未验证 提交 d608170a 编写于 作者: M ming1753 提交者: GitHub

[Paddle-TRT] add flip op (#55688)

* [Paddle-TRT] add flip op
上级 4191f2c6
......@@ -2918,6 +2918,7 @@ USE_TRT_CONVERTER(preln_groupnorm_act)
USE_TRT_CONVERTER(cumsum)
USE_TRT_CONVERTER(assign)
USE_TRT_CONVERTER(unbind)
USE_TRT_CONVERTER(flip)
#if IS_TRT_VERSION_GE(8522)
USE_TRT_CONVERTER(flash_multihead_matmul)
USE_TRT_CONVERTER(cross_multihead_matmul)
......
......@@ -108,7 +108,8 @@ list(
temporal_shift_op.cc
einsum_op.cc
unbind_op.cc
assign_op.cc)
assign_op.cc
flip_op.cc)
if(${TENSORRT_MAJOR_VERSION} GREATER_EQUAL 7)
list(APPEND CONVERT_FILES emb_eltwise_layernorm.cc
......
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
class FlipOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(4) << "convert a flip op to tensorrt layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
auto input_dims = input->getDimensions();
// Get Attrs
std::vector<int> axis =
PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("axis"));
for (size_t i = 0; i < axis.size(); ++i) {
axis[i] += (axis[i] < 0) ? input_dims.nbDims : 0;
}
nvinfer1::ITensor* shape_tensor = Shape(input);
// getAxisLength default is a scalar
auto getAxisLength = [&](int axis, bool scalar = true) {
int d = input_dims.d[axis];
if (d >= 0) {
return Add1DConstantLayer(d, "", scalar);
} else {
return GetEleTensorOfShape(shape_tensor, axis, scalar);
}
};
for (size_t i = 0; i < axis.size(); ++i) {
auto loop = TRT_ENGINE_ADD_LAYER(engine_, Loop);
nvinfer1::ITensor* tripLimit = getAxisLength(axis[i]);
loop->addTripLimit(*tripLimit, nvinfer1::TripLimit::kCOUNT);
auto iterator = loop->addIterator(*input, axis[i], true);
std::vector<int32_t> zero_vec{0};
std::vector<int32_t> one_vec{1};
auto zero = Add1DConstantLayer(zero_vec);
auto one = Add1DConstantLayer(one_vec);
nvinfer1::IRecurrenceLayer* iRec = loop->addRecurrence(*zero);
nvinfer1::ITensor* iCur = iRec->getOutput(0);
auto iNext = TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*iCur,
*one,
nvinfer1::ElementWiseOperation::kSUM);
iRec->setInput(1, *iNext->getOutput(0));
nvinfer1::ILoopOutputLayer* loopOut = loop->addLoopOutput(
*iterator->getOutput(0), nvinfer1::LoopOutput::kCONCATENATE, axis[i]);
loopOut->setInput(1, *tripLimit);
input = loopOut->getOutput(0);
}
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Identity, *input);
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "flip", {output_name}, test_mode);
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(flip, FlipOpConverter);
......@@ -2730,6 +2730,18 @@ struct SimpleOpTypeSetTeller : public Teller {
#endif
}
if (op_type == "flip") {
if (!with_dynamic_shape) {
VLOG(3) << "the flip does not support "
"static shape yet";
return false;
}
#if !IS_TRT_VERSION_GE(7220)
VLOG(3) << "flip is not supported when TensorRT below 7.2.2";
return false;
#endif
}
if (use_no_calib_int8) {
return int8_teller_set.count(op_type);
} else {
......@@ -2900,7 +2912,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"grid_sampler",
"cumsum",
"unbind",
"assign"};
"assign",
"flip"};
std::unordered_set<std::string> teller_set{
"matrix_multiply",
......@@ -3064,7 +3077,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"grid_sampler",
"cumsum",
"unbind",
"assign"};
"assign",
"flip"};
};
struct GenericPluginTeller : public Teller {
......
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from functools import partial
from typing import List
import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest
import paddle.inference as paddle_infer
class TrtConvertFlipTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
ver = paddle_infer.get_trt_compile_version()
if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7220:
return False
return True
def sample_program_configs(self):
def generate_input(batch):
if self.dims == 4:
return np.random.random([batch, 3, 3, 24]).astype(np.float32)
elif self.dims == 3:
return np.random.random([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.random.random([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.random.random([24]).astype(np.int32)
def generate_axis():
return np.arange(self.dims).tolist()
for dims in [2, 3, 4]:
for batch in [3, 6, 9]:
self.dims = dims
axis = generate_axis()
ops_config = [
{
"op_type": "flip",
"op_inputs": {
"X": ["input_data"],
},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": {"axis": axis},
}
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input, batch)
),
},
outputs=["output_data"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 4:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 3 - 1, 3 - 1, 24 - 1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [9, 3 + 1, 3 + 1, 24 + 1]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [1, 3, 3, 24]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 3 - 1, 24 - 1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [9, 3 + 1, 24 + 1]
}
self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 24]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"input_data": [1, 24]}
self.dynamic_shape.max_input_shape = {"input_data": [9, 24]}
self.dynamic_shape.opt_input_shape = {"input_data": [1, 24]}
elif self.dims == 1:
self.dynamic_shape.min_input_shape = {"input_data": [24 - 1]}
self.dynamic_shape.max_input_shape = {"input_data": [24 + 1]}
self.dynamic_shape.opt_input_shape = {"input_data": [24]}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
ver = paddle_infer.get_trt_compile_version()
if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7220:
return 0, 3
return 1, 2
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
self.trt_param.max_batch_size = 9
self.trt_param.workspace_size = 1073741824
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-3
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册