Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
aa892113
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aa892113
编写于
12月 01, 2022
作者:
W
Wilber
提交者:
GitHub
12月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Inference] Optimize memory_optimize pass. (#48476)
* update memory_optimize pass
上级
93099bb8
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
183 addition
and
14 deletion
+183
-14
paddle/fluid/framework/naive_executor.cc
paddle/fluid/framework/naive_executor.cc
+64
-3
paddle/fluid/framework/naive_executor.h
paddle/fluid/framework/naive_executor.h
+10
-1
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+1
-1
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+1
-0
paddle/fluid/inference/analysis/ir_pass_manager.cc
paddle/fluid/inference/analysis/ir_pass_manager.cc
+2
-0
paddle/fluid/inference/analysis/pass_result_info.cc
paddle/fluid/inference/analysis/pass_result_info.cc
+15
-0
paddle/fluid/inference/analysis/pass_result_info.h
paddle/fluid/inference/analysis/pass_result_info.h
+66
-0
paddle/fluid/inference/analysis/passes/memory_optimize_pass.cc
...e/fluid/inference/analysis/passes/memory_optimize_pass.cc
+7
-2
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+16
-6
paddle/fluid/inference/api/analysis_predictor.h
paddle/fluid/inference/api/analysis_predictor.h
+1
-1
未找到文件。
paddle/fluid/framework/naive_executor.cc
浏览文件 @
aa892113
...
...
@@ -15,8 +15,11 @@
#include "paddle/fluid/framework/naive_executor.h"
#include <string>
#include <unordered_map>
#include <unordered_set>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/denormal.h"
#ifdef PADDLE_WITH_MKLDNN
...
...
@@ -61,12 +64,31 @@ void NaiveExecutor::Run() {
#ifdef PADDLE_WITH_INFERENCE_NVTX
platform
::
CudaNvtxRangePush
(
op
->
Type
(),
platform
::
NvtxRangeColor
::
Green
);
#endif
// According to reuse table, we share the out tensor's holder.
if
(
reuse_cache_
.
count
(
op
.
get
()))
{
for
(
auto
&
it
:
reuse_cache_
[
op
.
get
()])
{
it
.
first
->
ShareBufferWith
(
*
cluster_buffer_
[
it
.
second
]);
}
}
op
->
Run
(
*
scope_
,
place_
);
// Update the shared_holder so that only records the max one.
if
(
reuse_cache_
.
count
(
op
.
get
()))
{
for
(
auto
&
it
:
reuse_cache_
[
op
.
get
()])
{
if
(
it
.
first
->
memory_size
()
>
cluster_buffer_
[
it
.
second
]
->
memory_size
())
{
cluster_buffer_
[
it
.
second
]
=
it
.
first
;
}
}
}
#ifdef PADDLE_WITH_INFERENCE_NVTX
platform
::
CudaNvtxRangePop
();
#endif
if
(
hookfunc_
)
{
hookfunc_
(
op
.
get
());
for
(
auto
&
func
:
hookfunc_
)
{
func
(
op
.
get
());
}
}
#ifdef PADDLE_WITH_INFERENCE_NVTX
...
...
@@ -146,7 +168,46 @@ phi::DenseTensor *NaiveExecutor::FindTensor(const std::string &name) {
}
void
NaiveExecutor
::
RegisterOutputHook
(
const
HookFunc
&
hookfunc
)
{
hookfunc_
=
hookfunc
;
hookfunc_
.
push_back
(
hookfunc
);
}
void
NaiveExecutor
::
MakeReusePlan
(
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
reuse_table
)
{
std
::
unordered_map
<
std
::
string
,
std
::
unordered_set
<
std
::
string
>>
clusters
;
for
(
auto
&
it
:
reuse_table
)
{
clusters
[
it
.
second
].
insert
(
it
.
first
);
}
std
::
vector
<
std
::
string
>
cluster_names
;
for
(
auto
&
it
:
clusters
)
{
cluster_names
.
push_back
(
it
.
first
);
}
cluster_buffer_
.
resize
(
cluster_names
.
size
());
for
(
auto
&
op
:
ops_
)
{
for
(
auto
&
name
:
op
->
OutputVars
(
true
))
{
if
(
reuse_table
.
count
(
name
))
{
const
auto
&
reuse_name
=
reuse_table
.
at
(
name
);
auto
it
=
std
::
find
(
cluster_names
.
begin
(),
cluster_names
.
end
(),
reuse_name
);
int
idx
=
it
-
cluster_names
.
begin
();
auto
*
var
=
scope_
->
FindVar
(
name
);
auto
*
reuse_var
=
scope_
->
FindVar
(
reuse_name
);
if
(
var
&&
reuse_var
&&
var
->
IsType
<
phi
::
DenseTensor
>
()
&&
reuse_var
->
IsType
<
phi
::
DenseTensor
>
())
{
auto
*
tensor
=
var
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
*
reuse_tensor
=
reuse_var
->
GetMutable
<
phi
::
DenseTensor
>
();
cluster_buffer_
[
idx
]
=
reuse_tensor
;
if
(
reuse_cache_
.
count
(
op
.
get
()))
{
reuse_cache_
[
op
.
get
()].
emplace
(
tensor
,
idx
);
}
else
{
reuse_cache_
[
op
.
get
()]
=
std
::
unordered_map
<
phi
::
DenseTensor
*
,
int
>
{{
tensor
,
idx
}};
}
}
}
}
}
}
NaiveExecutor
::~
NaiveExecutor
()
{
...
...
paddle/fluid/framework/naive_executor.h
浏览文件 @
aa892113
...
...
@@ -17,6 +17,7 @@
#include <functional>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/operator.h"
...
...
@@ -67,6 +68,9 @@ class NaiveExecutor {
Scope
*
GetScope
()
{
return
scope_
;
}
void
MakeReusePlan
(
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>&
reuse_table
);
void
ResetTrtOps
(
int
num
);
void
RegisterOutputHook
(
const
HookFunc
&
hookfunc
);
...
...
@@ -82,7 +86,12 @@ class NaiveExecutor {
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
Scope
*
scope_
{
nullptr
};
HookFunc
hookfunc_
{
nullptr
};
std
::
vector
<
HookFunc
>
hookfunc_
;
// Record information that tensor_a should ShareBufferWith tensor_b.
std
::
unordered_map
<
OperatorBase
*
,
std
::
unordered_map
<
phi
::
DenseTensor
*
,
int
>>
reuse_cache_
;
std
::
vector
<
phi
::
DenseTensor
*>
cluster_buffer_
;
};
}
// namespace framework
...
...
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
aa892113
...
...
@@ -20,7 +20,7 @@ cc_library(
cc_library
(
ir_pass_manager
SRCS ir_pass_manager.cc
SRCS ir_pass_manager.cc
pass_result_info.cc
DEPS graph pass
${
INFER_IR_PASSES
}
analysis_helper
)
cc_library
(
...
...
paddle/fluid/inference/analysis/argument.h
浏览文件 @
aa892113
...
...
@@ -139,6 +139,7 @@ struct Argument {
unique_ptr_t field__##_;
DECL_ARGUMENT_FIELD
(
predictor_id
,
PredictorID
,
int
);
DECL_ARGUMENT_FIELD
(
root_predictor_id
,
RootPredictorID
,
int
);
// Model path
DECL_ARGUMENT_FIELD
(
model_dir
,
ModelDir
,
std
::
string
);
// Model specified with program and parameters files.
...
...
paddle/fluid/inference/analysis/ir_pass_manager.cc
浏览文件 @
aa892113
...
...
@@ -229,6 +229,8 @@ void IRPassManager::CreatePasses(Argument *argument,
argument
->
dlnne_input_shape_dict
()));
pass
->
Set
(
"program"
,
new
framework
::
ProgramDesc
*
(
&
argument
->
main_program
()));
}
else
if
(
pass_name
==
"memory_optimize_pass"
)
{
pass
->
Set
(
"root_predictor_id"
,
new
int
(
argument
->
root_predictor_id
()));
}
if
(
pass_name
==
"lite_subgraph_pass"
)
{
bool
lite_enable_int8
=
...
...
paddle/fluid/inference/analysis/pass_result_info.cc
0 → 100644
浏览文件 @
aa892113
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/pass_result_info.h"
paddle/fluid/inference/analysis/pass_result_info.h
0 → 100644
浏览文件 @
aa892113
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/phi/core/enforce.h"
#include "paddle/utils/variant.h"
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
class
PassResultInfoForRuntime
{
public:
using
PassInfo
=
paddle
::
variant
<
std
::
string
,
std
::
vector
<
std
::
string
>
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
;
static
PassResultInfoForRuntime
*
Instance
()
{
static
PassResultInfoForRuntime
info
;
return
&
info
;
}
template
<
typename
T
>
void
Set
(
int
predictor_id
,
const
std
::
string
&
pass_name
,
T
infos
)
{
map
[
predictor_id
].
emplace
(
pass_name
,
infos
);
}
template
<
typename
T
>
T
Get
(
int
predictor_id
,
const
std
::
string
&
pass_name
)
{
PADDLE_ENFORCE_EQ
(
map
.
count
(
predictor_id
)
&&
map
[
predictor_id
].
count
(
pass_name
),
true
,
phi
::
errors
::
InvalidArgument
(
"Not find predictor_id %d and pass_name %s"
,
predictor_id
,
pass_name
));
return
PADDLE_GET_CONST
(
T
,
map
[
predictor_id
][
pass_name
]);
}
private:
using
PassResultInfoMap
=
std
::
unordered_map
<
int
,
std
::
unordered_map
<
std
::
string
,
PassInfo
>>
;
PassResultInfoMap
map
;
};
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/passes/memory_optimize_pass.cc
浏览文件 @
aa892113
...
...
@@ -19,6 +19,7 @@
#include "glog/logging.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/inference/analysis/pass_result_info.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
...
...
@@ -310,7 +311,7 @@ void MemoryOptimizePass::RunImpl(Argument* argument) {
// mapping table.
if
(
!
argument
->
enable_memory_optim
())
return
;
// Because of pass is a singleton, graph can not be member
// variables,otherwise
,
errors will be caused under multithreading
// variables,otherwise
,
errors will be caused under multithreading
// conditions.
auto
graph
=
argument
->
main_graph_ptr
();
...
...
@@ -323,7 +324,11 @@ void MemoryOptimizePass::RunImpl(Argument* argument) {
CollectLifeCycle
(
graph
,
&
lifecycles
,
sort_kind
);
CollectVarMemorySize
(
graph
,
&
space_table
);
MakeSimpleReusePlan
(
lifecycles
,
space_table
,
&
node2cluster
,
&
cluster_size
);
UpdateOpDescsByReuse
(
graph
,
node2cluster
,
sort_kind
);
auto
*
pass_res_info
=
PassResultInfoForRuntime
::
Instance
();
pass_res_info
->
Set
(
argument
->
root_predictor_id
(),
"memory_optimize_pass"
,
node2cluster
);
return
;
}
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
aa892113
...
...
@@ -38,6 +38,7 @@
#include "paddle/fluid/framework/var_type_traits.h"
#include "paddle/fluid/framework/version.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/analysis/pass_result_info.h"
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
#include "paddle/fluid/inference/api/helper.h"
...
...
@@ -262,6 +263,10 @@ bool AnalysisPredictor::Init(
"generated."
;
}
if
(
!
status_is_cloned_
)
{
root_predictor_id_
=
predictor_id_
;
}
// no matter with or without MKLDNN
paddle
::
platform
::
SetNumThreads
(
config_
.
cpu_math_library_num_threads
());
...
...
@@ -615,6 +620,15 @@ bool AnalysisPredictor::PrepareExecutor() {
executor_
->
Prepare
(
sub_scope_
,
*
inference_program_
,
0
,
config_
.
use_feed_fetch_ops_
);
if
(
config_
.
enable_memory_optim_
)
{
auto
*
pass_res_info
=
inference
::
analysis
::
PassResultInfoForRuntime
::
Instance
();
auto
reuse_table
=
pass_res_info
->
Get
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
(
root_predictor_id_
,
"memory_optimize_pass"
);
executor_
->
MakeReusePlan
(
reuse_table
);
}
PADDLE_ENFORCE_NOT_NULL
(
sub_scope_
,
platform
::
errors
::
PreconditionNotMet
(
"The sub_scope should not be nullptr."
));
...
...
@@ -1079,6 +1093,7 @@ void AnalysisPredictor::PrepareArgument() {
argument_
.
SetModelFromMemory
(
config_
.
model_from_memory_
);
// Analyze inference_program
argument_
.
SetPredictorID
(
predictor_id_
);
argument_
.
SetRootPredictorID
(
root_predictor_id_
);
argument_
.
SetOptimCacheDir
(
config_
.
opt_cache_dir_
);
if
(
!
config_
.
model_dir
().
empty
())
{
argument_
.
SetModelDir
(
config_
.
model_dir
());
...
...
@@ -2114,6 +2129,7 @@ std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
std
::
lock_guard
<
std
::
mutex
>
lk
(
clone_mutex_
);
auto
*
x
=
new
AnalysisPredictor
(
config_
);
x
->
status_is_cloned_
=
true
;
x
->
root_predictor_id_
=
this
->
root_predictor_id_
;
if
(
config_
.
use_external_stream_
&&
stream
==
nullptr
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"config has been configured to use external stream, but the Clone "
...
...
@@ -2175,12 +2191,6 @@ void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
}
void
AnalysisPredictor
::
RegisterOutputHook
(
const
Exp_OutputHookFunc
&
hookfunc
)
{
if
(
config_
.
enable_memory_optim
())
{
LOG
(
WARNING
)
<<
"If you want to run output hook function, you should "
"use config.EnableMemoryOptim(false) to turn off memory "
"reuse!"
;
return
;
}
static
std
::
once_flag
register_hook_flag
;
std
::
call_once
(
register_hook_flag
,
[
this
]
{
executor_
->
RegisterOutputHook
([
this
](
framework
::
OperatorBase
*
op
)
{
...
...
paddle/fluid/inference/api/analysis_predictor.h
浏览文件 @
aa892113
...
...
@@ -102,7 +102,6 @@ class AnalysisPredictor : public PaddlePredictor {
explicit
AnalysisPredictor
(
const
AnalysisConfig
&
config
)
:
config_
(
config
)
{
if
(
config_
.
shape_range_info_collected
())
{
config_
.
SwitchIrOptim
(
false
);
config_
.
EnableMemoryOptim
(
false
);
}
predictor_id_
=
inference
::
GetUniqueId
();
}
...
...
@@ -518,6 +517,7 @@ class AnalysisPredictor : public PaddlePredictor {
int
need_collect_var_shapes_
{
-
1
};
// -1 for default, 0 for false, 1 for true.
std
::
vector
<
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>>
batch_var_shapes_
;
int
predictor_id_
;
int
root_predictor_id_
{
-
1
};
private:
std
::
vector
<
Exp_OutputHookFunc
>
hookfuncs_
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录