 1993 1994
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

1995
            print(paddle.linalg.matrix_power(x, -2))
1996 1997 1998 1999
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2000
    if in_dygraph_mode():
2001
        return _C_ops.matrix_power(x, n)
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'matrix_power'
        )
        check_type(n, 'n', int, 'matrix_power')
        helper = LayerHelper('matrix_power', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matrix_power',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'n': n},
        )
        return out
2016 2017


2018 2019 2020 2021 2022 2023 2024
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2025 2026
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2027
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2028
            If mode = "reduced", qr op will return reduced Q and R matrices,
2029
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2030
            If mode = "complete", qr op will return complete Q and R matrices,
2031 2032 2033 2034 2035
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2036

2037
    Returns:
2038
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2039
        If mode = "r", qr will return a tensor which represents R.
2040 2041

    Examples:
2042 2043
        .. code-block:: python

2044
            import paddle
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2057 2058

            # one can verify : X = Q * R ;
2059
    """
Y
Yulong Ao 已提交
2060
    if in_dygraph_mode():
2061
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2062 2063 2064 2065
        if mode == "r":
            return r
        else:
            return q, r
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
        check_type(mode, 'mode', str, 'qr')
        helper = LayerHelper('qr', **locals())
        q = helper.create_variable_for_type_inference(dtype=x.dtype)
        r = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = dict()
        attrs['mode'] = mode
        helper.append_op(
            type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
        )
2077 2078 2079 2080 2081 2082
        if mode == "r":
            return r
        else:
            return q, r


2083 2084
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2085
    Computes the LU factorization of an N-D(N>=2) matrix x.
2086

2087
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2088 2089 2090 2091
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2092 2093 2094 2095 2096 2097

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2109

2110
    Returns:
2111
        factorization (Tensor), LU matrix, the factorization of input X.
2112

2113 2114 2115
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2116

2117 2118 2119
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2120

2121 2122

    Examples:
2123 2124
        .. code-block:: python

2125
            import paddle
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2141

2142 2143 2144 2145 2146 2147
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2148
            # [1., 0., 0.]]),
2149 2150 2151 2152
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2153
            # [0.60000000, 0.50000000]]),
2154 2155 2156 2157 2158
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2159 2160

            # one can verify : X = P @ L @ U ;
2161
    """
L
Lin Manhui 已提交
2162 2163

    if in_dygraph_mode():
2164
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2165 2166 2167 2168 2169 2170 2171 2172
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
2173 2174 2175 2176 2177 2178
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2179 2180 2181 2182 2183 2184 2185 2186
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2187
    Unpack L U and P to single matrix tensor .
2188 2189 2190
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2191 2192 2193 2194 2195

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2209

2210
    Returns:
2211
        P (Tensor), Permutation matrix P of lu factorization.
2212

2213
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2214

2215
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2216

2217 2218

    Examples:
2219 2220
        .. code-block:: python

2221
            import paddle
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2237

2238 2239 2240 2241 2242 2243
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2244
            # [1., 0., 0.]]),
2245 2246 2247 2248
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2249
            # [0.60000000, 0.50000000]]),
2250 2251 2252 2253 2254
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2255
            # one can verify : X = P @ L @ U ;
2256 2257
    """

2258
    if in_dygraph_mode():
2259
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2260
        return P, L, U
2261 2262 2263
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'lu_unpack'
2264
        )
2265 2266 2267 2268
        helper = LayerHelper('lu_unpack', **locals())
        p = helper.create_variable_for_type_inference(dtype=x.dtype)
        l = helper.create_variable_for_type_inference(dtype=x.dtype)
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
2269

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
        attrs = dict()
        attrs['unpack_ludata'] = unpack_ludata
        attrs['unpack_pivots'] = unpack_pivots
        helper.append_op(
            type='lu_unpack',
            inputs={'X': x, 'Pivots': y},
            outputs={'Pmat': p, 'L': l, 'U': u},
            attrs=attrs,
        )
        return p, l, u
2280 2281


L
Lijunhui 已提交
2282 2283
def eig(x, name=None):
    """
2284
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2285

2286 2287 2288 2289 2290 2291
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2292 2293 2294 2295

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2296
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2310
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2311
                               [9.956216,  8.749598,  6.066444 ],
2312
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2313
            w, v = paddle.linalg.eig(x)
2314
            print(v)
L
Lijunhui 已提交
2315 2316 2317 2318 2319 2320 2321 2322
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2323
            print(w)
L
Lijunhui 已提交
2324 2325 2326 2327
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2328

2329
    if in_dygraph_mode():
2330
        return _C_ops.eig(x)
2331 2332 2333 2334 2335
    else:
        check_variable_and_dtype(
            x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
        )
        helper = LayerHelper('eig', **locals())
L
Lijunhui 已提交
2336

2337 2338
        w = helper.create_variable_for_type_inference(x.dtype)
        v = helper.create_variable_for_type_inference(x.dtype)
L
Lijunhui 已提交
2339

2340 2341 2342
        inputs = {'X': x}
        outputs = {'Eigenvalues': w, 'Eigenvectors': v}
        helper.append_op(type='eig', inputs=inputs, outputs=outputs)
L
Lijunhui 已提交
2343

2344
        return w, v
L
Lijunhui 已提交
2345 2346


2347 2348 2349
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2350 2351 2352

    Warning:
        The gradient kernel of this operator does not yet developed.
2353 2354 2355 2356
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2357
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2358
            Its data type should be float32, float64, complex64, or complex128.
2359
        name (str, optional): Name for the operation (optional, default is None).
2360
            For more information, please refer to :ref:`api_guide_Name`.
2361

2362
    Returns:
2363 2364
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2365 2366 2367 2368 2369

    Examples:
        .. code-block:: python

            import paddle
2370

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2386 2387 2388 2389
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2390 2391 2392

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2393 2394 2395 2396
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2397

R
Ruibiao Chen 已提交
2398
    if in_dygraph_mode():
2399
        return _C_ops.eigvals(x)
2400
    else:
2401 2402 2403 2404 2405 2406
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvals',
        )
2407 2408 2409 2410
        helper = LayerHelper('eigvals', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
        return out
2411 2412


2413 2414 2415 2416
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2417
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2454 2455
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2456
        out = paddle.linalg.multi_dot([A, B])
2457
        print(out.shape)
2458 2459 2460
        # [3, 5]

        # A * B * C
2461 2462 2463
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2464
        out = paddle.linalg.multi_dot([A, B, C])
2465
        print(out.shape)
2466 2467 2468
        # [10, 7]

    """
2469
    if in_dygraph_mode():
2470
        return _C_ops.multi_dot(x)
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
    else:
        check_type(x, 'x', (list, tuple), 'multi_dot')
        for id, item in enumerate(x):
            check_variable_and_dtype(
                item,
                'x[' + str(id) + ']',
                ['float16', 'float32', 'float64'],
                'multi_dot',
            )
            if item.dtype != x[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
2484

2485 2486 2487 2488 2489
        helper = LayerHelper('multi_dot', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='multi_dot', inputs={"X": x}, outputs={"Out": out}
2490
        )
2491
        return out
2492 2493 2494 2495


def eigh(x, UPLO='L', name=None):
    """
2496
    Compute the eigenvalues and eigenvectors of a
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2508 2509 2510 2511
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2512 2513 2514 2515 2516 2517

    Examples:
        .. code-block:: python

            import paddle

2518
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2519
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2520 2521 2522 2523 2524 2525 2526
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2527
    if in_dygraph_mode():
2528
        return _C_ops.eigh(x, UPLO)
2529
    else:
H
hong 已提交
2530

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
                    "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
2547
                )
2548

2549
        __check_input(x, UPLO)
2550

2551 2552 2553 2554 2555 2556 2557
        helper = LayerHelper('eigh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigh',
        )
2558

2559 2560
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
2561

2562 2563 2564 2565 2566 2567 2568
        helper.append_op(
            type='eigh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO},
        )
        return out_value, out_vector
A
andyjpaddle 已提交
2569 2570 2571 2572


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2573
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2584

A
andyjpaddle 已提交
2585 2586 2587
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2588 2589 2590
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2591 2592 2593 2594
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2595
        rcond(Tensor, optional): the tolerance value to determine
2596
            when is a singular value zero. Default:1e-15.
2597 2598

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2599
            if complex or symmetric if real. Default: False.
2600 2601

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2602
            the layer will be named automatically.
2603

A
andyjpaddle 已提交
2604
    Returns:
2605
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2606
        pseudo inverse of x. Its shape should be (*, n, m).
2607

A
andyjpaddle 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2634 2635 2636
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2637 2638
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2639 2640 2641 2642
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2643

2644 2645 2646 2647 2648 2649
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2650
            st = _C_ops.unsqueeze(singular, [-2])
2651 2652 2653

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2654
            v = _C_ops.transpose(vt, perm)
2655 2656

            out_1 = v * st
2657
            out_2 = _C_ops.matmul(out_1, u, False, True)
2658 2659 2660
            return out_2
        else:
            # combine eigh and matmul op
2661
            s, u = _C_ops.eigh(x, 'UPLO')
2662
            s_abs = paddle.abs(s)
2663
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2675
            st = _C_ops.unsqueeze(singular, [-2])
2676 2677

            out_1 = u * st
2678 2679
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2680
            return out_2
A
andyjpaddle 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2693
                outputs={'U': u, 'VH': vt, 'S': s},
2694 2695
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2696 2697

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2698 2699 2700 2701 2702 2703
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2704

2705
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2706 2707
            cutoff = rcond * max_singular_val
            y = float('inf')
2708
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2709 2710

            condition = s > cutoff
2711 2712 2713 2714 2715
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2716 2717 2718

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2719 2720 2721 2722 2723 2724
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2725 2726 2727 2728 2729

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2730 2731 2732 2733 2734 2735
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2736 2737

            out_1 = helper.create_variable_for_type_inference(dtype)
2738 2739 2740 2741 2742 2743
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2744 2745 2746 2747 2748
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2749
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2750
                outputs={'Out': out_2},
2751
                attrs={'trans_x': False, 'trans_y': True},
2752
            )
A
andyjpaddle 已提交
2753 2754 2755 2756 2757
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2758 2759 2760 2761 2762
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2773 2774 2775 2776 2777 2778
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2779
            s_abs = helper.create_variable_for_type_inference(s_type)
2780 2781 2782
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2783
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2784 2785 2786 2787 2788 2789
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2790

2791
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2792 2793
            cutoff = rcond * max_singular_val
            y = float('inf')
2794
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2795 2796

            condition = s_abs > cutoff
2797 2798 2799 2800 2801
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2802 2803 2804

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2805 2806 2807 2808 2809 2810
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2811 2812

            out_1 = helper.create_variable_for_type_inference(dtype)
2813 2814 2815 2816 2817 2818
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2819 2820 2821
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2822 2823 2824
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
2825 2826 2827 2828

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2829
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
2830
                outputs={'Out': out_2},
2831
                attrs={'trans_x': False, 'trans_y': True},
2832
            )
A
andyjpaddle 已提交
2833
            return out_2
W
Weilong Wu 已提交
2834 2835 2836 2837


def solve(x, y, name=None):
    r"""
2838

W
Weilong Wu 已提交
2839
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
2840
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
W
Weilong Wu 已提交
2841
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2842

W
Weilong Wu 已提交
2843 2844
    .. math::
        Out = X^-1 * Y
2845 2846

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2847

W
Weilong Wu 已提交
2848
    Args:
2849
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be ``[*, M, M]``, where ``*`` is zero or
W
Weilong Wu 已提交
2850
            more batch dimensions. Its data type should be float32 or float64.
2851
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be ``[*, M, K]``, where ``*`` is zero or
W
Weilong Wu 已提交
2852
            more batch dimensions. Its data type should be float32 or float64.
2853
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2854
            For more information, please refer to :ref:`api_guide_Name`.
2855

W
Weilong Wu 已提交
2856
    Returns:
2857
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2858
        Its data type should be the same as that of `x`.
2859

W
Weilong Wu 已提交
2860
    Examples:
2861

2862
        .. code-block:: python
2863

2864 2865 2866
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2867

2868 2869 2870 2871 2872
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2873

2874 2875
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2876
    """
2877
    if in_dygraph_mode():
2878
        return _C_ops.solve(x, y)
2879 2880 2881 2882 2883 2884
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("solve", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2885

2886 2887 2888 2889
        helper.append_op(
            type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
2890 2891


2892 2893 2894
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
2895
    r"""
2896 2897
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
2911 2912 2913 2914

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2915
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
2916
            zero or more batch dimensions. Its data type should be float32 or float64.
2917
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
2918 2919
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
2920
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
2921 2922 2923 2924 2925 2926 2927 2928
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
2929
        .. code-block:: python
2930

2931 2932 2933 2934
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
2935

2936 2937 2938 2939 2940 2941
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
2942

2943 2944
            print(out)
            # [7, -2, -5]
2945
    """
H
hong 已提交
2946
    if in_dygraph_mode():
2947
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
2948 2949 2950 2951 2952
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("triangular_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'triangular_solve'
2953
        )
2954 2955 2956 2957
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'triangular_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
        helper.append_op(
            type='triangular_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={
                'upper': upper,
                'transpose': transpose,
                'unitriangular': unitriangular,
            },
        )
        return out
2970 2971


Z
zhiboniu 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2982
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
2992
        .. code-block:: python
Z
zhiboniu 已提交
2993

2994
            import paddle
Z
zhiboniu 已提交
2995

2996 2997 2998 2999 3000
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3001

3002 3003
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3004
    """
H
hong 已提交
3005
    if in_dygraph_mode():
3006
        return _C_ops.cholesky_solve(x, y, upper)
3007 3008 3009 3010 3011 3012 3013 3014 3015
    else:
        helper = LayerHelper("cholesky_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'cholesky_solve'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'cholesky_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3016

3017 3018 3019 3020 3021 3022 3023
        helper.append_op(
            type='cholesky_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
Z
zhiboniu 已提交
3024 3025


3026 3027
def eigvalsh(x, UPLO='L', name=None):
    """
3028
    Computes the eigenvalues of a
3029 3030 3031
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
3032
        x (Tensor): A tensor with shape :math:`[*, M, M]` , where * is zero or greater batch dimension. The data type of the input Tensor x
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3046
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3047 3048
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3049 3050
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3051
    """
3052
    if in_dygraph_mode():
3053
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3054
        return values
3055
    else:
3056

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
                    "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
3073
                )
3074

3075
        __check_input(x, UPLO)
3076

3077 3078 3079 3080 3081 3082 3083
        helper = LayerHelper('eigvalsh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvalsh',
        )
3084

3085 3086
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
3087

3088 3089 3090 3091 3092 3093 3094 3095
        is_test = x.stop_gradient
        helper.append_op(
            type='eigvalsh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO, 'is_test': is_test},
        )
        return out_value
3096 3097


3098 3099 3100 3101 3102 3103 3104 3105
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3106
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3107
            should be one of float32, float64.
3108 3109
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3110
            machine precision of x_dtype.
3111 3112 3113
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3114
            for CUDA inputs.
3115
        name(str, optional): The default value is None. Normally there is no need for user to set
3116 3117 3118
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3119 3120 3121 3122 3123 3124 3125
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3158 3159 3160
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3161 3162 3163 3164
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3165 3166 3167 3168
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3169 3170 3171 3172
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3173 3174 3175 3176
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3177
    if not (x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64)):
3178 3179 3180 3181
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
    if x.ndim < 2:
        raise ValueError(
            f"The shape of x should be (*, M, N), but received ndim is [{x.ndim} < 2]"
        )

    if y.ndim < 2:
        raise ValueError(
            f"The shape of y should be (*, M, K), but received ndim is [{y.ndim} < 2]"
        )

    if x.shape[-2] != y.shape[-2]:
        raise ValueError(
            f"x with shape (*, M = {x.shape[-2]}, N) and y with shape (*, M = {y.shape[-2]}, K) should have same M."
        )

3197 3198 3199 3200 3201 3202
    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3203 3204 3205 3206
    if in_dygraph_mode():
        solution, residuals, rank, singular_values = _C_ops.lstsq(
            x, y, rcond, driver
        )
3207 3208 3209 3210 3211 3212 3213
        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
    else:
        helper = LayerHelper('lstsq', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
        check_variable_and_dtype(
            y,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
3228

3229 3230 3231 3232 3233 3234
        solution = helper.create_variable_for_type_inference(dtype=x.dtype)
        residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
        rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
        singular_values = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )
3235

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
        helper.append_op(
            type='lstsq',
            inputs={'X': x, 'Y': y},
            outputs={
                'Solution': solution,
                'Residuals': residuals,
                'Rank': rank,
                'SingularValues': singular_values,
            },
            attrs={'rcond': rcond, 'driver': driver},
        )
3247

3248 3249 3250 3251 3252 3253 3254 3255 3256
        if driver == "gels":
            rank = paddle.static.data(name='rank', shape=[0])
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
        elif driver == "gelsy":
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
3257

3258
        return solution, residuals, rank, singular_values
3259 3260 3261 3262


def corrcoef(x, rowvar=True, name=None):
    """
3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3302 3303
            "length of Input(input) is %s." % len(x.shape)
        )
3304 3305 3306
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3307
    if c.ndim == 0:
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3322 3323 3324
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3325 3326 3327 3328
    else:
        c = paddle.clip(c, -1, 1)

    return c