analysis_predictor.cc 46.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <set>
21
#include <string>
22
#include <utility>
23
#include <vector>
24
#include "paddle/fluid/extension/include/ext_op_meta_info.h"
25
#include "paddle/fluid/framework/feed_fetch_method.h"
26
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
27
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
28
#include "paddle/fluid/framework/ir/pass.h"
29
#include "paddle/fluid/framework/naive_executor.h"
30
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/var_type_traits.h"
32
#include "paddle/fluid/framework/version.h"
33
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
35
#include "paddle/fluid/inference/api/helper.h"
L
luotao1 已提交
36
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
37
#include "paddle/fluid/inference/utils/singleton.h"
38
#include "paddle/fluid/memory/memcpy.h"
39
#include "paddle/fluid/platform/cpu_helper.h"
40
#include "paddle/fluid/platform/device_context.h"
41
#include "paddle/fluid/platform/gpu_info.h"
42
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
43 44
#include "paddle/fluid/platform/profiler.h"

45 46 47 48
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

49 50 51 52
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
53 54
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
55
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
56 57
#endif

58 59
namespace paddle {

N
nhzlx 已提交
60
using inference::Singleton;
N
nhzlx 已提交
61
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
62
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
63 64
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
65
#endif
66

67 68 69 70
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
71 72
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
73 74 75 76 77 78
    return true;
  }
  return false;
}
}  // namespace

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t,
                             const platform::Place &place) {
  framework::DDim ddim = framework::make_ddim(pt.shape);
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr), pt.data.data(),
                pt.data.length());
107 108 109 110
  } else if (platform::is_gpu_place(place)) {
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
111
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
112 113 114
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
115
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place);
116 117 118 119 120 121 122
    memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
123 124 125 126 127 128 129 130 131 132 133 134
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    auto dst_xpu_place = BOOST_GET_CONST(platform::XPUPlace, place);
    memory::Copy(dst_xpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
135 136 137 138 139 140 141 142 143 144
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
145
bool AnalysisPredictor::Init(
146 147
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
148
  VLOG(3) << "Predictor::init()";
149 150
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
151 152
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
153
    platform::EnableProfiler(tracking_device);
154 155 156
  } else {
    LOG(INFO) << "Profiler is deactivated, and no profiling report will be "
                 "generated.";
T
tensor-tang 已提交
157 158
  }

159
  // no matter with or without MKLDNN
L
luotao1 已提交
160
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
161

162 163 164 165 166 167 168 169 170 171 172 173 174
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
175
  }
176 177 178 179 180 181 182 183 184

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
185
  if (parent_scope) {
186 187
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
188 189
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
Y
Yan Chunwei 已提交
190
    scope_ = parent_scope;
191
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
192
  } else {
193
    paddle::framework::InitDevices();
W
Wilber 已提交
194 195
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
196
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
197
  }
198 199 200 201 202
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
203 204
  if (!program) {
    if (!LoadProgramDesc()) return false;
205 206 207 208 209 210 211 212 213
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

214 215 216 217
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
218
  } else {
219 220
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
221 222
    inference_program_ = program;
  }
M
Michal Gallus 已提交
223

224 225 226 227 228
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
229
  if (config_.use_gpu()) {
230 231 232
    PADDLE_ENFORCE_EQ(config_.use_xpu(), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
233
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
234
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
235 236 237 238 239 240 241 242
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
243
  } else if (config_.use_xpu()) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
267 268 269 270 271 272 273 274
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
275
                     config_.use_feed_fetch_ops_);
276

277 278 279
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
280

281 282 283
  return true;
}

284 285
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
286 287 288 289 290 291 292 293 294 295 296 297
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
298
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
299 300 301
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
302 303 304 305
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
306 307 308
        config_.mkldnn_cache_capacity_);
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
309 310 311
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
312 313 314
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
315
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
316 317 318 319 320 321 322 323
  }
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
324 325 326 327 328 329 330 331
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
332 333 334 335
    paddle::platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(0);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str("");
336 337 338 339
  }
#endif
}

340 341 342
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
343
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
344 345 346
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
347
  VLOG(3) << "Predictor::predict";
348 349 350 351
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
352 353
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::PreconditionNotMet(
                                     "The scope should not be nullptr."));
354 355
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
356
    return false;
357
  }
M
Michal Gallus 已提交
358

359 360 361
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
362

363 364 365 366
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
367
  }
Y
Yan Chunwei 已提交
368

M
minqiyang 已提交
369
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
370

Y
Yan Chunwei 已提交
371 372 373 374 375
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
376 377 378
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
379
  tensor_array_batch_cleaner_.ResetNoTensorVars();
380 381 382 383

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
384 385
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
386
#endif
387
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
388 389 390 391
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
392
#endif
393 394
  return true;
}
395

396 397
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
398
  VLOG(3) << "Predictor::set_feed";
399 400 401 402 403 404 405 406 407 408
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
409 410
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
411 412 413
      return false;
    }
    int idx = -1;
414
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
415 416
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
417 418
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
419 420
      }
      idx = feed_names_[name];
421
    } else {
422
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
423
    }
424
    framework::SetFeedVariable(scope, *input, "feed", idx);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
451
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
452 453
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
454
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
455 456 457 458 459
    PADDLE_ENFORCE_EQ(
        static_cast<size_t>(idx), i,
        platform::errors::InvalidArgument(
            "Fetch op's col attr(%d) should be equal to the index(%d)", idx,
            i));
460
    framework::FetchType &fetch_var =
461
        framework::GetFetchVariable(*scope, "fetch", idx);
462
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
463 464
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
465
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
466
    if (type == framework::proto::VarType::FP32) {
467 468
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
469
    } else if (type == framework::proto::VarType::INT64) {
470 471
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
472 473 474
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
475
    } else {
476
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
477 478
    }
  }
Y
Yan Chunwei 已提交
479 480
  return true;
}
481

482
void AnalysisPredictor::PrepareArgument() {
483
  argument_.SetUseGPU(config_.use_gpu());
484
  argument_.SetUseFcPadding(config_.use_fc_padding());
485
  argument_.SetGPUDeviceId(config_.gpu_device_id());
486
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
487
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
488
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
489
  // Analyze inference_program
490
  argument_.SetPredictorID(predictor_id_);
491
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
492 493
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
494
  } else {
495 496 497 498 499 500
    PADDLE_ENFORCE_EQ(config_.params_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or param_file should be set."));
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
501
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
502

503 504
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
505
  }
506

507
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
508
    LOG(INFO) << "TensorRT subgraph engine is enabled";
509 510 511
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
512
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
513
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
514 515
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
516
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
517
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
518
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
519
    argument_.SetTensorRtUseOSS(config_.trt_use_oss_);
520 521 522
    argument_.SetMinInputShape(config_.min_input_shape_);
    argument_.SetMaxInputShape(config_.max_input_shape_);
    argument_.SetOptimInputShape(config_.optim_input_shape_);
523
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
W
Wojciech Uss 已提交
524
  }
525

D
denglin-github 已提交
526 527 528 529 530 531
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
  }

石晓伟 已提交
532
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
533 534
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
535 536 537
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
538 539 540
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
541 542 543 544 545
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
石晓伟 已提交
546 547 548
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

549
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
550
    LOG(INFO) << "MKLDNN is enabled";
551 552 553
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

554 555 556 557 558 559 560 561
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
562 563 564 565
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
566 567
#endif

568
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
569 570 571 572
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
573
  argument_.SetDisableLogs(config_.glog_info_disabled());
574
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
575
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
576
  argument_.SetScopeNotOwned(scope_.get());
577 578 579 580 581
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
582 583
  Analyzer().Run(&argument_);

584 585 586
  PADDLE_ENFORCE_EQ(
      argument_.scope_valid(), true,
      platform::errors::InvalidArgument("The argument scope should be valid."));
587 588
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
589
  inference_program_.reset(
590
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
591 592 593 594
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
595
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
596
}
597 598

template <>
599 600
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
W
Wilber 已提交
601 602
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
603 604 605 606
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
607
  VLOG(3) << "create AnalysisConfig";
608 609 610 611
  PADDLE_ENFORCE_EQ(
      config.is_valid(), true,
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
612

613 614 615 616
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
617
                 []() { inference::RegisterAllCustomOperator(); });
618

619
  if (config.use_gpu()) {
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
          config.memory_pool_init_size_mb(), 0.f,
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
          config.gpu_device_id(), 0,
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
        gflags.push_back("--cudnn_deterministic=True");
      }

      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

W
Wilber 已提交
660 661 662 663 664 665 666
// TODO(wilber): jetson tx2 may fail to run the model due to insufficient memory
// under the native_best_fit strategy. Modify the default allocation strategy to
// auto_growth. todo, find a more appropriate way to solve the problem.
#ifdef WITH_NV_JETSON
      gflags.push_back("--allocator_strategy=auto_growth");
#endif

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
682 683 684 685 686 687
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
688 689 690 691
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
692 693
  // Each config can only be used for one predictor.
  config.SetInValid();
694 695 696 697 698 699 700
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
701 702
    return nullptr;
  }
703

G
Gabor Buella 已提交
704
  return predictor;
705 706
}

707 708 709 710 711 712 713 714 715 716 717 718
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

719
void AnalysisPredictor::PrepareFeedFetch() {
720 721 722
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
723
  CreateFeedFetchVar(sub_scope_);
724 725
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
726
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
727 728 729 730 731
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
732
      idx2feeds_[idx] = op->Output("Out")[0];
733
    } else if (op->Type() == "fetch") {
734
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
735 736
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
737
      }
Y
Yan Chunwei 已提交
738
      fetches_[idx] = op;
N
nhzlx 已提交
739
      idx2fetches_[idx] = op->Input("X")[0];
740 741 742 743
    }
  }
}

744
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
745 746
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::InvalidArgument(
                                     "The scope should not be nullptr."));
747
  auto *var = scope->Var("feed");
748
  var->GetMutable<framework::FeedList>();
749
  var = scope->Var("fetch");
750
  var->GetMutable<framework::FetchList>();
751 752
}

N
nhzlx 已提交
753 754 755 756 757 758 759 760
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

761 762 763 764 765 766
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
767 768
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet(
                                     "Input %s does not exist.", name));
769 770 771 772 773
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
774 775 776 777 778 779 780 781
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

782 783
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
784 785 786 787 788
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "The variable named %s is not found in the scope of the exector.",
          name));
789 790 791 792
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
793 794
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
795
  } else if (platform::is_xpu_place(place_)) {
796 797 798 799 800 801 802 803 804 805 806
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
      auto xpu_place = BOOST_GET_CONST(platform::XPUPlace, place_);
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
N
nhzlx 已提交
807
  } else {
808
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
809 810
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
811 812 813 814 815
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
816 817 818 819 820
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "he variable named %s is not found in the scope of the exector.",
          name));
821 822 823 824
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
825 826
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
827
  } else if (platform::is_xpu_place(place_)) {
828 829 830 831 832 833 834 835 836 837 838
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
      auto xpu_place = BOOST_GET_CONST(platform::XPUPlace, place_);
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
N
nhzlx 已提交
839
  } else {
840
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
841 842
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
843 844 845 846
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
847
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
848 849 850 851 852 853 854 855 856 857 858 859
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif

860
  executor_->Run();
Y
Yan Chunwei 已提交
861
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
862
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
863
  tensor_array_batch_cleaner_.ResetTensorArray();
864 865 866 867

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
W
Wilber 已提交
868 869 870
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
871
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
872 873 874 875 876
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
877 878 879 880 881
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
882
  std::string filename;
883 884 885
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
886 887 888
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
889
    filename = config_.prog_file();
890
  } else {
891
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
892 893 894 895
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
896
    LOG(ERROR) << string::Sprintf(
897 898
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
899 900
    return false;
  }
901 902 903

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
904
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
905 906 907
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
908 909 910 911 912
    PADDLE_ENFORCE_EQ(
        static_cast<bool>(fin.is_open()), true,
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
913 914 915 916 917 918 919 920
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
921
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
922
  }
923 924 925 926 927 928
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
929 930
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
931

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

952
      if (!config_.params_file().empty()) {
953 954 955 956 957 958
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
959
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
960 961 962 963 964
        op->CheckAttrs();
      }
    }
  }

965
  if (!config_.params_file().empty()) {
966 967 968 969 970 971
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
972
    op->SetAttr("file_path", {config_.params_file()});
973 974 975 976
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
977
  framework::NaiveExecutor e(place_);
978 979 980 981
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

982 983
  return true;
}
984

985 986 987 988 989
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
1009
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1010
bool AnalysisPredictor::SaveTrtCalibToDisk() {
1011 1012 1013
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(), true,
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
1014 1015 1016
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
1017 1018
      std::string engine_name = BOOST_GET_CONST(
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
1019
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
1020 1021 1022 1023
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
1024 1025
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
1026
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
1027
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
1028 1029
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
1030 1031 1032
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
1033

N
nhzlx 已提交
1034
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
1035 1036 1037
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
1038

N
nhzlx 已提交
1039 1040 1041 1042 1043
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
1044
      std::string calibration_table_data_path =
N
nhzlx 已提交
1045 1046 1047 1048
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
1049 1050 1051 1052 1053

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
1054 1055 1056 1057
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
1058
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
1059 1060
  return true;
}
N
nhzlx 已提交
1061
#endif
N
nhzlx 已提交
1062

1063
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
1064
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1065
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
1066 1067
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
1068 1069
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
1070
#endif
1071
  if (config_.with_profile_) {
1072 1073 1074 1075 1076 1077
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
1078

1079 1080 1081 1082 1083 1084
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
1085 1086

  memory::Release(place_);
1087 1088
}

1089
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
1090
  std::lock_guard<std::mutex> lk(clone_mutex_);
1091 1092 1093 1094 1095
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

1096
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
1097 1098 1099
  return inference_program_->Proto()->SerializeAsString();
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
1139
template <>
1140 1141
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1142
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
1143 1144
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
1145 1146
}

1147
}  // namespace paddle
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
1158 1159
USE_TRT_CONVERTER(transpose);
USE_TRT_CONVERTER(flatten);
1160
USE_TRT_CONVERTER(matmul);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
1172 1173
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
1174
USE_TRT_CONVERTER(split);
1175 1176
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
1177
USE_TRT_CONVERTER(leaky_relu);
1178 1179
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
1180
USE_TRT_CONVERTER(group_norm);
1181
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
1182 1183 1184
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
1185 1186
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
1187
USE_TRT_CONVERTER(slice);
1188
USE_TRT_CONVERTER(scale);
1189
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
1190
USE_TRT_CONVERTER(clip);
1191
USE_TRT_CONVERTER(gather);
1192
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
1193
USE_TRT_CONVERTER(yolo_box);
1194
USE_TRT_CONVERTER(roi_align);
1195
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
1196
USE_TRT_CONVERTER(multiclass_nms);
1197
USE_TRT_CONVERTER(nearest_interp);
1198
#endif
W
Wilber 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
  predictor_ = paddle::CreatePaddlePredictor<
      Config, paddle::PaddleEngineKind::kAnalysis>(config);
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
1214
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
1215 1216 1217 1218 1219 1220 1221
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
1222
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

std::unique_ptr<Predictor> Predictor::Clone() {
  auto analysis_pred = predictor_->Clone();
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

1237 1238
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

W
Wilber 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
      size, 1UL,
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
      idx, preds_.size() + 1,
      paddle::platform::errors::InvalidArgument(
          "There are (%d) predictors in the pool, but the idx is (%d)", idx,
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
}  // namespace paddle_infer