未验证 提交 7c89b972 编写于 作者: W Wangzheee 提交者: GitHub

add lookup_table op for Paddle-TRT (#54882)

上级 99017d9a
......@@ -2873,6 +2873,7 @@ USE_TRT_CONVERTER(fuse_eleadd_transpose)
USE_TRT_CONVERTER(tanh_shrink)
USE_TRT_CONVERTER(logsigmoid)
USE_TRT_CONVERTER(lookup_table)
USE_TRT_CONVERTER(lookup_table_v2)
USE_TRT_CONVERTER(expand_v2)
USE_TRT_CONVERTER(expand_as_v2)
USE_TRT_CONVERTER(take_along_axis)
......
......@@ -24,8 +24,40 @@ class LookupTableOpConverter : public OpConverter {
const framework::Scope& scope,
bool test_mode) override {
framework::OpDesc op_desc(op, nullptr);
VLOG(3)
<< "convert lookup_table(lookup_table_v2) op to TensorRT IGatherLayer";
VLOG(3) << "convert lookup_table op to TensorRT IGatherLayer";
auto ids_name = op_desc.Input("Ids").front();
auto w_name = op_desc.Input("W").front();
auto out_name = op_desc.Output("Out").front();
auto* ids_tensor = engine_->GetITensor(ids_name);
auto* w_tensor = engine_->GetITensor(w_name);
std::vector<nvinfer1::ITensor*> after_shape_tensors;
// lookup_table'Ids has an additional one-dimensional dimension (*,1), need
// to reshape (*)
for (int i = 0; i < ids_tensor->getDimensions().nbDims - 1; ++i) {
after_shape_tensors.push_back(GetEleTensorOfShape(Shape(ids_tensor), i));
}
auto* reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *ids_tensor);
reshape_layer->setInput(1, *Concat(after_shape_tensors));
reshape_layer->setName(
("reshape Ids for lookup_table(Output: " + out_name + ")").c_str());
auto* gather_layer = TRT_ENGINE_ADD_LAYER(
engine_, Gather, *w_tensor, *reshape_layer->getOutput(0), 0);
RreplenishLayerAndOutput(gather_layer, "gather", {out_name}, test_mode);
}
};
class LookupTableV2OpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
framework::OpDesc op_desc(op, nullptr);
VLOG(3) << "convert lookup_table_v2 op to TensorRT IGatherLayer";
auto ids_name = op_desc.Input("Ids").front();
auto w_name = op_desc.Input("W").front();
......@@ -45,3 +77,4 @@ class LookupTableOpConverter : public OpConverter {
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(lookup_table, LookupTableOpConverter);
REGISTER_TRT_OP_CONVERTER(lookup_table_v2, LookupTableV2OpConverter);
......@@ -140,14 +140,6 @@ class OpConverter {
platform::errors::Unimplemented("no OpConverter for optype [%s]",
op_desc.Type()));
}
// lookup_table_v2 == lookup_table
if (op_desc.Type() == "lookup_table_v2") {
it = Registry<OpConverter>::Global().Lookup("lookup_table");
PADDLE_ENFORCE_NOT_NULL(
it,
platform::errors::Unimplemented("no OpConverter for optype [%s]",
op_desc.Type()));
}
if (!it) {
it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
}
......
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from functools import partial
from typing import Any, Dict, List
import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest
import paddle.inference as paddle_infer
class TrtConvertLookupTableV2Test(TrtLayerAutoScanTest):
def sample_program_configs(self):
self.trt_param.workspace_size = 102400
def generate_input1(dims, attrs: List[Dict[str, Any]]):
if dims == 1:
return np.array([[32], [2], [19]]).astype(np.int64)
elif dims == 2:
return np.array([[[3], [16], [24]], [[6], [4], [47]]]).astype(
np.int64
)
else:
return np.array(
[
[
[[3], [16], [24]],
[[30], [16], [14]],
[[2], [6], [24]],
],
[[[3], [26], [34]], [[3], [16], [24]], [[3], [6], [4]]],
[
[[3], [16], [24]],
[[53], [16], [54]],
[[30], [1], [24]],
],
]
).astype(np.int64)
def generate_input2(dims, attrs: List[Dict[str, Any]]):
return np.random.uniform(-1, 1, [64, 4]).astype('float32')
for dims in [1, 2, 3]:
self.dims = dims
ops_config = [
{
"op_type": "lookup_table",
"op_inputs": {"Ids": ["indices"], "W": ["data"]},
"op_outputs": {"Out": ["out_data"]},
"op_attrs": {},
}
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={
"data": TensorConfig(
data_gen=partial(generate_input2, {}, {})
)
},
inputs={
"indices": TensorConfig(
data_gen=partial(generate_input1, dims, {})
)
},
outputs=["out_data"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 1:
self.dynamic_shape.min_input_shape = {
"indices": [1, 1],
"data": [64, 4],
}
self.dynamic_shape.max_input_shape = {
"indices": [16, 1],
"data": [64, 4],
}
self.dynamic_shape.opt_input_shape = {
"indices": [8, 1],
"data": [64, 4],
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"indices": [1, 1, 1],
"data": [64, 4],
}
self.dynamic_shape.max_input_shape = {
"indices": [16, 32, 1],
"data": [64, 4],
}
self.dynamic_shape.opt_input_shape = {
"indices": [2, 16, 1],
"data": [64, 4],
}
else:
self.dynamic_shape.min_input_shape = {
"indices": [1, 1, 1, 1],
"data": [64, 4],
}
self.dynamic_shape.max_input_shape = {
"indices": [16, 16, 16, 1],
"data": [64, 4],
}
self.dynamic_shape.opt_input_shape = {
"indices": [2, 8, 8, 1],
"data": [64, 4],
}
def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 2
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for dynamic_shape mode
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), (1e-3, 1e-3)
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
......@@ -25,9 +25,11 @@ import paddle.inference as paddle_infer
class TrtConvertLookupTableV2Test(TrtLayerAutoScanTest):
def sample_program_configs(self):
self.trt_param.workspace_size = 102400
def generate_input1(dims, attrs: List[Dict[str, Any]]):
if dims == 1:
return np.array([32]).astype(np.int64)
return np.array([32, 2, 19]).astype(np.int64)
elif dims == 2:
return np.array([[3, 16, 24], [6, 4, 47]]).astype(np.int64)
else:
......@@ -82,37 +84,37 @@ class TrtConvertLookupTableV2Test(TrtLayerAutoScanTest):
"data": [64, 4],
}
self.dynamic_shape.max_input_shape = {
"indices": [1],
"indices": [16],
"data": [64, 4],
}
self.dynamic_shape.opt_input_shape = {
"indices": [1],
"indices": [8],
"data": [64, 4],
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"indices": [2, 3],
"indices": [1, 1],
"data": [64, 4],
}
self.dynamic_shape.max_input_shape = {
"indices": [2, 3],
"indices": [16, 32],
"data": [64, 4],
}
self.dynamic_shape.opt_input_shape = {
"indices": [2, 3],
"indices": [2, 16],
"data": [64, 4],
}
else:
self.dynamic_shape.min_input_shape = {
"indices": [3, 3, 3],
"indices": [1, 1, 1],
"data": [64, 4],
}
self.dynamic_shape.max_input_shape = {
"indices": [3, 3, 3],
"indices": [16, 16, 16],
"data": [64, 4],
}
self.dynamic_shape.opt_input_shape = {
"indices": [3, 3, 3],
"indices": [2, 8, 8],
"data": [64, 4],
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册