Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
24f55aed
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
24f55aed
编写于
2月 23, 2022
作者:
A
Allen Guo
提交者:
GitHub
2月 23, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[IPU] update inference demos (#39792)
* update inference part * restore white space
上级
4130b640
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
823 addition
and
54 deletion
+823
-54
paddle/fluid/inference/CMakeLists.txt
paddle/fluid/inference/CMakeLists.txt
+2
-3
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+6
-2
paddle/fluid/inference/analysis/passes/ir_graph_build_pass.cc
...le/fluid/inference/analysis/passes/ir_graph_build_pass.cc
+11
-7
paddle/fluid/inference/api/analysis_config.cc
paddle/fluid/inference/api/analysis_config.cc
+27
-10
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+15
-3
paddle/fluid/inference/api/paddle_analysis_config.h
paddle/fluid/inference/api/paddle_analysis_config.h
+30
-17
paddle/fluid/inference/api/paddle_tensor.h
paddle/fluid/inference/api/paddle_tensor.h
+1
-1
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+22
-3
paddle/fluid/inference/tests/api/analyzer_ernie_tester.h
paddle/fluid/inference/tests/api/analyzer_ernie_tester.h
+1
-2
paddle/fluid/inference/tests/api/ipu_ernie_fp16_test.cc
paddle/fluid/inference/tests/api/ipu_ernie_fp16_test.cc
+184
-0
paddle/fluid/inference/tests/api/ipu_ernie_test.cc
paddle/fluid/inference/tests/api/ipu_ernie_test.cc
+196
-0
paddle/fluid/inference/tests/api/ipu_multi_model_profile.cc
paddle/fluid/inference/tests/api/ipu_multi_model_profile.cc
+105
-0
paddle/fluid/inference/tests/api/ipu_resnet50_fp16_test.cc
paddle/fluid/inference/tests/api/ipu_resnet50_fp16_test.cc
+86
-0
paddle/fluid/inference/tests/api/ipu_resnet50_test.cc
paddle/fluid/inference/tests/api/ipu_resnet50_test.cc
+4
-6
paddle/fluid/inference/tests/api/ipu_word2vec_sample.cc
paddle/fluid/inference/tests/api/ipu_word2vec_sample.cc
+81
-0
paddle/fluid/inference/tests/api/tester_helper.h
paddle/fluid/inference/tests/api/tester_helper.h
+52
-0
未找到文件。
paddle/fluid/inference/CMakeLists.txt
浏览文件 @
24f55aed
...
...
@@ -48,11 +48,10 @@ set(STATIC_INFERENCE_API paddle_inference_api analysis_predictor
#TODO(wilber, T8T9): Do we still need to support windows gpu static library?
if
(
WIN32 AND WITH_GPU
)
cc_library
(
paddle_inference DEPS
${
fluid_modules
}
${
pten_modules
}
${
STATIC_INFERENCE_API
}
${
utils_modules
}
)
elseif
(
WITH_IPU
)
cc_library
(
paddle_inference DEPS
${
fluid_modules
}
${
pten_modules
}
${
STATIC_INFERENCE_API
}
${
utils_modules
}
paddle_ipu
)
else
()
create_static_lib
(
paddle_inference
${
fluid_modules
}
${
pten_modules
}
${
STATIC_INFERENCE_API
}
${
utils_modules
}
)
if
(
WITH_IPU
)
target_link_libraries
(
paddle_inference -Wl,--allow-multiple-definition popart_canonicalization_utils
)
endif
()
endif
()
if
(
NOT APPLE
)
...
...
paddle/fluid/inference/analysis/argument.h
浏览文件 @
24f55aed
...
...
@@ -278,10 +278,14 @@ struct Argument {
// ipu related
DECL_ARGUMENT_FIELD
(
use_ipu
,
UseIpu
,
bool
);
DECL_ARGUMENT_FIELD
(
ipu_device_num
,
IpuDeviceNum
,
int
);
DECL_ARGUMENT_FIELD
(
ipu_micro_batch_size
,
IpuMicroBatchSize
,
int
);
DECL_ARGUMENT_FIELD
(
ipu_enable_pipelining
,
IpuEnablePipelining
,
bool
);
DECL_ARGUMENT_FIELD
(
ipu_batches_per_step
,
IpuBatchesPerStep
,
int
);
DECL_ARGUMENT_FIELD
(
ipu_batch_size
,
IpuBatchSize
,
int
);
DECL_ARGUMENT_FIELD
(
ipu_need_avg_shard
,
IpuNeedAvgShard
,
bool
);
DECL_ARGUMENT_FIELD
(
ipu_enable_fp16
,
IpuEnableFp16
,
bool
);
DECL_ARGUMENT_FIELD
(
ipu_replica_num
,
IpuReplicaNum
,
int
);
DECL_ARGUMENT_FIELD
(
ipu_available_memory_proportion
,
IpuAvailableMemoryProportion
,
float
);
DECL_ARGUMENT_FIELD
(
ipu_enable_half_partial
,
IpuEnableHalfPartial
,
bool
);
// npu related
DECL_ARGUMENT_FIELD
(
use_npu
,
UseNpu
,
bool
);
...
...
paddle/fluid/inference/analysis/passes/ir_graph_build_pass.cc
浏览文件 @
24f55aed
...
...
@@ -72,17 +72,21 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
if
(
argument
->
use_ipu
())
{
argument
->
main_graph
().
SetNotOwned
(
"num_ipus"
,
&
argument
->
ipu_device_num
());
argument
->
main_graph
().
SetNotOwned
(
"
need_avg_shard
"
,
&
argument
->
ipu_
need_avg_shard
());
argument
->
main_graph
().
SetNotOwned
(
"
micro_batch_size
"
,
&
argument
->
ipu_
micro_batch_size
());
argument
->
main_graph
().
SetNotOwned
(
"enable_pipelining"
,
&
argument
->
ipu_enable_pipelining
());
argument
->
main_graph
().
SetNotOwned
(
"batches_per_step"
,
&
argument
->
ipu_batches_per_step
());
argument
->
main_graph
().
SetNotOwned
(
"batch_size"
,
&
argument
->
ipu_batch_size
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Please compile with WITH_IPU"
));
argument
->
main_graph
().
SetNotOwned
(
"enable_fp16"
,
&
argument
->
ipu_enable_fp16
());
argument
->
main_graph
().
SetNotOwned
(
"replica_num"
,
&
argument
->
ipu_replica_num
());
argument
->
main_graph
().
SetNotOwned
(
"available_memory_proportion"
,
&
argument
->
ipu_available_memory_proportion
());
argument
->
main_graph
().
SetNotOwned
(
"enable_half_partial"
,
&
argument
->
ipu_enable_half_partial
());
}
}
#endif
...
...
paddle/fluid/inference/api/analysis_config.cc
浏览文件 @
24f55aed
...
...
@@ -142,17 +142,28 @@ void AnalysisConfig::EnableNpu(int device_id) {
Update
();
}
void
AnalysisConfig
::
EnableIpu
(
int
device_num
,
bool
ipu_enable_pipelining
,
int
ipu_batches_per_step
,
int
ipu_batch_size
,
bool
ipu_need_avg_shard
)
{
void
AnalysisConfig
::
EnableIpu
(
int
ipu_device_num
,
int
ipu_micro_batch_size
,
bool
ipu_enable_pipelining
,
int
ipu_batches_per_step
)
{
enable_ir_optim_
=
true
;
use_ipu_
=
true
;
ipu_device_num_
=
device_num
;
ipu_device_num_
=
ipu_device_num
;
ipu_micro_batch_size_
=
ipu_micro_batch_size
;
ipu_enable_pipelining_
=
ipu_enable_pipelining
;
ipu_batches_per_step_
=
ipu_batches_per_step
;
ipu_batch_size_
=
ipu_batch_size
;
ipu_need_avg_shard_
=
ipu_need_avg_shard
;
Update
();
}
void
AnalysisConfig
::
SetIpuConfig
(
bool
ipu_enable_fp16
,
int
ipu_replica_num
,
float
ipu_available_memory_proportion
,
bool
ipu_enable_half_partial
)
{
ipu_enable_fp16_
=
ipu_enable_fp16
;
ipu_replica_num_
=
ipu_replica_num
;
ipu_available_memory_proportion_
=
ipu_available_memory_proportion
;
ipu_enable_half_partial_
=
ipu_enable_half_partial
;
Update
();
}
...
...
@@ -255,10 +266,13 @@ AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
// ipu related
CP_MEMBER
(
use_ipu_
);
CP_MEMBER
(
ipu_device_num_
);
CP_MEMBER
(
ipu_micro_batch_size_
);
CP_MEMBER
(
ipu_enable_pipelining_
);
CP_MEMBER
(
ipu_batches_per_step_
);
CP_MEMBER
(
ipu_batch_size_
);
CP_MEMBER
(
ipu_need_avg_shard_
);
CP_MEMBER
(
ipu_enable_fp16_
);
CP_MEMBER
(
ipu_replica_num_
);
CP_MEMBER
(
ipu_available_memory_proportion_
);
CP_MEMBER
(
ipu_enable_half_partial_
);
if
(
use_gpu_
)
{
PADDLE_ENFORCE_EQ
(
use_xpu_
,
false
,
...
...
@@ -684,10 +698,13 @@ std::string AnalysisConfig::SerializeInfoCache() {
ss
<<
use_ipu_
;
ss
<<
ipu_device_num_
;
ss
<<
ipu_micro_batch_size_
;
ss
<<
ipu_enable_pipelining_
;
ss
<<
ipu_batches_per_step_
;
ss
<<
ipu_batch_size_
;
ss
<<
ipu_need_avg_shard_
;
ss
<<
ipu_enable_fp16_
;
ss
<<
ipu_replica_num_
;
ss
<<
ipu_available_memory_proportion_
;
ss
<<
ipu_enable_half_partial_
;
return
ss
.
str
();
}
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
24f55aed
...
...
@@ -93,6 +93,8 @@ bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t,
input_ptr
=
t
->
mutable_data
<
float
>
(
ddim
,
place
);
}
else
if
(
pt
.
dtype
==
PaddleDType
::
INT32
)
{
input_ptr
=
t
->
mutable_data
<
int32_t
>
(
ddim
,
place
);
}
else
if
(
pt
.
dtype
==
PaddleDType
::
FLOAT16
)
{
input_ptr
=
t
->
mutable_data
<
float16
>
(
ddim
,
place
);
}
else
{
LOG
(
ERROR
)
<<
"unsupported feed type "
<<
pt
.
dtype
;
return
false
;
...
...
@@ -563,8 +565,12 @@ bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT32
)
{
GetFetchOne
<
int32_t
>
(
fetch
,
output
);
output
->
dtype
=
PaddleDType
::
INT32
;
}
else
if
(
type
==
framework
::
proto
::
VarType
::
FP16
)
{
GetFetchOne
<
float16
>
(
fetch
,
output
);
output
->
dtype
=
PaddleDType
::
FLOAT16
;
}
else
{
LOG
(
ERROR
)
<<
"unknown type, only support float32, int64 and int32 now."
;
LOG
(
ERROR
)
<<
"unknown type, only support float32, float16, int64 and "
"int32 now."
;
}
}
return
true
;
...
...
@@ -662,12 +668,18 @@ void AnalysisPredictor::PrepareArgument() {
LOG
(
INFO
)
<<
"Lite subgraph engine is enabled"
;
}
#ifdef PADDLE_WITH_IPU
argument_
.
SetUseIpu
(
config_
.
use_ipu_
);
argument_
.
SetIpuDeviceNum
(
config_
.
ipu_device_num
());
argument_
.
SetIpuMicroBatchSize
(
config_
.
ipu_micro_batch_size_
);
argument_
.
SetIpuEnablePipelining
(
config_
.
ipu_enable_pipelining_
);
argument_
.
SetIpuBatchesPerStep
(
config_
.
ipu_batches_per_step_
);
argument_
.
SetIpuBatchSize
(
config_
.
ipu_batch_size_
);
argument_
.
SetIpuNeedAvgShard
(
config_
.
ipu_need_avg_shard_
);
argument_
.
SetIpuEnableFp16
(
config_
.
ipu_enable_fp16_
);
argument_
.
SetIpuReplicaNum
(
config_
.
ipu_replica_num_
);
argument_
.
SetIpuAvailableMemoryProportion
(
config_
.
ipu_available_memory_proportion_
);
argument_
.
SetIpuEnableHalfPartial
(
config_
.
ipu_enable_half_partial_
);
#endif
argument_
.
SetUseNpu
(
config_
.
use_npu_
);
argument_
.
SetNPUDeviceId
(
config_
.
npu_device_id
());
...
...
paddle/fluid/inference/api/paddle_analysis_config.h
浏览文件 @
24f55aed
...
...
@@ -234,20 +234,30 @@ struct PD_INFER_DECL AnalysisConfig {
///
/// \brief Turn on IPU.
///
/// \param device_num The number of IPUs.
/// \param ipu_enable_pipelining Enable data pipelining between subgraphs,
/// each subgraph is settled on an IPU. (This feature requires the number of
/// IPUs > 1.)
/// \param ipu_batches_per_step The number of micro_batch_size per run. (This
/// feature requires to enable pipelining.)
/// \param ipu_batch_size The micro_batch_size which is the batch_size in the
/// graph.
/// \param ipu_need_avg_shard Enable the auto graph sharding. (This feature
/// requires the number of IPUs > 1.)
///
void
EnableIpu
(
int
device_num
=
1
,
bool
ipu_enable_pipelining
=
false
,
int
ipu_batches_per_step
=
1
,
int
ipu_batch_size
=
1
,
bool
ipu_need_avg_shard
=
false
);
/// \param ipu_device_num the number of IPUs.
/// \param ipu_micro_batch_size the batch size in the graph, only work with
/// mutable input shapes.
/// \param ipu_enable_pipelining enable pipelining.
/// \param ipu_batches_per_step the number of batches per run in pipelining.
///
void
EnableIpu
(
int
ipu_device_num
=
1
,
int
ipu_micro_batch_size
=
1
,
bool
ipu_enable_pipelining
=
false
,
int
ipu_batches_per_step
=
1
);
///
/// \brief Set IPU config.
///
/// \param ipu_enable_fp16 enable fp16.
/// \param ipu_replica_num the number of graph replication.
/// \param ipu_available_memory_proportion the available memory proportion for
/// matmul/conv.
/// \param ipu_enable_half_partial enable fp16 partial for matmul, only work
/// with fp16.
///
void
SetIpuConfig
(
bool
ipu_enable_fp16
=
false
,
int
ipu_replica_num
=
1
,
float
ipu_available_memory_proportion
=
1.0
,
bool
ipu_enable_half_partial
=
false
);
///
/// \brief Set XPU device id.
///
...
...
@@ -876,11 +886,14 @@ struct PD_INFER_DECL AnalysisConfig {
// ipu related.
bool
use_ipu_
{
false
};
int
ipu_device_num_
{
1
};
int
ipu_micro_batch_size_
{
1
};
bool
ipu_enable_pipelining_
{
false
};
int
ipu_batches_per_step_
{
1
};
int
ipu_batch_size_
{
1
};
bool
ipu_need_avg_shard_
{
false
};
bool
ipu_enable_fp16_
{
false
};
int
ipu_replica_num_
{
1
};
float
ipu_available_memory_proportion_
{
1.0
};
bool
ipu_enable_half_partial_
{
false
};
// If the config is already used on a predictor, it becomes invalid.
// Any config can only be used with one predictor.
...
...
paddle/fluid/inference/api/paddle_tensor.h
浏览文件 @
24f55aed
...
...
@@ -45,7 +45,7 @@ enum DataType {
// TODO(Superjomn) support more data types if needed.
};
enum
class
PlaceType
{
kUNK
=
-
1
,
kCPU
,
kGPU
,
kXPU
,
kNPU
};
enum
class
PlaceType
{
kUNK
=
-
1
,
kCPU
,
kGPU
,
kXPU
,
kNPU
,
kIPU
};
/// \brief Represents an n-dimensional array of values.
/// The Tensor is used to store the input or output of the network.
...
...
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
24f55aed
...
...
@@ -758,11 +758,30 @@ if(ON_INFER OR WITH_GPU)
set_tests_properties
(
test_analyzer_transformer_profile PROPERTIES TIMEOUT 120
)
endif
()
# IPU
if
(
WITH_IPU
)
#resnet50
#word2vec sample
set
(
WORD2VEC_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/word2vec/word2vec.inference.model"
)
inference_analysis_test
(
ipu_word2vec_sample SRCS ipu_word2vec_sample.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS --infer_model=
${
WORD2VEC_INSTALL_DIR
}
)
# ERNIE
set
(
ERNIE_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/Ernie"
)
inference_analysis_api_test
(
ipu_ernie_test
${
ERNIE_INSTALL_DIR
}
ipu_ernie_test.cc
ARGS --warmup=true --repeat=10
)
inference_analysis_api_test
(
ipu_ernie_fp16_test
${
ERNIE_INSTALL_DIR
}
ipu_ernie_fp16_test.cc
ARGS --warmup=true --repeat=10
)
# Resnet50
set
(
RESNET50_MODEL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/resnet50"
)
inference_analysis_test
(
ipu_resnet50_test SRCS ipu_resnet50_test.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS --infer_model=
${
RESNET50_MODEL_DIR
}
--warmup=true --repeat=1000
)
ARGS --infer_model=
${
RESNET50_MODEL_DIR
}
--warmup=true --repeat=10
)
inference_analysis_test
(
ipu_resnet50_fp16_test SRCS ipu_resnet50_fp16_test.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS --infer_model=
${
RESNET50_MODEL_DIR
}
--warmup=true --repeat=10
)
# Only support Resnet50 and Ernie currently
inference_analysis_api_test
(
ipu_multi_model_profile SRCS ipu_multi_model_profile.cc
ARGS --model_name=
"Resnet50"
--infer_model=
${
RESNET50_MODEL_DIR
}
--warmup=true --repeat=10
)
endif
()
paddle/fluid/inference/tests/api/analyzer_ernie_tester.h
浏览文件 @
24f55aed
...
...
@@ -150,8 +150,7 @@ void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false,
void
SetIpuConfig
(
AnalysisConfig
*
cfg
,
int
batch_size
=
1
)
{
cfg
->
SetModel
(
FLAGS_infer_model
);
// num_ipu, enable_pipelining, batches_per_step, batch_size, need_avg_shard
cfg
->
EnableIpu
(
4
,
false
,
1
,
batch_size
,
true
);
cfg
->
EnableIpu
(
4
,
batch_size
,
false
,
1
);
}
}
// namespace inference
...
...
paddle/fluid/inference/tests/api/ipu_ernie_fp16_test.cc
0 → 100644
浏览文件 @
24f55aed
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace
paddle
{
namespace
inference
{
using
paddle
::
PaddleTensor
;
template
<
typename
T
>
void
GetValueFromStream
(
std
::
stringstream
*
ss
,
T
*
t
)
{
(
*
ss
)
>>
(
*
t
);
}
template
<
>
void
GetValueFromStream
<
std
::
string
>
(
std
::
stringstream
*
ss
,
std
::
string
*
t
)
{
*
t
=
ss
->
str
();
}
// Split string to vector
template
<
typename
T
>
void
Split
(
const
std
::
string
&
line
,
char
sep
,
std
::
vector
<
T
>
*
v
)
{
std
::
stringstream
ss
;
T
t
;
for
(
auto
c
:
line
)
{
if
(
c
!=
sep
)
{
ss
<<
c
;
}
else
{
GetValueFromStream
<
T
>
(
&
ss
,
&
t
);
v
->
push_back
(
std
::
move
(
t
));
ss
.
str
({});
ss
.
clear
();
}
}
if
(
!
ss
.
str
().
empty
())
{
GetValueFromStream
<
T
>
(
&
ss
,
&
t
);
v
->
push_back
(
std
::
move
(
t
));
ss
.
str
({});
ss
.
clear
();
}
}
// Parse tensor from string
template
<
typename
T
>
bool
ParseTensor
(
const
std
::
string
&
field
,
paddle
::
PaddleTensor
*
tensor
)
{
std
::
vector
<
std
::
string
>
data
;
Split
(
field
,
':'
,
&
data
);
if
(
data
.
size
()
<
2
)
return
false
;
std
::
string
shape_str
=
data
[
0
];
std
::
vector
<
int
>
shape
;
Split
(
shape_str
,
' '
,
&
shape
);
std
::
string
mat_str
=
data
[
1
];
std
::
vector
<
T
>
mat
;
Split
(
mat_str
,
' '
,
&
mat
);
tensor
->
shape
=
shape
;
auto
size
=
std
::
accumulate
(
shape
.
begin
(),
shape
.
end
(),
1
,
std
::
multiplies
<
int
>
())
*
sizeof
(
T
);
tensor
->
data
.
Resize
(
size
);
std
::
copy
(
mat
.
begin
(),
mat
.
end
(),
static_cast
<
T
*>
(
tensor
->
data
.
data
()));
tensor
->
dtype
=
GetPaddleDType
<
T
>
();
return
true
;
}
// Parse input tensors from string
bool
ParseLine
(
const
std
::
string
&
line
,
std
::
vector
<
paddle
::
PaddleTensor
>
*
tensors
)
{
std
::
vector
<
std
::
string
>
fields
;
Split
(
line
,
';'
,
&
fields
);
tensors
->
clear
();
tensors
->
reserve
(
4
);
int
i
=
0
;
auto
input_name
=
FLAGS_ernie_large
?
"eval_placeholder_"
:
"placeholder_"
;
for
(;
i
<
3
;
i
++
)
{
paddle
::
PaddleTensor
temp
;
ParseTensor
<
int64_t
>
(
fields
[
i
],
&
temp
);
temp
.
name
=
input_name
+
std
::
to_string
(
i
);
tensors
->
push_back
(
temp
);
}
// input_mask
paddle
::
PaddleTensor
input_mask
;
ParseTensor
<
float
>
(
fields
[
i
],
&
input_mask
);
// fp32 to fp16
ConvertFP32toFP16
(
input_mask
);
input_mask
.
name
=
input_name
+
std
::
to_string
(
i
);
tensors
->
push_back
(
input_mask
);
return
true
;
}
bool
LoadInputData
(
std
::
vector
<
std
::
vector
<
paddle
::
PaddleTensor
>>
*
inputs
,
int
batch_size
=
1
)
{
if
(
FLAGS_infer_data
.
empty
())
{
LOG
(
ERROR
)
<<
"please set input data path"
;
return
false
;
}
std
::
ifstream
fin
(
FLAGS_infer_data
);
std
::
string
line
;
int
sample
=
0
;
// The unit-test dataset only have 10 samples, each sample have 5 feeds.
while
(
std
::
getline
(
fin
,
line
))
{
std
::
vector
<
paddle
::
PaddleTensor
>
feed_data
;
ParseLine
(
line
,
&
feed_data
);
inputs
->
push_back
(
std
::
move
(
feed_data
));
sample
++
;
if
(
!
FLAGS_test_all_data
&&
sample
==
batch_size
)
break
;
}
LOG
(
INFO
)
<<
"number of samples: "
<<
sample
;
return
true
;
}
void
SetConfig
(
AnalysisConfig
*
cfg
,
int
batch_size
=
1
)
{
cfg
->
SetModel
(
FLAGS_infer_model
);
// ipu_device_num, ipu_micro_batch_size, ipu_enable_pipelining
cfg
->
EnableIpu
(
1
,
batch_size
,
false
);
// ipu_enable_fp16, ipu_replica_num, ipu_available_memory_proportion,
// ipu_enable_half_partial
cfg
->
SetIpuConfig
(
true
,
1
,
1.0
,
true
);
}
// Compare results
TEST
(
Analyzer_Ernie_ipu
,
compare_results
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
LoadInputData
(
&
input_slots_all
);
std
::
ifstream
fin
(
FLAGS_refer_result
);
std
::
string
line
;
std
::
vector
<
float
>
ref
;
while
(
std
::
getline
(
fin
,
line
))
{
Split
(
line
,
' '
,
&
ref
);
}
auto
predictor
=
CreateTestPredictor
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
FLAGS_use_analysis
);
std
::
vector
<
PaddleTensor
>
outputs
;
for
(
size_t
i
=
0
;
i
<
input_slots_all
.
size
();
i
++
)
{
outputs
.
clear
();
predictor
->
Run
(
input_slots_all
[
i
],
&
outputs
);
auto
output
=
outputs
.
front
();
ConvertFP16toFP32
(
output
);
auto
outputs_size
=
1
;
for
(
auto
dim
:
output
.
shape
)
{
outputs_size
*=
dim
;
}
float
*
fp32_data
=
reinterpret_cast
<
float
*>
(
output
.
data
.
data
());
for
(
size_t
j
=
0
;
j
<
outputs_size
;
++
j
)
{
EXPECT_NEAR
(
ref
[
i
*
outputs_size
+
j
],
fp32_data
[
j
],
5e-3
);
}
}
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/api/ipu_ernie_test.cc
0 → 100644
浏览文件 @
24f55aed
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace
paddle
{
namespace
inference
{
using
paddle
::
PaddleTensor
;
template
<
typename
T
>
void
GetValueFromStream
(
std
::
stringstream
*
ss
,
T
*
t
)
{
(
*
ss
)
>>
(
*
t
);
}
template
<
>
void
GetValueFromStream
<
std
::
string
>
(
std
::
stringstream
*
ss
,
std
::
string
*
t
)
{
*
t
=
ss
->
str
();
}
// Split string to vector
template
<
typename
T
>
void
Split
(
const
std
::
string
&
line
,
char
sep
,
std
::
vector
<
T
>
*
v
)
{
std
::
stringstream
ss
;
T
t
;
for
(
auto
c
:
line
)
{
if
(
c
!=
sep
)
{
ss
<<
c
;
}
else
{
GetValueFromStream
<
T
>
(
&
ss
,
&
t
);
v
->
push_back
(
std
::
move
(
t
));
ss
.
str
({});
ss
.
clear
();
}
}
if
(
!
ss
.
str
().
empty
())
{
GetValueFromStream
<
T
>
(
&
ss
,
&
t
);
v
->
push_back
(
std
::
move
(
t
));
ss
.
str
({});
ss
.
clear
();
}
}
// Parse tensor from string
template
<
typename
T
>
bool
ParseTensor
(
const
std
::
string
&
field
,
paddle
::
PaddleTensor
*
tensor
)
{
std
::
vector
<
std
::
string
>
data
;
Split
(
field
,
':'
,
&
data
);
if
(
data
.
size
()
<
2
)
return
false
;
std
::
string
shape_str
=
data
[
0
];
std
::
vector
<
int
>
shape
;
Split
(
shape_str
,
' '
,
&
shape
);
std
::
string
mat_str
=
data
[
1
];
std
::
vector
<
T
>
mat
;
Split
(
mat_str
,
' '
,
&
mat
);
tensor
->
shape
=
shape
;
auto
size
=
std
::
accumulate
(
shape
.
begin
(),
shape
.
end
(),
1
,
std
::
multiplies
<
int
>
())
*
sizeof
(
T
);
tensor
->
data
.
Resize
(
size
);
std
::
copy
(
mat
.
begin
(),
mat
.
end
(),
static_cast
<
T
*>
(
tensor
->
data
.
data
()));
tensor
->
dtype
=
GetPaddleDType
<
T
>
();
return
true
;
}
// Parse input tensors from string
bool
ParseLine
(
const
std
::
string
&
line
,
std
::
vector
<
paddle
::
PaddleTensor
>
*
tensors
)
{
std
::
vector
<
std
::
string
>
fields
;
Split
(
line
,
';'
,
&
fields
);
tensors
->
clear
();
tensors
->
reserve
(
4
);
int
i
=
0
;
auto
input_name
=
FLAGS_ernie_large
?
"eval_placeholder_"
:
"placeholder_"
;
for
(;
i
<
3
;
i
++
)
{
paddle
::
PaddleTensor
temp
;
ParseTensor
<
int64_t
>
(
fields
[
i
],
&
temp
);
temp
.
name
=
input_name
+
std
::
to_string
(
i
);
tensors
->
push_back
(
temp
);
}
// input_mask
paddle
::
PaddleTensor
input_mask
;
ParseTensor
<
float
>
(
fields
[
i
],
&
input_mask
);
input_mask
.
name
=
input_name
+
std
::
to_string
(
i
);
tensors
->
push_back
(
input_mask
);
return
true
;
}
bool
LoadInputData
(
std
::
vector
<
std
::
vector
<
paddle
::
PaddleTensor
>>
*
inputs
,
int
batch_size
=
1
)
{
if
(
FLAGS_infer_data
.
empty
())
{
LOG
(
ERROR
)
<<
"please set input data path"
;
return
false
;
}
std
::
ifstream
fin
(
FLAGS_infer_data
);
std
::
string
line
;
int
sample
=
0
;
// The unit-test dataset only have 10 samples, each sample have 5 feeds.
while
(
std
::
getline
(
fin
,
line
))
{
std
::
vector
<
paddle
::
PaddleTensor
>
feed_data
;
ParseLine
(
line
,
&
feed_data
);
inputs
->
push_back
(
std
::
move
(
feed_data
));
sample
++
;
if
(
!
FLAGS_test_all_data
&&
sample
==
batch_size
)
break
;
}
LOG
(
INFO
)
<<
"number of samples: "
<<
sample
;
return
true
;
}
void
SetConfig
(
AnalysisConfig
*
cfg
,
int
batch_size
=
1
)
{
cfg
->
SetModel
(
FLAGS_infer_model
);
// ipu_device_num, ipu_micro_batch_size, ipu_enable_pipelining
cfg
->
EnableIpu
(
1
,
batch_size
,
false
);
}
void
profile
()
{
AnalysisConfig
config
;
SetConfig
(
&
config
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
outputs
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
inputs
;
LoadInputData
(
&
inputs
);
TestPrediction
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
config
),
inputs
,
&
outputs
,
FLAGS_num_threads
);
}
// Compare Deterministic result
TEST
(
Analyzer_Ernie_ipu
,
compare_determine
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
LoadInputData
(
&
input_slots_all
);
CompareDeterministic
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
input_slots_all
);
}
// Compare results
TEST
(
Analyzer_Ernie_ipu
,
compare_results
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
LoadInputData
(
&
input_slots_all
);
std
::
ifstream
fin
(
FLAGS_refer_result
);
std
::
string
line
;
std
::
vector
<
float
>
ref
;
while
(
std
::
getline
(
fin
,
line
))
{
Split
(
line
,
' '
,
&
ref
);
}
auto
predictor
=
CreateTestPredictor
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
FLAGS_use_analysis
);
std
::
vector
<
PaddleTensor
>
outputs
;
for
(
size_t
i
=
0
;
i
<
input_slots_all
.
size
();
i
++
)
{
outputs
.
clear
();
predictor
->
Run
(
input_slots_all
[
i
],
&
outputs
);
auto
outputs_size
=
outputs
.
front
().
data
.
length
()
/
(
sizeof
(
float
));
for
(
size_t
j
=
0
;
j
<
outputs_size
;
++
j
)
{
EXPECT_NEAR
(
ref
[
i
*
outputs_size
+
j
],
static_cast
<
float
*>
(
outputs
[
0
].
data
.
data
())[
j
],
FLAGS_accuracy
);
}
}
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/api/ipu_multi_model_profile.cc
0 → 100644
浏览文件 @
24f55aed
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace
paddle
{
namespace
inference
{
void
ErnieInputData
(
const
int
&
total_batch_size
,
const
bool
enable_fp16
,
std
::
vector
<
PaddleTensor
>
*
inputs
)
{
const
int
input_num
=
total_batch_size
*
128
*
1
;
std
::
vector
<
int64_t
>
placeholder_012
(
input_num
,
1
);
std
::
vector
<
float
>
placeholder_3
(
input_num
,
1
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
PaddleTensor
in
;
in
.
name
=
"placeholder_"
+
std
::
to_string
(
i
);
in
.
shape
=
{
total_batch_size
,
128
,
1
};
if
(
i
<
3
)
{
in
.
data
=
PaddleBuf
(
static_cast
<
void
*>
(
placeholder_012
.
data
()),
input_num
*
sizeof
(
int64_t
));
in
.
dtype
=
PaddleDType
::
INT64
;
}
else
{
in
.
data
=
PaddleBuf
(
static_cast
<
void
*>
(
placeholder_3
.
data
()),
input_num
*
sizeof
(
float
));
in
.
dtype
=
PaddleDType
::
FLOAT32
;
if
(
enable_fp16
)
{
ConvertFP32toFP16
(
in
);
}
}
inputs
->
push_back
(
std
::
move
(
in
));
}
}
void
Resnet50InputData
(
const
int
&
total_batch_size
,
const
bool
enable_fp16
,
std
::
vector
<
paddle
::
PaddleTensor
>
*
inputs
)
{
const
int
input_num
=
total_batch_size
*
3
*
318
*
318
;
std
::
vector
<
float
>
input
(
input_num
,
1
);
PaddleTensor
in
;
in
.
shape
=
{
total_batch_size
,
3
,
318
,
318
};
in
.
data
=
PaddleBuf
(
static_cast
<
void
*>
(
input
.
data
()),
input_num
*
sizeof
(
float
));
in
.
dtype
=
PaddleDType
::
FLOAT32
;
if
(
enable_fp16
)
{
ConvertFP32toFP16
(
in
);
}
inputs
->
push_back
(
std
::
move
(
in
));
}
// performance profile
TEST
(
Analyzer_ipu_fp16
,
performance_profile
)
{
AnalysisConfig
config
;
std
::
vector
<
PaddleTensor
>
inputs
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
outputs
;
int
total_batch_size
=
FLAGS_ipu_micro_batch_size
*
FLAGS_ipu_replica_num
;
if
(
FLAGS_ipu_enable_pipelining
)
{
// if device_num > 1 and pipelining is enabled, the total batch size =
// micro_batch_size * device_num(batches_per_step) * replica_num
total_batch_size
=
FLAGS_ipu_micro_batch_size
*
FLAGS_ipu_batches_per_step
*
FLAGS_ipu_replica_num
;
}
if
(
FLAGS_model_name
==
"Resnet50"
)
{
config
.
SetModel
(
FLAGS_infer_model
+
"/model/model"
,
FLAGS_infer_model
+
"/model/params"
);
Resnet50InputData
(
total_batch_size
,
FLAGS_ipu_enable_fp16
,
&
inputs
);
}
else
if
(
FLAGS_model_name
==
"Ernie"
)
{
config
.
SetModel
(
FLAGS_infer_model
+
"/model/"
);
ErnieInputData
(
total_batch_size
,
FLAGS_ipu_enable_fp16
,
&
inputs
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Only support Resnet50 and Ernie Currently"
));
}
// ipu_device_num, ipu_micro_batch_size, ipu_enable_pipelining,
// ipu_batches_per_step
config
.
EnableIpu
(
FLAGS_ipu_device_num
,
FLAGS_ipu_micro_batch_size
,
FLAGS_ipu_enable_pipelining
,
FLAGS_ipu_batches_per_step
);
// ipu_enable_fp16, ipu_replica_num, ipu_available_memory_proportion,
// ipu_enable_half_partial
config
.
SetIpuConfig
(
FLAGS_ipu_enable_fp16
,
FLAGS_ipu_replica_num
,
FLAGS_ipu_available_memory_proportion
,
FLAGS_ipu_enable_half_partial
);
TestPrediction
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
config
),
{
inputs
},
&
outputs
,
1
);
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/api/ipu_resnet50_fp16_test.cc
0 → 100644
浏览文件 @
24f55aed
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <cmath>
#include "gflags/gflags.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace
paddle
{
namespace
inference
{
// Compare results with 1 batch
TEST
(
Analyzer_Resnet50_ipu
,
compare_results_1_batch
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/"
+
"model"
;
AnalysisConfig
config
;
// ipu_device_num, ipu_micro_batch_size, ipu_enable_pipelining
config
.
EnableIpu
(
1
,
1
,
false
);
// ipu_enable_fp16, ipu_replica_num, ipu_available_memory_proportion,
// ipu_enable_half_partial
config
.
SetIpuConfig
(
true
,
1
,
1.0
,
true
);
config
.
SetModel
(
model_dir
+
"/model"
,
model_dir
+
"/params"
);
std
::
vector
<
PaddleTensor
>
inputs
;
auto
predictor
=
CreatePaddlePredictor
(
config
);
const
int
batch
=
1
;
const
int
channel
=
3
;
const
int
height
=
318
;
const
int
width
=
318
;
const
int
input_num
=
batch
*
channel
*
height
*
width
;
std
::
vector
<
float
>
input
(
input_num
,
1
);
PaddleTensor
in
;
in
.
shape
=
{
batch
,
channel
,
height
,
width
};
in
.
data
=
PaddleBuf
(
static_cast
<
void
*>
(
input
.
data
()),
input_num
*
sizeof
(
float
));
in
.
dtype
=
PaddleDType
::
FLOAT32
;
ConvertFP32toFP16
(
in
);
inputs
.
emplace_back
(
in
);
std
::
vector
<
PaddleTensor
>
outputs
;
ASSERT_TRUE
(
predictor
->
Run
(
inputs
,
&
outputs
));
const
std
::
vector
<
float
>
truth_values
=
{
127.779
f
,
738.165
f
,
1013.22
f
,
-
438.17
f
,
366.401
f
,
927.659
f
,
736.222
f
,
-
633.684
f
,
-
329.927
f
,
-
430.155
f
,
-
633.062
f
,
-
146.548
f
,
-
1324.28
f
,
-
1349.36
f
,
-
242.675
f
,
117.448
f
,
-
801.723
f
,
-
391.514
f
,
-
404.818
f
,
454.16
f
,
515.48
f
,
-
133.031
f
,
69.293
f
,
590.096
f
,
-
1434.69
f
,
-
1070.89
f
,
307.074
f
,
400.525
f
,
-
316.12
f
,
-
587.125
f
,
-
161.056
f
,
800.363
f
,
-
96.4708
f
,
748.706
f
,
868.174
f
,
-
447.938
f
,
112.737
f
,
1127.2
f
,
47.4355
f
,
677.72
f
,
593.186
f
,
-
336.4
f
,
551.362
f
,
397.823
f
,
78.3979
f
,
-
715.398
f
,
405.969
f
,
404.256
f
,
246.019
f
,
-
8.42969
f
,
131.365
f
,
-
648.051
f
};
const
size_t
expected_size
=
1
;
EXPECT_EQ
(
outputs
.
size
(),
expected_size
);
auto
output
=
outputs
.
front
();
ConvertFP16toFP32
(
output
);
auto
outputs_size
=
1
;
for
(
auto
dim
:
output
.
shape
)
{
outputs_size
*=
dim
;
}
float
*
fp32_data
=
reinterpret_cast
<
float
*>
(
output
.
data
.
data
());
for
(
size_t
j
=
0
;
j
<
outputs_size
;
j
+=
10
)
{
EXPECT_NEAR
((
fp32_data
[
j
]
-
truth_values
[
j
/
10
])
/
truth_values
[
j
/
10
],
0.
,
9e-2
);
}
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/api/ipu_resnet50_test.cc
浏览文件 @
24f55aed
...
...
@@ -33,9 +33,8 @@ static std::vector<float> truth_values = {
TEST
(
Analyzer_Resnet50_ipu
,
compare_results_1_batch
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/"
+
"model"
;
AnalysisConfig
config
;
// num_ipu, enable_pipelining, batches_per_step, batch_size,
// need_avg_shard
config
.
EnableIpu
(
1
,
false
);
// ipu_device_num, ipu_micro_batch_size, ipu_enable_pipelining
config
.
EnableIpu
(
1
,
1
,
false
);
config
.
SetModel
(
model_dir
+
"/model"
,
model_dir
+
"/params"
);
std
::
vector
<
PaddleTensor
>
inputs
;
...
...
@@ -72,9 +71,8 @@ TEST(Analyzer_Resnet50_ipu, compare_results_1_batch) {
TEST
(
Analyzer_Resnet50_ipu
,
compare_results_2_batch
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/"
+
"model"
;
AnalysisConfig
config
;
// num_ipu, enable_pipelining, batches_per_step, batch_size,
// need_avg_shard
config
.
EnableIpu
(
2
,
false
,
1
,
2
,
1
);
// ipu_device_num, ipu_micro_batch_size, ipu_enable_pipelining
config
.
EnableIpu
(
1
,
2
,
false
);
config
.
SetModel
(
model_dir
+
"/model"
,
model_dir
+
"/params"
);
std
::
vector
<
PaddleTensor
>
inputs
;
...
...
paddle/fluid/inference/tests/api/ipu_word2vec_sample.cc
0 → 100644
浏览文件 @
24f55aed
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file contains a simple demo for how to take a model for inference with
* IPUs.
* Model: wget -q
* http://paddle-inference-dist.bj.bcebos.com/word2vec.inference.model.tar.gz
*/
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
DEFINE_string
(
infer_model
,
""
,
"Directory of the inference model."
);
using
paddle_infer
::
Config
;
using
paddle_infer
::
Predictor
;
using
paddle_infer
::
CreatePredictor
;
void
inference
(
std
::
string
model_path
,
bool
use_ipu
,
std
::
vector
<
float
>
*
out_data
)
{
//# 1. Create Predictor with a config.
Config
config
;
config
.
SetModel
(
FLAGS_infer_model
);
if
(
use_ipu
)
{
// ipu_device_num, ipu_micro_batch_size
config
.
EnableIpu
(
1
,
4
);
}
auto
predictor
=
CreatePredictor
(
config
);
//# 2. Prepare input/output tensor.
auto
input_names
=
predictor
->
GetInputNames
();
std
::
vector
<
int64_t
>
data
{
1
,
2
,
3
,
4
};
// For simplicity, we set all the slots with the same data.
for
(
auto
input_name
:
input_names
)
{
auto
input_tensor
=
predictor
->
GetInputHandle
(
input_name
);
input_tensor
->
Reshape
({
4
,
1
});
input_tensor
->
CopyFromCpu
(
data
.
data
());
}
//# 3. Run
predictor
->
Run
();
//# 4. Get output.
auto
output_names
=
predictor
->
GetOutputNames
();
auto
output_tensor
=
predictor
->
GetOutputHandle
(
output_names
[
0
]);
std
::
vector
<
int
>
output_shape
=
output_tensor
->
shape
();
int
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
out_data
->
resize
(
out_num
);
output_tensor
->
CopyToCpu
(
out_data
->
data
());
}
int
main
(
int
argc
,
char
*
argv
[])
{
::
GFLAGS_NAMESPACE
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
std
::
vector
<
float
>
ipu_result
;
std
::
vector
<
float
>
cpu_result
;
inference
(
FLAGS_infer_model
,
true
,
&
ipu_result
);
inference
(
FLAGS_infer_model
,
false
,
&
cpu_result
);
for
(
size_t
i
=
0
;
i
<
ipu_result
.
size
();
i
++
)
{
CHECK_NEAR
(
ipu_result
[
i
],
cpu_result
[
i
],
1e-6
);
}
LOG
(
INFO
)
<<
"Finished"
;
}
paddle/fluid/inference/tests/api/tester_helper.h
浏览文件 @
24f55aed
...
...
@@ -76,10 +76,23 @@ DEFINE_int32(cpu_num_threads, 1, "Number of threads for each paddle instance.");
DEFINE_bool
(
fuse_multi_gru
,
false
,
"Running the inference program with multi_gru_fuse_pass"
);
// ipu related
DEFINE_int32
(
ipu_micro_batch_size
,
1
,
"micro batch size"
);
DEFINE_int32
(
ipu_device_num
,
1
,
"device num"
);
DEFINE_bool
(
ipu_enable_pipelining
,
false
,
"enable pipelining"
);
DEFINE_int32
(
ipu_batches_per_step
,
1
,
"the number of batches per run in pipelining"
);
DEFINE_bool
(
ipu_enable_fp16
,
false
,
"enable fp16"
);
DEFINE_int32
(
ipu_replica_num
,
1
,
"replica num"
);
DEFINE_double
(
ipu_available_memory_proportion
,
1.0
,
"available memory proportion"
);
DEFINE_bool
(
ipu_enable_half_partial
,
false
,
"enable half partial"
);
namespace
paddle
{
namespace
inference
{
using
paddle
::
framework
::
proto
::
VarType
;
using
float16
=
paddle
::
platform
::
float16
;
template
<
typename
T
>
constexpr
paddle
::
PaddleDType
GetPaddleDType
();
...
...
@@ -1060,5 +1073,44 @@ static bool CompareTensor(const framework::LoDTensor &a,
return
true
;
}
void
ConvertFP32toFP16
(
paddle
::
PaddleTensor
&
tensor
// NOLINT
)
{
int
num
=
1
;
for
(
auto
dim
:
tensor
.
shape
)
{
num
*=
dim
;
}
PADDLE_ENFORCE_EQ
(
tensor
.
dtype
,
PaddleDType
::
FLOAT32
,
platform
::
errors
::
InvalidArgument
(
"The tensor dtype is not float32, only support float32 as input"
));
float
*
fp32_data
=
reinterpret_cast
<
float
*>
(
tensor
.
data
.
data
());
float16
*
fp16_data
=
new
float16
[
num
];
for
(
int
i
=
0
;
i
<
num
;
i
++
)
{
fp16_data
[
i
]
=
float16
(
fp32_data
[
i
]);
}
tensor
.
data
=
PaddleBuf
(
static_cast
<
void
*>
(
fp16_data
),
num
*
sizeof
(
float16
));
tensor
.
dtype
=
PaddleDType
::
FLOAT16
;
}
void
ConvertFP16toFP32
(
paddle
::
PaddleTensor
&
tensor
// NOLINT
)
{
int
num
=
1
;
for
(
auto
dim
:
tensor
.
shape
)
{
num
*=
dim
;
}
PADDLE_ENFORCE_EQ
(
tensor
.
dtype
,
PaddleDType
::
FLOAT16
,
platform
::
errors
::
InvalidArgument
(
"The tensor dtype is not float16, only support float16 as input"
));
float16
*
fp16_data
=
reinterpret_cast
<
float16
*>
(
tensor
.
data
.
data
());
float
*
fp32_data
=
new
float
[
num
];
for
(
int
i
=
0
;
i
<
num
;
i
++
)
{
fp32_data
[
i
]
=
static_cast
<
float
>
(
fp16_data
[
i
]);
}
tensor
.
data
=
PaddleBuf
(
static_cast
<
void
*>
(
fp32_data
),
num
*
sizeof
(
float
));
tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
}
}
// namespace inference
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录