analysis_predictor.cc 117.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
20
#include <cstdlib>
N
nhzlx 已提交
21
#include <fstream>
22
#include <memory>
23
#include <set>
24
#include <string>
25
#include <utility>
26
#include <vector>
27

W
Wilber 已提交
28
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
29
#include "paddle/fluid/framework/feed_fetch_method.h"
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
32
#include "paddle/fluid/framework/ir/pass.h"
33
#include "paddle/fluid/framework/naive_executor.h"
34
#include "paddle/fluid/framework/op_proto_maker.h"
35
#include "paddle/fluid/framework/operator.h"
36
#include "paddle/fluid/framework/scope.h"
J
JingZhuangzhuang 已提交
37
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yan Chunwei 已提交
38
#include "paddle/fluid/framework/var_type_traits.h"
39
#include "paddle/fluid/framework/version.h"
40
#include "paddle/fluid/inference/analysis/helper.h"
41
#include "paddle/fluid/inference/analysis/pass_result_info.h"
42
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
43
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
44
#include "paddle/fluid/inference/api/helper.h"
45
#include "paddle/fluid/inference/api/infer_context.h"
46
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
47
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
48
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
W
Wilber 已提交
49
#include "paddle/fluid/inference/api/resource_manager.h"
50
#include "paddle/fluid/inference/utils/io_utils.h"
51
#include "paddle/fluid/inference/utils/model_utils.h"
52
#include "paddle/fluid/inference/utils/singleton.h"
53
#include "paddle/fluid/memory/memcpy.h"
54
#include "paddle/fluid/platform/cpu_helper.h"
55
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
56
#include "paddle/fluid/platform/device_context.h"
57
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
58
#include "paddle/fluid/platform/profiler.h"
59
#include "paddle/phi/api/include/tensor.h"
60 61
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
62
#include "paddle/phi/common/place.h"
W
Wilber 已提交
63
#include "paddle/phi/core/enforce.h"
64
#include "paddle/phi/core/generator.h"
65
#include "paddle/phi/kernels/funcs/data_type_transform.h"
66 67
#include "paddle/utils/string/split.h"

68
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
69 70 71 72
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
73

74
#ifdef PADDLE_WITH_MKLML
75
#include "paddle/phi/backends/dynload/mklml.h"
76 77
#endif

78
#ifdef PADDLE_WITH_DNNL
79 80 81
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

82 83 84 85
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

86
#ifdef PADDLE_WITH_TENSORRT
Y
Yan Chunwei 已提交
87
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
88
#include "paddle/fluid/inference/tensorrt/helper.h"
89
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
90 91
#endif

92 93 94 95
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

96 97 98 99
#ifdef PADDLE_WITH_XPU
#include "paddle/phi/backends/xpu/xpu_info.h"
#endif

100
namespace paddle {
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
namespace {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
void UpdatePrivateDeviceContext(InferGPUContext *gpu_context,
                                GPUContextResource *gpu_resource,
                                Place place_) {
  gpu_context->SetAllocator(memory::allocation::AllocatorFacade::Instance()
                                .GetAllocator(place_, gpu_resource->GetStream())
                                .get());
  gpu_context->SetPinnedAllocator(
      memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
  gpu_context->SetHostAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetAllocator(platform::CPUPlace())
                                    .get());
  gpu_context->SetZeroAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetZeroAllocator(place_)
                                    .get());
  gpu_context->SetHostZeroAllocator(
      memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(platform::CPUPlace())
          .get());
  gpu_context->SetGenerator(
      phi::DefaultCUDAGenerator(place_.GetDeviceId()).get());
  gpu_context->SetHostGenerator(phi::DefaultCPUGenerator().get());

  gpu_context->SetStream(gpu_resource->GetStream());
  gpu_context->SetBlasHandle(gpu_resource->GetBlasHandleCreator());
  gpu_context->SetBlasTensorCoreHandle(
      gpu_resource->GetBlasTensorCoreHandleCreator());
  gpu_context->SetBlasTF32Handle(
      gpu_resource->GetBlasTF32TensorCoreHandleCreator());
  gpu_context->SetDnnHandle(gpu_resource->GetDnnHandleCreator());
  gpu_context->SetSolverHandle(gpu_resource->GetSolverDnHandleCreator());
  gpu_context->SetSparseHandle(gpu_resource->GetSparseHandleCreator());
  gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDevice());

  gpu_context->SetComputeCapability(gpu_resource->GetGpuComputeCapability());
  gpu_context->SetMaxThreadsPerBlock(gpu_resource->GetGpuMaxThreadsPerBlock());
  gpu_context->SetMaxThreadsPerMultiProcessor(
      gpu_resource->GetGpuMaxThreadsPerMp());
  gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
  gpu_context->SetMultiProcessors(gpu_resource->GetGPUMultiProcessors());
  gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
  gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
  VLOG(1) << "thread id is " << std::this_thread::get_id() << ", stream id is "
          << reinterpret_cast<void *>(gpu_resource->GetStream())
          << ", allotor ptr is "
          << reinterpret_cast<void *>(
                 memory::allocation::AllocatorFacade::Instance()
                     .GetAllocator(place_, gpu_resource->GetStream())
                     .get());
}
#endif
}  // namespace
156

N
nhzlx 已提交
157
using inference::Singleton;
158
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
159 160
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
161
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
162
#endif
163

164 165
int AnalysisPredictor::clone_num_ = 1;

166 167 168 169
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
170 171
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
172 173 174 175
    return true;
  }
  return false;
}
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

195
phi::Backend ConvertBackend(paddle_infer::PlaceType backend) {
196
  switch (backend) {
197
    case paddle_infer::PlaceType::kGPU:
198 199
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
200
    case paddle_infer::PlaceType::kXPU:
201
      return phi::Backend::XPU;
202
    case paddle_infer::PlaceType::kCPU:
203
      return phi::Backend::CPU;
204 205
    case paddle_infer::PlaceType::kIPU:
      return phi::Backend::IPU;
206 207
    case paddle_infer::PlaceType::kCUSTOM:
      return phi::Backend::CUSTOM;
208 209
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
210 211
          "Paddle Inference not support backend, we now only support GPU, XPU "
          "and CPU."));
212 213 214
      return phi::Backend::CPU;
  }
}
215

216 217 218
bool PaddleTensorToDenseTensor(const PaddleTensor &pt,
                               phi::DenseTensor *t,
                               const platform::Place &place) {
219
  framework::DDim ddim = phi::make_ddim(pt.shape);
220 221 222 223 224 225 226
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
227 228
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
229 230 231 232
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }
233 234 235
  // NOTE(Aurelius84): Some kernels support zero shape input
  // without memory holder, we should skip enforce logic.
  bool has_zero_dim = (phi::product(ddim) == 0);
236 237 238
  VLOG(3) << "Found zero dim: " << has_zero_dim
          << " from input with ddim: " << ddim;
  if (!has_zero_dim) {
239 240 241 242 243 244 245 246
    PADDLE_ENFORCE_NOT_NULL(
        input_ptr,
        paddle::platform::errors::Fatal(
            "Cannot convert to LoDTensor because LoDTensor creation failed."));
    PADDLE_ENFORCE_NOT_NULL(
        pt.data.data(),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor is illegal."));
247 248
    PADDLE_ENFORCE_EQ(
        pt.data.length(),
249
        t->numel() * phi::SizeOf(t->dtype()),
250 251
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor had wrong length."));
252
  }
253 254 255

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
256 257 258 259
    if (input_ptr != nullptr) {
      std::memcpy(
          static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
    }
J
jianghaicheng 已提交
260 261
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
262 263
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
264 265 266 267
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
268
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
269 270
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
271 272
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
273
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
274
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
275
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(place));
276
    auto dst_gpu_place = place;
C
ccrrong 已提交
277 278 279 280 281
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
282 283 284 285 286
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
287 288
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
289
    auto dst_xpu_place = place;
C
ccrrong 已提交
290 291 292 293 294
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
295 296 297
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    auto custom_place = place;
    auto *dev_ctx = static_cast<const paddle::platform::CustomDeviceContext *>(
        pool.Get(custom_place));
    memory::Copy(custom_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUSTOM_DEVICE, should not reach here."));
315 316 317
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
318 319
        "The analysis predictor supports CPU, GPU, XPU and CUSTOM_DEVICE "
        "now."));
320 321 322 323 324 325 326 327 328
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}
329
}  // namespace
330

Y
Yan Chunwei 已提交
331
bool AnalysisPredictor::Init(
332 333
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
334
  VLOG(3) << "Predictor::init()";
335 336
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
337 338
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
339
    platform::EnableProfiler(tracking_device);
340
  } else {
341 342
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
343 344
  }

345 346 347 348
  if (!status_is_cloned_) {
    root_predictor_id_ = predictor_id_;
  }

349
  // no matter with or without MKLDNN
L
luotao1 已提交
350
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
351

352 353 354
  if (!PrepareScope(parent_scope)) {
    return false;
  }
355 356 357

  InitPlace();

358 359 360 361 362 363 364
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

365 366 367
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

368 369 370
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
371
  }
372

373 374 375 376 377 378 379 380 381 382 383 384 385
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
L
Leo Chen 已提交
386
        static_cast<phi::GPUContext *>(
387 388 389 390 391 392
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
393
  }
C
csy0225 已提交
394 395
#endif
#if defined(PADDLE_WITH_XPU)
Z
zhupengyang 已提交
396
  if (config_.use_xpu_ && !config_.use_lite_) {
C
csy0225 已提交
397
    private_context_ = true;
398
    if (!status_is_cloned_ && config_.external_stream_enabled()) {
C
csy0225 已提交
399 400
      predictor_stream_ = config_.GetExecStream();
    }
401
    if (predictor_stream_ == nullptr) {
402 403 404
      auto *global_context = static_cast<phi::XPUContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      predictor_stream_ = global_context->stream();
C
csy0225 已提交
405
    }
406
    InitDeviceContexts();
C
csy0225 已提交
407
  }
408
#endif
409

410
  inference::DisplayMemoryInfo(place_, "Init predictor");
411 412
  return true;
}
413

414
void AnalysisPredictor::InitPlace() {
415
  if (config_.use_gpu()) {
C
ccrrong 已提交
416 417
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
418 419
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
420
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
421
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
422
    if (config_.thread_local_stream_enabled()) {
W
Wilber 已提交
423 424
      LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. "
                                 "Please use config.SetExecStream instead.";
425 426
    }
#endif
427
  } else if (config_.use_xpu()) {
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
443
      phi::backends::xpu::SetXPUDeviceId(config_.xpu_device_id());
444 445 446 447 448 449 450 451
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
468 469 470 471 472 473 474
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
475 476 477
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
478 479
    place_ = paddle::platform::CustomPlace(config_.custom_device_type(),
                                           config_.custom_device_id());
480 481 482 483 484
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
485
#endif
486 487 488
  } else {
    place_ = paddle::platform::CPUPlace();
  }
489 490 491 492 493 494 495 496 497 498 499
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
500
  // Init GPUContext.
501 502 503 504 505
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
W
Wilber 已提交
506
          auto *gpu_context = new InferGPUContext(place_);
507
          UpdatePrivateDeviceContext(gpu_context, gpu_resource, place_);
508 509 510
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
C
csy0225 已提交
511
#endif
512
#ifdef PADDLE_WITH_XPU
C
csy0225 已提交
513 514 515 516
  if (place_.GetType() == phi::AllocationType::XPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto &instance = memory::allocation::AllocatorFacade::Instance();
517 518
          auto *xpu_context =
              new InferXPUContext(place_, config_.xpu_config().context_gm_size);
C
csy0225 已提交
519 520 521 522 523 524 525 526 527 528
          xpu_context->SetAllocator(instance.GetAllocator(place_).get());
          xpu_context->SetGenerator(
              phi::DefaultXPUGenerator(place_.GetDeviceId()).get());
          xpu_context->SetHostAllocator(
              instance.GetAllocator(platform::CPUPlace()).get());
          xpu_context->SetHostGenerator(phi::DefaultCPUGenerator().get());
          xpu_context->SetZeroAllocator(
              instance.GetZeroAllocator(place_).get());
          xpu_context->SetHostZeroAllocator(
              instance.GetZeroAllocator(platform::CPUPlace()).get());
529
          xpu_context->SetStream(predictor_stream_);
C
csy0225 已提交
530 531 532
          return std::unique_ptr<phi::DeviceContext>(xpu_context);
        }));
  }
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
#endif
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  }
548 549 550
#endif
#if defined(PADDLE_WITH_XPU)
  if (place_.GetType() == phi::AllocationType::XPU) {
C
csy0225 已提交
551 552 553 554 555 556 557 558
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::XPUContext *>(pool.Get(place_))
          ->stream();
    }
559
  }
560 561 562 563 564 565 566 567
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (place_.GetType() == phi::AllocationType::CUSTOM) {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    return reinterpret_cast<const phi::CustomContext *>(pool.Get(place_))
        ->stream();
  }
568
#endif
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
  // TODO(inference): Support other backends.
  return nullptr;
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
586 587 588 589 590
#ifdef PADDLE_WITH_XPU
  // Set "XPU_PADDLE_L3_SIZE" to "0" to avoid malloc l3 cache when xpu_context
  // init.
  setenv("XPU_PADDLE_L3_SIZE", "0", 0);
#endif
591 592 593 594 595 596 597 598
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
599
    paddle::framework::InitMemoryMethod();
600
    paddle::framework::InitDevices();
601 602
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
603
    scope_ = std::make_unique<paddle::framework::Scope>();
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
626 627
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
628 629 630 631 632
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
633 634 635 636 637
    if (config_.apply_optim_) {
      VLOG(3)
          << "apply_optim is enabled, will call OptimizeInferenceProgram().";
      OptimizeInferenceProgram();
    }
638 639 640 641 642 643
  }
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);
  return true;
}

bool AnalysisPredictor::CreateExecutor() {
644
  executor_ = std::make_unique<paddle::framework::NaiveExecutor>(place_);
645 646
  return true;
}
W
wenbin 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
666 667
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
668 669 670 671 672 673 674 675 676
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
677 678
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
679 680
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
681 682 683
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
684 685 686
  }
}

687
bool AnalysisPredictor::PrepareExecutor() {
688
  if (config_.dist_config().use_dist_model()) {
689
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
690 691
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
692 693 694 695
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use FleetExecutor since it's not compiled with PSCORE,"
        "Please recompile or reinstall Paddle with PSCORE support."));
696
#endif
697
  }
W
wenbin 已提交
698 699
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
700 701
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
702

703 704 705 706 707 708 709 710 711
  if (config_.enable_memory_optim_) {
    auto *pass_res_info =
        inference::analysis::PassResultInfoForRuntime::Instance();
    auto reuse_table =
        pass_res_info->Get<std::unordered_map<std::string, std::string>>(
            root_predictor_id_, "memory_optimize_pass");
    executor_->MakeReusePlan(reuse_table);
  }

712 713 714
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
715

716 717 718
  return true;
}

719
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
720 721 722 723 724
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
725 726
  task_node_ = std::make_unique<distributed::TaskNode>(
      inference_program_.get(), config_.dist_config().rank());
727 728 729 730 731 732 733 734 735 736 737 738
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
739
  fleet_exe_ = std::make_unique<distributed::FleetExecutor>(executor_desc_);
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
756 757 758 759 760 761 762
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
799 800 801 802 803 804
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
805 806 807 808 809 810 811 812 813 814 815
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
816 817 818 819 820
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
  } else if (config_.use_xpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_bkcl_id_op = block->AppendOp();
    gen_bkcl_id_op->SetType("c_gen_bkcl_id");
    gen_bkcl_id_op->SetOutput("Out", {tmp_var_name});
    gen_bkcl_id_op->SetAttr("rank", rank);
    gen_bkcl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_bkcl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_bkcl_id_op->SetAttr("ring_id", ring_id);
    gen_bkcl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_bkcl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else if (config_.use_custom_device()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_bkcl_id_op = block->AppendOp();
    gen_bkcl_id_op->SetType("c_gen_xccl_id");
    gen_bkcl_id_op->SetOutput("Out", {tmp_var_name});
    gen_bkcl_id_op->SetAttr("rank", rank);
    gen_bkcl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_bkcl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_bkcl_id_op->SetAttr("ring_id", ring_id);
    gen_bkcl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_bkcl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
909 910 911
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
912 913 914 915 916 917 918 919 920 921 922 923 924
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
925 926
      static_cast<bool>(fin.is_open()),
      true,
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

999
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
1000
#ifdef PADDLE_WITH_DNNL
W
Wilber 已提交
1001
  std::vector<std::vector<int>> inputs_shape;
1002 1003
  for (const auto &input : inputs) {
    inputs_shape.emplace_back(input.shape);
W
Wilber 已提交
1004 1005 1006 1007 1008
  }
  MkldnnPreSet(inputs_shape);
#endif
}

1009 1010
void AnalysisPredictor::MkldnnPreSet(
    const std::vector<paddle::Tensor> &inputs) {
1011
#ifdef PADDLE_WITH_DNNL
1012
  std::vector<std::vector<int>> inputs_shape;
1013 1014
  for (const auto &input : inputs) {
    inputs_shape.emplace_back(phi::vectorize<int>(input.dims()));
1015 1016 1017 1018 1019
  }
  MkldnnPreSet(inputs_shape);
#endif
}

W
Wilber 已提交
1020 1021
void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
1022
#ifdef PADDLE_WITH_DNNL
W
Wilber 已提交
1023
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
1024
          << phi::OneDNNContext::tls().get_cur_mkldnn_session_id();
1025 1026 1027
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
1028 1029
    phi::OneDNNContext::tls().set_cur_mkldnn_session_id(
        phi::OneDNNContextThreadLocals::kMKLDNNSessionID_CacheClearing);
1030 1031
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
1032 1033 1034
    for (const auto &input_shape : inputs_shape) {
      for (int item : input_shape) {
        ss << item << "-";
1035 1036 1037
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
1038
    phi::OneDNNContext::tls().set_cur_input_shape_str(ss.str());
1039
  }
1040
  phi::OneDNNContext::tls().set_cur_input_shape_cache_capacity(
1041 1042
      config_.mkldnn_cache_capacity_);

1043 1044 1045 1046
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
1047
#ifdef PADDLE_WITH_DNNL
1048
  // In cache clearing mode.
1049
  if (config_.mkldnn_cache_capacity_ > 0 &&
1050
      static_cast<phi::OneDNNContext *>(
1051 1052
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
1053
    if (VLOG_IS_ON(2)) {
1054
      auto shape_blob_size = static_cast<phi::OneDNNContext *>(
1055 1056 1057 1058 1059 1060
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
1061 1062 1063
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
1064 1065 1066 1067
  }
#endif
}

1068 1069 1070
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
1071
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
1072
#ifdef PADDLE_WITH_DNNL
1073 1074
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
1075
  VLOG(3) << "Predictor::predict";
1076 1077 1078 1079
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
1080 1081 1082
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
1083 1084
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
1085
    return false;
1086
  }
M
Michal Gallus 已提交
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1097 1098 1099
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
1100

1101 1102 1103 1104
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
1105
  }
Y
Yan Chunwei 已提交
1106

M
minqiyang 已提交
1107
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
1108

Y
Yan Chunwei 已提交
1109 1110 1111 1112 1113
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
1114 1115 1116
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
1117
  tensor_array_batch_cleaner_.ResetNoTensorVars();
1118 1119 1120 1121

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1122
#ifdef PADDLE_WITH_DNNL
1123
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
1124
#endif
1125
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1126 1127 1128
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
1129
  phi::dynload::MKL_Free_Buffers();
1130
#endif
1131 1132
  return true;
}
1133

1134 1135 1136 1137
bool AnalysisPredictor::Run(const std::vector<paddle::Tensor> &inputs,
                            std::vector<paddle::Tensor> *outputs) {
  inference::DisplayMemoryInfo(place_, "before run");
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
1138
#ifdef PADDLE_WITH_DNNL
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
  VLOG(3) << "predict start";
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();

  inference::DisplayMemoryInfo(place_, "after run");

  // get fetch variable
  if (!GetFetch(outputs, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
  }

  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
  tensor_array_batch_cleaner_.ResetNoTensorVars();

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1186
#ifdef PADDLE_WITH_DNNL
1187 1188 1189 1190 1191 1192
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
#if defined(PADDLE_WITH_MKLML)
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
1193
  phi::dynload::MKL_Free_Buffers();
1194 1195 1196 1197
#endif
  return true;
}

1198 1199
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
1200
  VLOG(3) << "Predictor::set_feed";
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
1211
    phi::DenseTensor *input = &feed_tensors_[i];
1212
    if (!PaddleTensorToDenseTensor(inputs[i], input, place_)) {
1213 1214 1215
      return false;
    }
    int idx = -1;
1216
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
1217 1218
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
1219 1220
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
1221 1222
      }
      idx = feed_names_[name];
1223
    } else {
R
Ruibiao Chen 已提交
1224
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
1225
    }
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    framework::SetFeedVariable(scope, *input, framework::kFeedOpType, idx);
  }
  return true;
}

bool AnalysisPredictor::SetFeed(const std::vector<paddle::Tensor> &inputs,
                                framework::Scope *scope) {
  VLOG(3) << "Predictor::set_feed";
  PADDLE_ENFORCE_EQ(inputs.size(),
                    feeds_.size(),
                    platform::errors::InvalidArgument(
                        "wrong feed input size, need %d but get %d.",
                        feeds_.size(),
                        inputs.size()));
1240 1241
  for (const auto &input : inputs) {
    PADDLE_ENFORCE_EQ(input.defined(),
1242 1243
                      true,
                      paddle::platform::errors::InvalidArgument(
Y
Yuanle Liu 已提交
1244 1245
                          "The input Tensor expected to be defined."));
    PADDLE_ENFORCE_EQ(
1246
        input.is_dense_tensor(),
Y
Yuanle Liu 已提交
1247 1248 1249
        true,
        paddle::platform::errors::InvalidArgument(
            "The input Tensor expected to be type of dense tensor."));
1250 1251 1252 1253 1254
  }

  if (std::all_of(inputs.cbegin(), inputs.cend(), [&](const paddle::Tensor &t) {
        return !t.name().empty() && feed_names_.count(t.name());
      })) {
1255 1256
    for (const auto &input : inputs) {
      auto &t = framework::GetVariableTensor(*scope, input.name());
1257
      t.ShareDataWith(
1258
          *std::dynamic_pointer_cast<phi::DenseTensor>(input.impl()));
1259 1260 1261 1262 1263 1264 1265
    }
  } else {
    for (size_t i = 0; i < inputs.size(); ++i) {
      auto &t = framework::GetVariableTensor(*scope, idx2feeds_[i]);
      t.ShareDataWith(
          *std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl()));
    }
1266 1267 1268 1269 1270
  }
  return true;
}

template <typename T>
1271
void AnalysisPredictor::GetFetchOne(const phi::DenseTensor &fetch,
1272 1273
                                    PaddleTensor *output) {
  // set shape.
1274
  auto shape = phi::vectorize(fetch.dims());
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1292
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1293 1294
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
1295
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
1296
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1297 1298
        static_cast<size_t>(idx),
        i,
1299
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1300 1301
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1302
            i));
1303
    framework::FetchType &fetch_var =
1304
        framework::GetFetchVariable(*scope, framework::kFetchOpType, idx);
1305
    auto &fetch = PADDLE_GET(phi::DenseTensor, fetch_var);
1306
    auto type = framework::TransToProtoVarType(fetch.dtype());
1307
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1308
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1309
    if (type == framework::proto::VarType::FP32) {
1310 1311
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1312
    } else if (type == framework::proto::VarType::INT64) {
1313 1314
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1315 1316 1317
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1318 1319 1320
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1321
    } else {
1322 1323
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1324 1325
    }
  }
Y
Yan Chunwei 已提交
1326 1327
  return true;
}
1328

1329 1330 1331 1332 1333 1334 1335
bool AnalysisPredictor::GetFetch(std::vector<paddle::Tensor> *outputs,
                                 framework::Scope *scope) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    auto const &name = idx2fetches_[i];
    auto &t = framework::GetVariableTensor(*scope, name);
Y
Yuanle Liu 已提交
1336
    (*outputs)[i] = paddle::Tensor(std::make_shared<phi::DenseTensor>(t), name);
1337 1338 1339 1340
  }
  return true;
}

1341
void AnalysisPredictor::PrepareArgument() {
1342
  VLOG(3) << "AnalysisPredictor::PrepareArgument";
1343
  // Init std::unique_ptr argument_.
1344
  argument_ = std::make_unique<Argument>();
1345
  argument_->SetUseGPU(config_.use_gpu());
1346
  argument_->SetUseCutlass(config_.use_cutlass_);
1347 1348 1349 1350 1351
  argument_->SetUseFcPadding(config_.use_fc_padding());
  argument_->SetGPUDeviceId(config_.gpu_device_id());
  argument_->SetEnableIrOptim(config_.enable_ir_optim_);
  argument_->SetEnableMemoryOptim(config_.enable_memory_optim());
  argument_->SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1352
  // Analyze inference_program
1353 1354
  argument_->SetPredictorID(predictor_id_);
  argument_->SetRootPredictorID(root_predictor_id_);
1355
  argument_->SetSaveOptimizedModel(config_.save_optimized_model_);
1356
  argument_->SetOptimCacheDir(config_.opt_cache_dir_);
1357
  if (!config_.model_dir().empty()) {
1358
    argument_->SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1359
  } else {
C
ccrrong 已提交
1360 1361
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1362 1363
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1364

1365 1366
    argument_->SetModelProgramPath(config_.prog_file());
    argument_->SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1367
  }
1368
  // For JITLayer
1369 1370
  argument_->SetSkipLoadParams(config_.skip_load_params_);

1371 1372
  argument_->SetTensorRtPrecisionMode(static_cast<int>(
      paddle::ConvertPrecision(config_.tensorrt_precision_mode_)));
1373 1374 1375 1376 1377 1378 1379 1380
  argument_->SetTensorRtUseOSS(config_.trt_use_varseqlen_);
  argument_->SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
  argument_->SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_->SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
  argument_->SetMinInputShape(config_.min_input_shape_);
  argument_->SetMaxInputShape(config_.max_input_shape_);
  argument_->SetOptimInputShape(config_.optim_input_shape_);
  argument_->SetTensorRtTunedDynamicShape(
1381
      config_.tuned_tensorrt_dynamic_shape());
1382
  argument_->SetUseTensorRT(false);
1383
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1384
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1385 1386 1387 1388 1389 1390 1391 1392 1393
    argument_->SetUseTensorRT(true);
    argument_->SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_->SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
    argument_->SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
    argument_->SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
    argument_->SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_->SetTensorRtDLACore(config_.trt_dla_core_);
    argument_->SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
    argument_->SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
W
Wilber 已提交
1394
    argument_->SetTensorRtUseCudaGraph(config_.trt_use_cuda_graph_);
1395 1396 1397
    argument_->SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
    argument_->SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_->SetTensorRtAllowBuildAtRuntime(
1398
        config_.trt_allow_build_at_runtime());
1399 1400
    argument_->SetTensorRtUseInspector(config_.trt_use_inspector_);
    argument_->SetTrtEngineMemorySharing(config_.trt_engine_memory_sharing());
W
Wojciech Uss 已提交
1401
  }
1402

D
denglin-github 已提交
1403 1404
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
1405 1406 1407 1408 1409 1410
    argument_->SetUseDlnne(true);
    argument_->SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
    argument_->SetDlnneMaxBatchSize(config_.dlnne_max_batchsize_);
    argument_->SetDlnneUseStaticBatch(config_.dlnne_use_static_batch_);
    argument_->SetDlnneWeightShareMode(config_.dlnne_weight_share_mode_);
    argument_->SetDlnneDisableNodesByOutputs(
D
denglin-github 已提交
1411
        config_.dlnne_disable_nodes_by_outputs_);
1412 1413
    argument_->SetDlnneInputShapeDict(config_.dlnne_input_shape_dict_);
    argument_->SetDlnneUseCalibMode(config_.dlnne_use_calib_mode_);
1414 1415
    argument_->SetDlnnePrecisionMode(static_cast<int>(
        paddle::ConvertPrecision(config_.dlnne_precision_mode_)));
D
denglin-github 已提交
1416 1417
  }

Z
zhupengyang 已提交
1418
  argument_->SetUseXpu(config_.use_xpu_);
石晓伟 已提交
1419
  if (config_.lite_engine_enabled()) {
1420
    argument_->SetCpuMathLibraryNumThreads(
W
Wilber 已提交
1421
        config_.cpu_math_library_num_threads());
1422 1423
    argument_->SetLitePrecisionMode(static_cast<int>(
        paddle::ConvertPrecision(config_.lite_precision_mode_)));
1424 1425 1426
    argument_->SetLitePassesFilter(config_.lite_passes_filter_);
    argument_->SetLiteOpsFilter(config_.lite_ops_filter_);
    argument_->SetLiteZeroCopy(config_.lite_zero_copy_);
Z
zhupengyang 已提交
1427 1428
    argument_->SetXpuLocked(config_.xpu_lite_l3_locked_);
    argument_->SetXpuEnableMultiStream(config_.xpu_lite_enable_multi_stream_);
1429
    argument_->SetUseOpenCL(config_.use_opencl_);
1430
    // NNAdapter related
1431 1432
    argument_->SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_->SetNNAdapterDeviceNames(
1433
        config_.NNAdapter().nnadapter_device_names);
1434
    argument_->SetNNAdapterContextProperties(
1435
        config_.NNAdapter().nnadapter_context_properties);
1436
    argument_->SetNNAdapterModelCacheDir(
1437
        config_.NNAdapter().nnadapter_model_cache_dir);
1438
    argument_->SetNNAdapterSubgraphPartitionConfigBuffer(
1439
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
1440
    argument_->SetNNAdapterSubgraphPartitionConfigPath(
1441 1442 1443 1444 1445 1446 1447
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
1448 1449
    argument_->SetNNAdapterModelCacheToken(buffer_keys);
    argument_->SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1450 1451 1452
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1453
#ifdef PADDLE_WITH_IPU
1454 1455 1456 1457 1458 1459 1460 1461
  argument_->SetUseIpu(config_.use_ipu_);
  argument_->SetIpuDeviceNum(config_.ipu_device_num());
  argument_->SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
  argument_->SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_->SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
  argument_->SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_->SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_->SetIpuAvailableMemoryProportion(
1462
      config_.ipu_available_memory_proportion_);
1463 1464
  argument_->SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
  argument_->SetIpuEnableModelRuntimeExecutor(
1465
      config_.ipu_enable_model_runtime_executor_);
1466 1467
  argument_->SetIpuCustomOpsInfo(config_.ipu_custom_ops_info_);
  argument_->SetIpuCustomPatterns(config_.ipu_custom_patterns_);
1468
#endif
J
jianghaicheng 已提交
1469

1470
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1471
    LOG(INFO) << "MKLDNN is enabled";
1472
    argument_->SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
1473 1474
  }

1475
  if (config_.use_cinn_compiler_) {
1476
    argument_->SetUseCinnCompiler(config_.use_cinn_compiler_);
1477 1478
  }

1479
#ifdef PADDLE_WITH_DNNL
1480 1481
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
1482
    argument_->SetQuantizeEnabledOpTypes(
1483
        config_.mkldnn_quantizer_config()->enabled_op_types());
1484
    argument_->SetQuantizeExcludedOpIds(
1485 1486
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1487 1488
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
1489
    argument_->SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
1490
  }
B
baoachun 已提交
1491 1492 1493

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
1494 1495 1496
    argument_->SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_->SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_->SetQuantVarScales({});
B
baoachun 已提交
1497
  }
1498 1499
#endif

1500
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1501
  argument_->SetUseCustomDevice(config_.use_custom_device());
1502 1503
  if (config_.use_custom_device()) {
    LOG(INFO) << "CustomDevice is enabled";
1504 1505
    argument_->SetCustomDeviceType(config_.custom_device_type());
    argument_->SetCustomDeviceId(config_.custom_device_id());
1506 1507
  }
#endif
1508

1509
  argument_->SetUseXpu(config_.use_xpu_);
Z
zhupengyang 已提交
1510 1511 1512 1513
  argument_->SetXpuDeviceId(config_.xpu_config_.device_id);
  argument_->SetXpuL3Size(config_.xpu_config_.l3_size);
  argument_->SetXpuL3Ptr(config_.xpu_config_.l3_ptr);
  argument_->SetXpuL3AutotuneSize(config_.xpu_config_.l3_autotune_size);
1514
  argument_->SetXpuContextGmSize(config_.xpu_config_.context_gm_size);
1515
  argument_->SetXpuContext(config_.xpu_config_.context);
Z
zhupengyang 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
  argument_->SetXpuStream(config_.xpu_config_.stream);
  argument_->SetXpuConvAutotuneLevel(config_.xpu_config_.conv_autotune_level);
  argument_->SetXpuConvAutotuneFile(config_.xpu_config_.conv_autotune_file);
  argument_->SetXpuConvAutotuneFileWriteback(
      config_.xpu_config_.conv_autotune_file_writeback);
  argument_->SetXpuFcAutotuneLevel(config_.xpu_config_.fc_autotune_level);
  argument_->SetXpuFcAutotuneFile(config_.xpu_config_.fc_autotune_file);
  argument_->SetXpuFcAutotuneFileWriteback(
      config_.xpu_config_.fc_autotune_file_writeback);
  argument_->SetXpuGemmComputePrecision(
      config_.xpu_config_.gemm_compute_precision);
  argument_->SetXpuTransformerSoftmaxOptimizeLevel(
      config_.xpu_config_.transformer_softmax_optimize_level);
  argument_->SetXpuTransformerEncoderAdaptiveSeqlen(
      config_.xpu_config_.transformer_encoder_adaptive_seqlen);
  argument_->SetXpuQuantPostStaticGeluOutThreshold(
      config_.xpu_config_.quant_post_static_gelu_out_threshold);
  argument_->SetXpuQuantPostDynamicActivationMethod(
      config_.xpu_config_.quant_post_dynamic_activation_method);
  argument_->SetXpuQuantPostDynamicWeightPrecision(
      config_.xpu_config_.quant_post_dynamic_weight_precision);
1537
  argument_->SetXpuQuantPostDynamicOpTypes(
Z
zhupengyang 已提交
1538 1539 1540
      config_.xpu_config_.quant_post_dynamic_op_types);
  argument_->SetXpuLiteL3Locked(config_.xpu_lite_l3_locked_);
  argument_->SetXpuLiteEnableMultiStream(config_.xpu_lite_enable_multi_stream_);
1541

1542
  auto *pass_builder = config_.pass_builder();
1543 1544
  // TODO(inference): Need to reconstruct the pass_builder, pass should be
  // processed in a single
1545 1546
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
Z
zhupengyang 已提交
1547
              << ", we will use a new PassStrategy. Note that only GPU/XPU "
1548
                 "backend is supported for now.";
1549 1550 1551
    if (!config_.use_cinn_compiler_) {
      const auto &deleted_passes = pass_builder->GetAllDeletedPasses();
      if (config_.tensorrt_engine_enabled()) {
1552
        pass_builder->ClearPasses();
1553 1554 1555 1556 1557
        for (const auto &pass : kTrtLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
      } else if (config_.use_gpu()) {
1558
        pass_builder->ClearPasses();
1559 1560 1561 1562
        for (const auto &pass : kGpuLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
1563 1564 1565 1566
      } else if (config_.use_xpu()) {
        // All passes support fp16. Not reset pass_builder.
      } else {
        pass_builder->ClearPasses();
1567 1568 1569
      }
    }
  }
1570

Y
Yan Chunwei 已提交
1571
  if (!config_.ir_optim()) {
1572
    argument_->SetEnableIrOptim(false);
1573 1574
    if (config_.enable_gpu_mixed_ &&
        model_precision_ == phi::DataType::FLOAT32) {
1575
      argument_->SetEnableIrOptim(true);
1576
      pass_builder->ClearPasses();
1577
      pass_builder->AppendPass("auto_mixed_precision_pass");
1578 1579
      LOG(INFO) << "This model run in GPU mixed precision mode with no ir "
                   "optimization.";
1580
    } else {
1581 1582
      LOG(INFO)
          << "Ir optimization is turned off, no ir pass will be executed.";
1583 1584 1585 1586 1587
    }
  } else {
    if (config_.ir_debug_) {
      pass_builder->TurnOnDebug();
    }
1588
    if (config_.enable_gpu_mixed_) {
1589
      LOG(INFO) << "This model run in GPU mixed precision mode.";
1590
    }
Y
Yan Chunwei 已提交
1591
  }
1592 1593 1594 1595 1596 1597 1598 1599 1600

  argument_->SetEnableCustomDeviceMixed(config_.enable_custom_device_mixed());
  if (config_.enable_custom_device_mixed_) {
    argument_->SetEnableIrOptim(true);
    pass_builder->ClearPasses();
    pass_builder->AppendPass("auto_mixed_precision_pass");
    LOG(INFO) << "This model run in Custom Device mixed precision mode.";
  }

1601 1602 1603 1604
  argument_->SetDisableLogs(config_.glog_info_disabled());
  argument_->SetIrAnalysisPasses(pass_builder->AllPasses());
  argument_->SetAnalysisPasses(pass_builder->AnalysisPasses());
  argument_->SetScopeNotOwned(scope_.get());
1605

1606
  // mixed precison.
1607 1608 1609 1610
  argument_->SetModelPrecision(static_cast<int>(model_precision_));
  argument_->SetMixedBlackList(config_.mixed_black_list_);
  argument_->SetEnableGPUMixed(config_.enable_gpu_mixed_);
  argument_->SetMixedPrecisionMode(static_cast<int>(
1611
      paddle::ConvertPrecision(config_.mixed_precision_mode_)));
1612
  argument_->SetEnableLowPrecisionIO(config_.enable_low_precision_io_);
1613 1614 1615 1616 1617
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1618 1619 1620 1621 1622 1623 1624 1625
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif
1626
  Analyzer().Run(argument_.get());
1627
  PADDLE_ENFORCE_EQ(
1628
      argument_->scope_valid(),
C
ccrrong 已提交
1629
      true,
1630
      platform::errors::InvalidArgument("The argument scope should be valid."));
1631
  VLOG(5) << "to prepare executor";
1632
  ARGUMENT_CHECK_FIELD((argument_.get()), ir_analyzed_program);
Y
Yan Chunwei 已提交
1633
  inference_program_.reset(
1634
      new framework::ProgramDesc(argument_->ir_analyzed_program()),
1635 1636 1637
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
1638
#ifdef PADDLE_WITH_TENSORRT
W
Wilber 已提交
1639 1640 1641 1642
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
R
Ruibiao Chen 已提交
1643
                PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
W
Wilber 已提交
1644
            int engine_predictor_id =
R
Ruibiao Chen 已提交
1645
                PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id"));
W
Wilber 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1657 1658 1659
#endif
        delete prog;
      });
1660 1661 1662
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  config_.PartiallyRelease();
X
xiaoxiaohehe001 已提交
1663
#if defined(PADDLE_WITH_TESTING)
1664
  fusion_statis_ = *argument_->fusion_statis_ptr();
X
xiaoxiaohehe001 已提交
1665 1666
#endif

1667 1668 1669
#if defined(_WIN32)
  argument_->PartiallyRelease();
#else
X
xiaoxiaohehe001 已提交
1670 1671 1672
  if (config_.mkldnn_enabled() ||
      (config_.tensorrt_engine_enabled() &&
       config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8)) {
1673 1674 1675 1676 1677
    argument_->PartiallyRelease();
  } else {
    argument_.reset(nullptr);
  }
#endif
1678
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1679
}
1680 1681

template <>
1682 1683 1684
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
1685
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1686 1687
      config.is_valid(),
      true,
1688 1689
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1690

1691 1692 1693 1694
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1695
                 []() { inference::RegisterAllCustomOperator(); });
1696

1697 1698 1699 1700 1701 1702
  auto SetGflags = [](const AnalysisConfig &config) {
    auto SetGflag = [](const char *name, const char *value) {
      std::string ret = ::GFLAGS_NAMESPACE::SetCommandLineOption(name, value);
      PADDLE_ENFORCE_EQ(
          ret.empty(),
          false,
1703
          platform::errors::InvalidArgument(
1704 1705 1706 1707 1708 1709 1710
              "Fail to set gflag: %s, please make sure the gflag exists.",
              name));
      VLOG(3) << "set gflag: --" << name << "=" << value;
    };
    // TODO(NHZlX): Should add the link to the doc of
    // paddle_infer::CreatePredictor<paddle_infer::Config>
    if (config.glog_info_disabled()) {
1711
      FLAGS_logtostderr = true;
1712 1713
      FLAGS_minloglevel = 2;  // GLOG_ERROR
    }
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
    if (config.use_gpu()) {
      static std::once_flag gflags_initialized;
      static bool process_level_allocator_enabled;

      std::call_once(gflags_initialized, [&]() {
        PADDLE_ENFORCE_GE(
            config.memory_pool_init_size_mb(),
            0.f,
            platform::errors::InvalidArgument(
                "The size of memory pool should be greater than 0."));
        PADDLE_ENFORCE_GE(config.gpu_device_id(),
                          0,
                          platform::errors::InvalidArgument(
                              "Invalid device id (%d). The device id should be "
                              "greater than 0.",
                              config.gpu_device_id()));

        float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
        if (fraction_of_gpu_memory > 0.95f) {
          LOG(ERROR)
              << "Allocate too much memory for the GPU memory pool, assigned "
              << config.memory_pool_init_size_mb() << " MB";
          LOG(ERROR) << "Try to shink the value by setting "
                        "AnalysisConfig::EnableUseGpu(...)";
        }
        if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
          std::string value = std::to_string(fraction_of_gpu_memory);
          SetGflag("fraction_of_gpu_memory_to_use", value.data());
        }
1744

1745 1746 1747 1748 1749 1750 1751 1752
        // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
        // allocator when multi-stream is enabled.
        if (config.thread_local_stream_enabled()) {
          SetGflag("allocator_strategy", "thread_local");
          process_level_allocator_enabled = false;
        } else {
          process_level_allocator_enabled = true;
        }
1753

1754 1755 1756
        // for inference, the following default values are better.
        if (std::getenv("FLAGS_conv_workspace_size_limit") == nullptr) {
          SetGflag("conv_workspace_size_limit", "32");
1757
        }
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
        if (std::getenv("FLAGS_initial_cpu_memory_in_mb") == nullptr) {
          SetGflag("initial_cpu_memory_in_mb", "0");
        }
      });

      if (config.thread_local_stream_enabled() &&
          process_level_allocator_enabled) {
        PADDLE_THROW(platform::errors::Fatal(
            "When binding threads and streams, the use of "
            "process-level allocators will result in undefined result "
            "errors due to memory asynchronous operations."
            "The thread and stream binding configuration of all "
            "predictors should be the same in a single process."));
1771
      }
1772
    }
1773 1774 1775 1776
  };
  SetGflags(config);

  VLOG(3) << "create AnalysisPredictor";
1777 1778

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1779 1780
  // Each config can only be used for one predictor.
  config.SetInValid();
1781 1782
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1783 1784 1785 1786
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1787 1788 1789 1790 1791
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1792 1793
    return nullptr;
  }
1794

G
Gabor Buella 已提交
1795
  return predictor;
1796 1797
}

1798
bool AnalysisPredictor::MkldnnQuantize() {
1799
#if PADDLE_WITH_DNNL
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1810
void AnalysisPredictor::PrepareFeedFetch() {
1811 1812 1813
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1814
  CreateFeedFetchVar(sub_scope_);
1815
  for (auto *op : inference_program_->Block(0).AllOps()) {
1816
    if (op->Type() == framework::kFeedOpType) {
R
Ruibiao Chen 已提交
1817
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
1818 1819 1820 1821 1822
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1823
      idx2feeds_[idx] = op->Output("Out")[0];
1824
    } else if (op->Type() == framework::kFetchOpType) {
R
Ruibiao Chen 已提交
1825
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1826 1827
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1828
      }
Y
Yan Chunwei 已提交
1829
      fetches_[idx] = op;
N
nhzlx 已提交
1830
      idx2fetches_[idx] = op->Input("X")[0];
1831 1832 1833 1834
    }
  }
}

1835
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1836 1837 1838
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1839
  auto *var = scope->Var(framework::kFeedOpType);
1840
  var->GetMutable<framework::FeedList>();
1841
  var = scope->Var(framework::kFetchOpType);
1842
  var->GetMutable<framework::FetchList>();
1843 1844
}

N
nhzlx 已提交
1845 1846 1847 1848 1849 1850 1851 1852
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1853 1854 1855 1856 1857 1858
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1859 1860 1861
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1862 1863 1864 1865 1866
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetInputTypes() {
  std::map<std::string, paddle_infer::DataType> input_type;
  std::vector<std::string> names = GetInputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Input %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      input_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      input_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      input_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      input_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      input_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      input_type[name] = paddle_infer::DataType::INT8;
1890 1891 1892 1893
    } else if (dtype == paddle::framework::proto::VarType::FP64) {
      input_type[name] = paddle_infer::DataType::FLOAT64;
    } else if (dtype == paddle::framework::proto::VarType::BOOL) {
      input_type[name] = paddle_infer::DataType::BOOL;
1894 1895 1896 1897 1898 1899 1900 1901
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get input dtype ", dtype));
    }
  }
  return input_type;
}

N
nhzlx 已提交
1902 1903 1904 1905 1906 1907 1908 1909
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetOutputTensorShape() {
  std::map<std::string, std::vector<int64_t>> output_shapes;
  std::vector<std::string> names = GetOutputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::PreconditionNotMet(
                                "Output %s does not exist.", name));
    output_shapes[name] = var->GetShape();
  }
  return output_shapes;
}

std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetOutputTypes() {
  std::map<std::string, paddle_infer::DataType> output_type;
  std::vector<std::string> names = GetOutputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Output %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      output_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      output_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      output_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      output_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      output_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      output_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get output dtype ", dtype));
    }
  }
  return output_type;
}

1955 1956
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1957
  framework::Scope *scope;
1958
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1959 1960 1961
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
1962
    scope = executor_->GetScope();
1963 1964
  }
#else
1965
  scope = executor_->GetScope();
1966
#endif
1967
  PADDLE_ENFORCE_NOT_NULL(
1968
      scope->FindVar(name),
1969
      platform::errors::PreconditionNotMet(
1970
          "The variable named %s is not found in the scope of the executor.",
1971
          name));
1972 1973
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1974 1975
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1976 1977
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1978 1979 1980 1981
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1982
  } else if (platform::is_xpu_place(place_)) {
1983 1984 1985 1986 1987 1988 1989 1990
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1991
      auto xpu_place = place_;
1992 1993
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
1994 1995 1996 1997
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
1998 1999
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
2000 2001
    res->SetPlace(
        paddleplace, custom_place.GetDeviceId(), place_.GetDeviceType());
N
nhzlx 已提交
2002
  } else {
2003
    auto gpu_place = place_;
N
nhzlx 已提交
2004 2005
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
2006 2007 2008 2009 2010
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
2011
  framework::Scope *scope;
2012
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
2013 2014 2015
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
2016
    scope = executor_->GetScope();
2017 2018
  }
#else
2019
  scope = executor_->GetScope();
2020
#endif
2021
  PADDLE_ENFORCE_NOT_NULL(
2022
      scope->FindVar(name),
2023
      platform::errors::PreconditionNotMet(
2024
          "The variable named %s is not found in the scope of the executor.",
2025
          name));
2026 2027
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
2028 2029
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
2030 2031
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
2032 2033 2034 2035
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
2036
  } else if (platform::is_xpu_place(place_)) {
2037 2038 2039 2040 2041 2042 2043 2044
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
2045
      auto xpu_place = place_;
2046 2047
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
2048 2049 2050 2051
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
2052 2053
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
2054 2055
    res->SetPlace(
        paddleplace, custom_place.GetDeviceId(), place_.GetDeviceType());
N
nhzlx 已提交
2056
  } else {
2057
    auto gpu_place = place_;
N
nhzlx 已提交
2058 2059
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
2060 2061 2062 2063
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
2064
  inference::DisplayMemoryInfo(place_, "before run");
2065
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
2076 2077 2078
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
2079
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
2080
#ifdef PADDLE_WITH_DNNL
W
Wilber 已提交
2081 2082 2083
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
2084 2085
    for (auto &name : names) {
      auto in_tensor = GetInputTensor(name);
W
Wilber 已提交
2086 2087 2088 2089 2090
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

2101 2102 2103
  if (config_.shape_range_info_collected()) {
    HookCollectShapeRangeInfo();
  }
Z
zhupengyang 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
#ifdef PADDLE_WITH_XPU
  InferXPUContext *infer_xpu_ctx = nullptr;
  if (config_.use_xpu_ && !config_.use_lite_) {
    PADDLE_ENFORCE(
        private_context_,
        paddle::platform::errors::Fatal(
            "Must use private context if run predictor on xpu place."));
    auto *dev_ctxs = reinterpret_cast<const std::map<
        phi::Place,
        std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        this->GetDeviceContexts());
    infer_xpu_ctx =
        static_cast<InferXPUContext *>(dev_ctxs->at(place_).get().get());
2117 2118 2119 2120
    auto *x_context = static_cast<xpu::Context *>(config_.xpu_config_.context);
    if (x_context != nullptr) {
      infer_xpu_ctx->SetXContext(x_context);
    }
Z
zhupengyang 已提交
2121 2122 2123 2124 2125 2126 2127 2128
    infer_xpu_ctx->SetStream(predictor_stream_);
    infer_xpu_ctx->SetL3Info(config_.xpu_config_.l3_size,
                             config_.xpu_config_.l3_ptr,
                             config_.xpu_config_.l3_autotune_size,
                             place_);
  }
#endif

2129
  executor_->Run();
2130
  inference::DisplayMemoryInfo(place_, "after run");
2131

Z
zhupengyang 已提交
2132 2133 2134 2135 2136 2137
#ifdef PADDLE_WITH_XPU
  if (config_.use_xpu_ && !config_.use_lite_ && infer_xpu_ctx != nullptr) {
    infer_xpu_ctx->L3CacheAutotune();
  }
#endif

Y
Yan Chunwei 已提交
2138
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
2139
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
2140
  tensor_array_batch_cleaner_.ResetTensorArray();
2141 2142 2143 2144

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
2145 2146 2147
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
2148
#ifdef PADDLE_WITH_DNNL
W
Wilber 已提交
2149 2150
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
2151
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
2152 2153 2154
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
2155
  phi::dynload::MKL_Free_Buffers();
T
Tao Luo 已提交
2156
#endif
2157 2158 2159
  return true;
}

W
Wilber 已提交
2160 2161
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
W
Wilber 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
  if (!private_context_) {
    PADDLE_THROW(platform::errors::Fatal(
        "Please use config.SetExecStream to init gpu resources, and then we "
        "will bind gpu resources to execution stream."));
  }

  if (stream != predictor_stream_) {
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#else
    cudaStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#endif
2174
    ResourceManager::Instance().GpuResourceSwitchStream(predictor_stream_,
W
Wilber 已提交
2175 2176 2177
                                                        stream);
    predictor_stream_ = stream;

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
    auto *dev_ctxs = const_cast<
        std::map<phi::Place,
                 std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        reinterpret_cast<const std::map<
            phi::Place,
            std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
            this->GetDeviceContexts()));

    dev_ctxs->erase(place_);
    dev_ctxs->emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
          auto *gpu_context = new InferGPUContext(place_);
          UpdatePrivateDeviceContext(gpu_context, gpu_resource, place_);
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
W
Wilber 已提交
2195 2196
  }

W
Wilber 已提交
2197 2198 2199 2200
  return ZeroCopyRun();
}
#endif

2201 2202 2203 2204 2205 2206 2207
void AnalysisPredictor::HookCollectShapeRangeInfo() {
  auto hook = [&](const std::string &op_type,
                  const std::string &input_name,
                  const paddle::Tensor &var) -> void {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    if (config_.use_gpu()) {
2208
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2209 2210
      auto *dev_ctx = pool.Get(place_);
      auto stream = static_cast<phi::GPUContext *>(dev_ctx)->stream();
2211
#ifdef PADDLE_WITH_HIP
2212
      hipStreamSynchronize(stream);
2213
#else
2214
      cudaStreamSynchronize(stream);
2215 2216
#endif
#endif
2217
    }
2218

2219 2220 2221 2222
    auto *new_var = sub_scope_->GetVar(input_name);
    if (!new_var) return;
    if (!new_var->IsType<phi::DenseTensor>()) {
      return;
2223
    }
2224 2225
    auto tensor = new_var->Get<phi::DenseTensor>();
    if (!tensor.initialized()) return;
2226
    framework::DDim dim = tensor.dims();
2227 2228
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
2229
    if (!shape.empty()) {
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
      shape_info_[input_name].emplace_back(shape);
    } else if (tensor.numel() > 0) {
      // This must be a zero dimension tensor.
      PADDLE_ENFORCE_EQ(tensor.numel(),
                        1UL,
                        platform::errors::PreconditionNotMet(
                            "This tensor must have one element, but got %ld.",
                            tensor.numel()));
      std::vector<int32_t> zero_shape(1, 1);
      shape_info_[input_name].emplace_back(zero_shape);
    }
2241 2242 2243

    // We need collect value range for shape tensor for Paddle-TRT's use.
    // To be noticed, this method to identify all shape tensors is based on
2244
    // assumption that all shape tensors in the model have numbers <= 8.
2245 2246
    // This is a simple method to identify all shape tensors with some
    // mistakes, but it doesn't matter.
2247
    auto is_shape_tensor = tensor.numel() <= 8 && tensor.numel() >= 1;
2248 2249
    if ((tensor.dtype() == phi::DataType::INT32 ||
         tensor.dtype() == phi::DataType::INT64) &&
2250 2251
        is_shape_tensor) {
      std::vector<int> int32_host(tensor.numel());
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

      if (platform::is_cpu_place(tensor.place())) {
        auto &int32_tensor = tensor;
        if (tensor.dtype() == phi::DataType::INT64) {
          auto *cpu_ctx = pool.Get(platform::CPUPlace());
          int32_tensor = phi::funcs::TransDataType(
              reinterpret_cast<const phi::CPUContext &>(*cpu_ctx),
              tensor,
              DataType::INT32);
        }
2262 2263 2264
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CPUPlace(),
2265 2266 2267
                             int32_tensor.data<int>(),
                             int32_tensor.numel() * sizeof(int));
      } else if (platform::is_gpu_place(tensor.place())) {
2268
#if defined(PADDLE_WITH_CUDA)
2269 2270 2271 2272 2273 2274 2275 2276
        auto *dev_ctx = pool.Get(tensor.place());
        auto &int32_tensor = tensor;
        if (tensor.dtype() == phi::DataType::INT64) {
          int32_tensor = phi::funcs::TransDataType(
              reinterpret_cast<const phi::GPUContext &>(*dev_ctx),
              tensor,
              DataType::INT32);
        }
2277 2278
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
2279 2280 2281
                             int32_tensor.place(),
                             int32_tensor.data<int>(),
                             int32_tensor.numel() * sizeof(int),
2282 2283 2284
                             nullptr);
#endif
      }
2285
      shape_tensor_value_[input_name].emplace_back(int32_host);
2286
    }
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
  };
  RegisterInputHook(hook);
}

bool AnalysisPredictor::ExpRunWithRuntimeConfig(void *config) {
#ifdef PADDLE_WITH_XPU
  auto xpu_runtime_config =
      reinterpret_cast<paddle_infer::experimental::XpuRuntimeConfig *>(config);

  config_.xpu_config_.context = xpu_runtime_config->context;
  auto *stream = xpu_runtime_config->stream;
  if (stream != nullptr && stream != predictor_stream_) {
    paddle::platform::XPUStreamSync(
        static_cast<paddle::xpuStream>(predictor_stream_));
    predictor_stream_ = stream;
2302
  }
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

  auto l3_size = xpu_runtime_config->l3_size;
  auto l3_autotune_size = xpu_runtime_config->l3_autotune_size;
  PADDLE_ENFORCE_LE(
      l3_autotune_size,
      l3_size,
      phi::errors::InvalidArgument(
          "l3_autotune_size(%zu) should be less than or equal to l3_size(%zu).",
          l3_autotune_size,
          l3_size));
  config_.xpu_config_.l3_size = l3_size;
  config_.xpu_config_.l3_ptr = xpu_runtime_config->l3_ptr;
  config_.xpu_config_.l3_autotune_size = l3_autotune_size;

  return ZeroCopyRun();
#endif
  return false;
2320 2321 2322 2323 2324 2325
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
  std::map<std::string, std::vector<int32_t>> min_values;
  std::map<std::string, std::vector<int32_t>> max_values;
  std::map<std::string, std::vector<int32_t>> opt_values;

  auto extract_min_max_opt =
      [](std::map<std::string, std::vector<int32_t>> &min_data,
         decltype(min_data) max_data,
         decltype(min_data) opt_data,
         decltype(shape_info_) shape_data) {
        for (auto it : shape_data) {
          auto name = it.first;
          auto shapes = it.second;

          std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

          auto ShapeMaxFreq =
              [](const std::map<int32_t, int32_t> &m) -> int32_t {
            std::vector<std::pair<int32_t, int32_t>> counter;
2346
            for (auto &it : m) counter.emplace_back(it);
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
            std::sort(counter.begin(),
                      counter.end(),
                      [](std::pair<int32_t, int32_t> &a,
                         std::pair<int32_t, int32_t> &b) {
                        return a.second > b.second;
                      });
            return counter[0].first;
          };

          for (size_t d = 0; d < shapes[0].size(); ++d) {
            std::map<int32_t, int32_t> counter;
2358 2359 2360 2361
            for (auto &shape : shapes) {
              counter[shape[d]] += 1;
              if (shape[d] < min_shape[d]) min_shape[d] = shape[d];
              if (shape[d] > max_shape[d]) max_shape[d] = shape[d];
2362 2363 2364
            }
            opt_shape[d] = ShapeMaxFreq(counter);
          }
2365

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
          min_data[name] = min_shape;
          max_data[name] = max_shape;
          opt_data[name] = opt_shape;
        }
      };
  extract_min_max_opt(min_shapes, max_shapes, opt_shapes, shape_info_);
  extract_min_max_opt(min_values, max_values, opt_values, shape_tensor_value_);

  inference::SerializeShapeRangeInfo(config_.shape_range_info_path(),
                                     min_shapes,
                                     max_shapes,
                                     opt_shapes,
                                     min_values,
                                     max_values,
                                     opt_values);
2381 2382
}

2383 2384
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
2385
  std::string filename;
2386 2387
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
2388
  } else if (!config_.prog_file().empty()) {
2389 2390 2391
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
2392
    filename = config_.prog_file();
2393
  } else {
2394
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
2395 2396 2397 2398
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
2399
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
2400 2401
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
2402
        config_.params_file());
2403 2404
    return false;
  }
2405 2406 2407

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
2408
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
2409 2410 2411
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
2412
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
2413 2414
        static_cast<bool>(fin.is_open()),
        true,
2415 2416 2417
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
2418 2419 2420 2421 2422 2423 2424 2425
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
2426
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
2427
  }
2428
  inference_program_ = std::make_unique<framework::ProgramDesc>(proto);
2429 2430 2431 2432 2433
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
2434 2435
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
2436

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

2457
      if (!config_.params_file().empty()) {
2458 2459 2460 2461 2462 2463
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
2464
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
2465 2466 2467 2468 2469
        op->CheckAttrs();
      }
    }
  }

2470
  if (!config_.params_file().empty()) {
2471 2472 2473 2474 2475 2476
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
2477
    op->SetAttr("file_path", {config_.params_file()});
2478 2479 2480 2481
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
2482
  framework::NaiveExecutor e(place_);
2483 2484 2485 2486
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

2487 2488
  return true;
}
2489

2490 2491 2492 2493 2494
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

2495 2496 2497 2498 2499 2500 2501 2502
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
2503
      auto *variable = executor_->GetScope()->FindVar(name);
2504
      if (variable != nullptr && variable->IsType<phi::DenseTensor>() &&
2505
          name != framework::kFeedOpType && name != framework::kFetchOpType) {
2506
        VLOG(3) << "Clear Intermediate Tensor: " << name;
2507
        auto *t = variable->GetMutable<phi::DenseTensor>();
2508 2509 2510 2511 2512 2513
        t->clear();
      }
    }
  }
}

2514
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2515
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
2516 2517
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
2518 2519
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
2520 2521 2522
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
R
Ruibiao Chen 已提交
2523
      std::string engine_name = PADDLE_GET_CONST(
2524
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
2525
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
2526 2527 2528 2529
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
2530 2531
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
2532
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
2533
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
2534 2535
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
2536 2537 2538
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
2539

N
nhzlx 已提交
2540
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
2541 2542 2543
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
2544

N
nhzlx 已提交
2545
      std::string model_opt_cache_dir =
2546 2547 2548
          argument_->Has("model_dir") ? argument_->model_dir()
                                      : inference::analysis::GetDirRoot(
                                            argument_->model_program_path());
N
nhzlx 已提交
2549

N
nhzlx 已提交
2550
      std::string calibration_table_data_path =
N
nhzlx 已提交
2551 2552 2553 2554
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
2555 2556 2557 2558 2559

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
2560 2561 2562 2563
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
2564
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
2565 2566
  return true;
}
N
nhzlx 已提交
2567
#endif
N
nhzlx 已提交
2568

2569
AnalysisPredictor::~AnalysisPredictor() {
2570
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2571
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
2572 2573
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
2574 2575
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
2576
#endif
2577
  if (config_.with_profile_) {
2578 2579 2580 2581
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
J
JingZhuangzhuang 已提交
2582 2583 2584
    if (framework::global_transfer_scope_key().find(sub_scope_) !=
        framework::global_transfer_scope_key().end()) {
      auto scope_key_set = framework::global_transfer_scope_key()[sub_scope_];
2585 2586
      for (auto item : scope_key_set) {
        framework::global_transfer_data_cache().erase(item);
J
JingZhuangzhuang 已提交
2587 2588 2589
      }
      framework::global_transfer_scope_key().erase(sub_scope_);
    }
2590 2591
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
2592

2593
#if PADDLE_WITH_DNNL
2594 2595 2596 2597 2598
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
2599

2600 2601 2602
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
2603 2604 2605 2606 2607
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
C
csy0225 已提交
2608

W
Wilber 已提交
2609 2610 2611
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
2612
  device_contexts_.clear();
2613 2614 2615 2616

#ifdef PADDLE_WITH_TENSORRT
  if (config_.trt_engine_memory_sharing()) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
2617
        .ReleaseContextMemory(predictor_id_);
2618 2619
  }
#endif
2620 2621
}

2622
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
2623
  VLOG(3) << "AnalysisPredictor::Clone";
Y
Yan Chunwei 已提交
2624
  std::lock_guard<std::mutex> lk(clone_mutex_);
2625
  auto *x = new AnalysisPredictor(config_);
2626
  x->status_is_cloned_ = true;
2627
  x->root_predictor_id_ = this->root_predictor_id_;
2628
  x->config_.apply_optim_ = false;
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
2639
  x->Init(scope_, inference_program_);
2640
#ifdef PADDLE_WITH_TENSORRT
2641
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
Z
zhupengyang 已提交
2642 2643 2644 2645 2646 2647 2648 2649
#endif
#ifdef PADDLE_WITH_LITE
#ifdef LITE_SUBGRAPH_WITH_XPU
  x->executor_->CloneLiteEnigne(++AnalysisPredictor::clone_num_,
                                config_.xpu_config_.stream);
#else
  x->executor_->CloneLiteEnigne(++AnalysisPredictor::clone_num_, nullptr);
#endif
2650
#endif
2651 2652 2653
  return std::unique_ptr<PaddlePredictor>(x);
}

2654
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
2655 2656 2657
  return inference_program_->Proto()->SerializeAsString();
}

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
void AnalysisPredictor::RegisterInputHook(const InputTensorHookFunc &hookfunc) {
  static std::once_flag register_input_hook_flag;
  std::call_once(register_input_hook_flag, [this] {
    executor_->RegisterInputHook(
        [this](framework::OperatorBase *op, framework::Scope *scope) {
          for (auto &input : op->Inputs()) {
            for (auto &var_name : input.second) {
              auto *var = scope->FindVar(var_name);
              if (!var || !var->IsType<phi::DenseTensor>()) continue;
              auto dense_tensor = var->Get<phi::DenseTensor>();
              if (!dense_tensor.initialized()) continue;
              auto tensor = paddle::Tensor(
                  std::make_shared<phi::DenseTensor>(dense_tensor), var_name);
              for (auto &hookfunc : this->input_hookfuncs_) {
                hookfunc(op->Type(), var_name, tensor);
              }
            }
          }
        });
  });
  input_hookfuncs_.push_back(hookfunc);
}

2720 2721
void AnalysisPredictor::RegisterOutputHook(
    const OutputTensorHookFunc &hookfunc) {
2722 2723
  static std::once_flag register_output_hook_flag;
  std::call_once(register_output_hook_flag, [this] {
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
    executor_->RegisterOutputHook(
        [this](framework::OperatorBase *op, framework::Scope *scope) {
          for (auto &output : op->Outputs()) {
            for (auto &var_name : output.second) {
              auto *var = scope->FindVar(var_name);
              if (!var || !var->IsType<phi::DenseTensor>()) continue;
              auto dense_tensor = var->Get<phi::DenseTensor>();
              if (!dense_tensor.initialized()) continue;
              auto tensor = paddle::Tensor(
                  std::make_shared<phi::DenseTensor>(dense_tensor), var_name);
2734
              for (auto &hookfunc : this->output_hookfuncs_) {
2735 2736 2737
                hookfunc(op->Type(), var_name, tensor);
              }
            }
2738
          }
2739
        });
2740
  });
2741
  output_hookfuncs_.push_back(hookfunc);
2742 2743
}

Y
Yan Chunwei 已提交
2744
template <>
2745 2746
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
2747
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
2748 2749
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2750 2751
}

2752
}  // namespace paddle
2753

2754
#ifdef PADDLE_WITH_TENSORRT
2755
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2756 2757 2758
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
2759 2760
USE_TRT_CONVERTER(elementwise_min_weight);
USE_TRT_CONVERTER(elementwise_max_weight);
S
shentanyue 已提交
2761
USE_TRT_CONVERTER(elementwise_pow_weight);
2762
USE_TRT_CONVERTER(elementwise_mod_weight);
W
wenbin 已提交
2763
USE_TRT_CONVERTER(elementwise_floordiv_weight);
2764 2765 2766 2767 2768 2769 2770
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
W
wenbin 已提交
2771
USE_TRT_CONVERTER(elementwise_floordiv_tensor);
2772
USE_TRT_CONVERTER(elementwise_mod_tensor);
2773 2774 2775 2776 2777 2778
USE_TRT_CONVERTER(less_than);
USE_TRT_CONVERTER(greater_than);
USE_TRT_CONVERTER(logical_or);
USE_TRT_CONVERTER(logical_xor);
USE_TRT_CONVERTER(logical_and);
USE_TRT_CONVERTER(less_equal);
2779
USE_TRT_CONVERTER(greater_equal);
2780
USE_TRT_CONVERTER(transpose);
2781
USE_TRT_CONVERTER(transpose2);
2782
USE_TRT_CONVERTER(flatten);
2783
USE_TRT_CONVERTER(flatten_contiguous_range);
2784
USE_TRT_CONVERTER(matrix_multiply);
2785
USE_TRT_CONVERTER(bmm);
2786 2787 2788 2789 2790 2791 2792 2793 2794
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2795 2796
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(pad3d);
2797
USE_TRT_CONVERTER(einsum)
2798
#endif
2799 2800
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2801
USE_TRT_CONVERTER(split);
2802
USE_TRT_CONVERTER(fill_any_like);
2803 2804
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2805
USE_TRT_CONVERTER(leaky_relu);
2806
USE_TRT_CONVERTER(shuffle_channel);
2807
USE_TRT_CONVERTER(where);
2808
USE_TRT_CONVERTER(bitwise_not);
2809 2810
USE_TRT_CONVERTER(one_hot);
USE_TRT_CONVERTER(one_hot_v2);
2811
USE_TRT_CONVERTER(swish);
L
LielinJiang 已提交
2812
USE_TRT_CONVERTER(silu);
2813
USE_TRT_CONVERTER(group_norm);
2814
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2815 2816 2817
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2818
USE_TRT_CONVERTER(multihead_matmul_roformer);
2819
USE_TRT_CONVERTER(skip_layernorm);
2820
USE_TRT_CONVERTER(slice);
2821
USE_TRT_CONVERTER(scale);
2822
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2823
USE_TRT_CONVERTER(clip);
2824
USE_TRT_CONVERTER(gather);
2825
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2826
USE_TRT_CONVERTER(yolo_box);
2827
USE_TRT_CONVERTER(yolo_box_head);
2828
USE_TRT_CONVERTER(arg_max);
2829
USE_TRT_CONVERTER(arg_min);
2830
USE_TRT_CONVERTER(roi_align);
2831
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2832
USE_TRT_CONVERTER(multiclass_nms);
2833
USE_TRT_CONVERTER(multiclass_nms3);
2834
USE_TRT_CONVERTER(nearest_interp);
2835
USE_TRT_CONVERTER(nearest_interp_v2);
2836
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2837
USE_TRT_CONVERTER(reshape);
2838
USE_TRT_CONVERTER(reshape2);
2839
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2840
USE_TRT_CONVERTER(reduce_mean);
2841
USE_TRT_CONVERTER(reduce_max);
2842
USE_TRT_CONVERTER(reduce_min);
2843
USE_TRT_CONVERTER(reduce_sum);
2844
USE_TRT_CONVERTER(reduce_prod);
2845 2846
USE_TRT_CONVERTER(reduce_any);
USE_TRT_CONVERTER(reduce_all);
W
wenbin 已提交
2847
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2848 2849
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2850
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2851
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2852
USE_TRT_CONVERTER(pool3d)
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
USE_TRT_CONVERTER(square);
// unary op
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
USE_TRT_CONVERTER(sqrt);
USE_TRT_CONVERTER(reciprocal);
USE_TRT_CONVERTER(abs);
USE_TRT_CONVERTER(sin);
USE_TRT_CONVERTER(cos);
USE_TRT_CONVERTER(tan);
USE_TRT_CONVERTER(sinh);
USE_TRT_CONVERTER(cosh);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(asin);
USE_TRT_CONVERTER(acos);
USE_TRT_CONVERTER(atan);
USE_TRT_CONVERTER(asinh);
USE_TRT_CONVERTER(acosh);
USE_TRT_CONVERTER(atanh);
USE_TRT_CONVERTER(ceil);
USE_TRT_CONVERTER(floor);
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(round);
USE_TRT_CONVERTER(sign);
#endif
USE_TRT_CONVERTER(rsqrt);
2879
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
2880
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
2881
USE_TRT_CONVERTER(preln_skip_layernorm)
W
Wang Bojun 已提交
2882
USE_TRT_CONVERTER(fused_bias_dropout_residual_layer_norm)
2883
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2884
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2885
USE_TRT_CONVERTER(strided_slice)
Z
zhoutianzi666 已提交
2886 2887
USE_TRT_CONVERTER(rnn)
USE_TRT_CONVERTER(fill_constant_batch_size_like)
2888
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2889
USE_TRT_CONVERTER(cast)
2890 2891
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2892
USE_TRT_CONVERTER(equal);
S
Sanbu 已提交
2893
USE_TRT_CONVERTER(not_equal);
2894 2895
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2896
USE_TRT_CONVERTER(range)
2897 2898
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2899 2900
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
2901
USE_TRT_CONVERTER(fill_constant)
2902
USE_TRT_CONVERTER(fused_token_prune)
2903
USE_TRT_CONVERTER(celu)
W
wenbin 已提交
2904
USE_TRT_CONVERTER(layernorm_shift_partition)
W
Wang Bojun 已提交
2905
USE_TRT_CONVERTER(reverse_roll)
W
wenbin 已提交
2906
USE_TRT_CONVERTER(preln_layernorm_shift_partition)
W
Wang Bojun 已提交
2907
USE_TRT_CONVERTER(merge_layernorm)
2908
USE_TRT_CONVERTER(trans_layernorm)
W
wenbin 已提交
2909
USE_TRT_CONVERTER(skip_merge_layernorm)
W
weishengying 已提交
2910 2911
USE_TRT_CONVERTER(generic_plugin_creater)
USE_TRT_CONVERTER(custom_plugin_creater)
2912
USE_TRT_CONVERTER(fuse_eleadd_transpose)
2913 2914
USE_TRT_CONVERTER(tanh_shrink)
USE_TRT_CONVERTER(logsigmoid)
2915
USE_TRT_CONVERTER(lookup_table)
2916
USE_TRT_CONVERTER(lookup_table_v2)
2917
USE_TRT_CONVERTER(expand_v2)
2918
USE_TRT_CONVERTER(expand_as_v2)
2919
USE_TRT_CONVERTER(take_along_axis)
W
wenbin 已提交
2920 2921
USE_TRT_CONVERTER(skip_groupnorm_act)
USE_TRT_CONVERTER(preln_groupnorm_act)
2922
USE_TRT_CONVERTER(cumsum)
M
ming1753 已提交
2923
USE_TRT_CONVERTER(assign)
C
chen 已提交
2924
USE_TRT_CONVERTER(unbind)
M
ming1753 已提交
2925
USE_TRT_CONVERTER(flip)
2926 2927 2928
#if IS_TRT_VERSION_GE(8522)
USE_TRT_CONVERTER(flash_multihead_matmul)
USE_TRT_CONVERTER(cross_multihead_matmul)
2929
USE_TRT_CONVERTER(qk_multihead_matmul)
2930
#endif
2931 2932 2933
#if IS_TRT_VERSION_GE(8510)
USE_TRT_CONVERTER(grid_sampler)
#endif
X
xjmxyt 已提交
2934 2935
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(set_value)
X
xjmxyt 已提交
2936
USE_TRT_CONVERTER(index_select);
2937
USE_TRT_CONVERTER(temporal_shift)
X
xjmxyt 已提交
2938
#endif
2939 2940 2941 2942
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2943
#endif
W
Wilber 已提交
2944 2945 2946 2947 2948 2949

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2950 2951 2952 2953 2954 2955 2956
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
C
cyberslack_lee 已提交
2957
          << "Paddle2ONNX do't support convert the Model, fall back to using "
2958 2959
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2960 2961 2962 2963
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2964 2965 2966 2967 2968 2969 2970 2971 2972
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2973 2974 2975 2976
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2977 2978 2979 2980 2981
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}
2982

2983 2984 2985 2986
std::map<std::string, std::vector<int64_t>> Predictor::GetInputTensorShape() {
  return predictor_->GetInputTensorShape();
}

2987 2988 2989
std::map<std::string, DataType> Predictor::GetInputTypes() {
  return predictor_->GetInputTypes();
}
W
Wilber 已提交
2990 2991

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2992
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2993 2994 2995 2996 2997 2998 2999
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
3000
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
3001 3002
}

3003 3004 3005 3006 3007 3008 3009 3010
std::map<std::string, std::vector<int64_t>> Predictor::GetOutputTensorShape() {
  return predictor_->GetOutputTensorShape();
}

std::map<std::string, DataType> Predictor::GetOutputTypes() {
  return predictor_->GetOutputTypes();
}

W
Wilber 已提交
3011 3012
bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

3013 3014 3015 3016 3017
bool Predictor::Run(const std::vector<paddle::Tensor> &inputs,
                    std::vector<paddle::Tensor> *outputs) {
  return predictor_->Run(inputs, outputs);
}

3018 3019
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
3020 3021 3022 3023 3024 3025 3026 3027
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

3028 3029
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

3030 3031 3032
void Predictor::RegisterOutputHook(const OutputTensorHookFunc &hookfunc) {
  predictor_->RegisterOutputHook(hookfunc);
}
3033 3034 3035
void Predictor::RegisterInputHook(const OutputTensorHookFunc &hookfunc) {
  predictor_->RegisterInputHook(hookfunc);
}
3036

3037 3038
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
3073 3074 3075 3076
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

3077 3078 3079 3080 3081
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
3082
                             paddle_infer::PlaceType backend,
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
3108 3109
      size,
      1UL,
W
Wilber 已提交
3110 3111 3112 3113
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
3114
  main_pred_ = std::make_unique<Predictor>(config);
W
Wilber 已提交
3115 3116 3117
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
3118
      preds_.emplace_back(new Predictor(config_tmp));
W
Wilber 已提交
3119
    } else {
3120
      preds_.emplace_back(main_pred_->Clone());
W
Wilber 已提交
3121 3122 3123 3124 3125 3126
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
3127 3128
      idx,
      preds_.size() + 1,
W
Wilber 已提交
3129
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
3130 3131
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
3132 3133 3134 3135 3136 3137 3138
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
3159 3160 3161

bool InternalUtils::RunWithRuntimeConfig(paddle_infer::Predictor *p,
                                         void *config) {
C
csy0225 已提交
3162
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
3163
  return pred->ExpRunWithRuntimeConfig(config);
C
csy0225 已提交
3164
}
W
Wilber 已提交
3165

3166 3167 3168 3169 3170 3171
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
3187 3188 3189 3190 3191
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
3192
  auto *dev_ctx = reinterpret_cast<phi::GPUContext *>(pool.Get(pred->place_));
W
Wilber 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
3202
}  // namespace experimental
W
Wilber 已提交
3203
}  // namespace paddle_infer