op_param.h 81.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
77 78 79 80 81
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

82 83 84 85 86 87 88 89 90
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
91 92 93 94 95
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

123 124 125 126
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
127 128 129 130 131 132

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

133 134 135 136 137
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
138 139 140 141 142
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
148 149 150 151
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
152 153 154 155 156 157 158 159 160 161 162 163
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
164 165 166 167
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
184

E
eclipsess 已提交
185 186 187 188 189 190 191 192 193 194
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
199

200
  template <typename T>
W
wangliu 已提交
201 202
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
203 204 205
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
206 207 208 209 210
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

240 241 242 243 244
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
245 246 247 248 249
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

250 251 252 253 254
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
255 256 257 258 259 260
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
266 267 268 269 270 271
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
272 273 274 275 276 277
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
278 279 280 281 282
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
283 284 285 286 287 288
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

289 290 291 292 293 294 295 296 297 298 299
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
300
  static const T GetAttr(const string &key, const AttributeMap &map) {
301 302
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
303 304
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
305 306
    return ((Attribute)map.at(key)).GetString();
  }
307

308 309 310 311
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

312
  template <typename T>
W
wangliu 已提交
313
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
314
                        const Scope &scope) {
W
wangliu 已提交
315 316
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
317 318 319 320 321 322
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
323
    }
324
  }
朔-望's avatar
朔-望 已提交
325

E
eclipsess 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

359
  template <typename T>
W
wangliu 已提交
360 361 362
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
363 364
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
365
    vector<T *> var_res;
366 367 368
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
369
    }
370 371
    return var_res;
  }
E
eclipsess 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
385 386
};

N
nhzlx 已提交
387
template <typename Dtype>
388
class ConvParam : public OpParam {
N
nhzlx 已提交
389 390 391
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
392
 public:
393
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
394
            const AttributeMap &attrs, const Scope &scope) {
395 396 397 398 399 400 401 402 403
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
404
  }
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
407

408
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
409

410
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
411

W
wangliu 已提交
412
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
413

W
wangliu 已提交
414
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
415

W
wangliu 已提交
416
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
417

H
hjchen2 已提交
418 419 420 421
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
422 423
    EXEC_DEPTHWISE3x3S2P0_FLOAT,
    EXEC_DEPTHWISE3x3S2P1_FLOAT,
H
hjchen2 已提交
424 425 426 427
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
    EXEC_GEMM_INT8,
H
hjchen2 已提交
428
    EXEC_DEPTHWISE3x3_INT8,
H
hjchen2 已提交
429 430 431 432
  };

  ExecMode &ExecMode() const { return exec_mode_; }

433
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
434

435 436 437 438 439 440 441
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
442
 public:
N
nhzlx 已提交
443
  RType *input_;
444 445
  RType *output_;
  RType *filter_;
H
hjchen2 已提交
446
  RType *transformed_filter_;
W
wangliu 已提交
447 448 449
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
450
  mutable enum ExecMode exec_mode_;
451
  int groups;
452 453 454 455

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
456 457 458

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
459
 public:
Z
zhangyang 已提交
460 461 462 463 464
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
465 466 467 468 469 470 471

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
472
#endif
朔-望's avatar
朔-望 已提交
473
};
N
nhzlx 已提交
474 475
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
476

N
nhzlx 已提交
477
template <typename Dtype>
朔-望's avatar
朔-望 已提交
478
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
479 480 481
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
482
 public:
483
  ElementwiseAddParam(const VariableNameMap &inputs,
484 485
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
486 487 488
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
489 490 491
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
492
  const GType *InputX() const { return input_x_; }
493

xiebaiyuan's avatar
xiebaiyuan 已提交
494
  const GType *InputY() const { return input_y_; }
495

xiebaiyuan's avatar
xiebaiyuan 已提交
496
  GType *Out() const { return out_; }
497 498 499

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
500
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
501 502 503
  GType *input_x_;
  GType *input_y_;
  GType *out_;
504
  int axis_;
Z
zhangyang 已提交
505 506 507
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
508
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
509 510

 public:
H
hanbuhe 已提交
511 512
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
513
#endif
朔-望's avatar
朔-望 已提交
514 515
};

E
eclipsess 已提交
516
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
546
#endif
E
eclipsess 已提交
547

548
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
549 550
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
551 552
#endif

553
#ifdef ELEMENTWISESUB_OP
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
583
#endif
584

L
liuruilong 已提交
585
#ifdef MUL_OP
N
nhzlx 已提交
586
template <typename Dtype>
朔-望's avatar
朔-望 已提交
587
class MulParam : OpParam {
N
nhzlx 已提交
588 589 590
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
591
 public:
592
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
593
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
594 595 596
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
597 598 599
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
600

xiebaiyuan's avatar
xiebaiyuan 已提交
601
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
602

xiebaiyuan's avatar
xiebaiyuan 已提交
603
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
604

xiebaiyuan's avatar
xiebaiyuan 已提交
605
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
606

607
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
608

609
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
610

朔-望's avatar
朔-望 已提交
611
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
612 613 614
  GType *input_x_;
  GType *input_y_;
  GType *out_;
615 616
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
617
};
L
liuruilong 已提交
618
#endif
朔-望's avatar
朔-望 已提交
619

L
liuruilong 已提交
620
#ifdef CONCAT_OP
N
nhzlx 已提交
621
template <typename Dtype>
朔-望's avatar
朔-望 已提交
622
class ConcatParam : public OpParam {
N
nhzlx 已提交
623 624 625
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
626
 public:
627
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
628
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
629 630
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
631 632
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
633

N
nhzlx 已提交
634
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
635

xiebaiyuan's avatar
xiebaiyuan 已提交
636
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
637

638
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
639

朔-望's avatar
朔-望 已提交
640
 private:
N
nhzlx 已提交
641
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
642
  GType *out_;
643
  int axis_;
Z
zhangyang 已提交
644 645 646 647 648 649 650 651 652
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
653
};
L
liuruilong 已提交
654
#endif
朔-望's avatar
朔-望 已提交
655

E
eclipsess 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
687
#ifdef LRN_OP
N
nhzlx 已提交
688
template <typename Dtype>
E
eclipsess 已提交
689
class LrnParam : public OpParam {
N
nhzlx 已提交
690 691 692
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
693
 public:
694
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
695
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
696 697 698
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
699 700 701 702
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
703
    data_format_ = GetStringAttr("data_format", attrs);
704
  }
E
eclipsess 已提交
705

N
nhzlx 已提交
706
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
707

N
nhzlx 已提交
708
  RType *Out() const { return out_; }
E
eclipsess 已提交
709

N
nhzlx 已提交
710
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
711

712
  const int &N() const { return n_; }
E
eclipsess 已提交
713

714
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
715

716
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
717

718
  const float &K() const { return k_; }
E
eclipsess 已提交
719

W
wangliu 已提交
720
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
721

朔-望's avatar
朔-望 已提交
722
 private:
N
nhzlx 已提交
723 724 725
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
726 727 728 729
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
730
  string data_format_;
E
eclipsess 已提交
731
};
L
liuruilong 已提交
732 733 734
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
735
template <typename Dtype>
E
eclipsess 已提交
736
class BatchNormParam : OpParam {
N
nhzlx 已提交
737 738 739
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
740
 public:
741
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
742
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
743 744 745 746 747 748
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
749 750
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
751
    //    is_test_ = GetAttr<bool>("is_test", attrs);
752
  }
E
eclipsess 已提交
753

N
nhzlx 已提交
754
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
755

N
nhzlx 已提交
756
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
757

N
nhzlx 已提交
758
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
759

N
nhzlx 已提交
760
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
761

N
nhzlx 已提交
762
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
763

N
nhzlx 已提交
764
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
765

766
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
767

768
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
769

770
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
771

W
wangliu 已提交
772
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
773

774 775 776 777 778 779 780 781
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
782
 private:
N
nhzlx 已提交
783 784 785 786 787 788
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
789 790 791
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
792
  string data_format_;
793 794
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
795
};
L
liuruilong 已提交
796 797 798
#endif

#ifdef POOL_OP
N
nhzlx 已提交
799
template <typename Dtype>
800
class PoolParam : public OpParam {
N
nhzlx 已提交
801 802 803
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
804
 public:
805
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
806
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
807
    input_ = InputXFrom<GType>(inputs, scope);
808

N
nhzlx 已提交
809
    output_ = OutFrom<GType>(outputs, scope);
810
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
811 812 813
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
814
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
815
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
816
  }
817

N
nhzlx 已提交
818
  const RType *Input() const { return input_; }
819

N
nhzlx 已提交
820
  RType *Output() const { return output_; }
821

W
wangliu 已提交
822
  const string &PoolingType() const { return pooling_type_; }
823

W
wangliu 已提交
824
  const vector<int> &Ksize() const { return ksize_; }
825

W
wangliu 已提交
826
  const vector<int> &Strides() const { return strides_; }
827

W
wangliu 已提交
828
  const vector<int> &Paddings() const { return paddings_; }
829

830
  bool isCeilMode() const { return ceil_mode_; }
831

Z
zhangyang 已提交
832
  bool isGlobalPooling() const { return global_pooling_; }
833

朔-望's avatar
朔-望 已提交
834
 private:
N
nhzlx 已提交
835 836
  RType *input_;
  RType *output_;
W
wangliu 已提交
837 838 839 840
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
841
  bool ceil_mode_;
842
  bool global_pooling_ = false;
Z
zhangyang 已提交
843
#ifdef PADDLE_MOBILE_FPGA
844 845

 private:
H
hanbuhe 已提交
846
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
847 848

 public:
H
hanbuhe 已提交
849 850
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
851
#endif
852
};
L
liuruilong 已提交
853 854 855
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
856
template <typename Dtype>
E
eclipsess 已提交
857
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
858 859 860
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
861 862
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
863
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
864 865 866 867
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
868 869 870 871
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
872 873 874 875

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
876 877
    } else {
      min_max_aspect_ratios_order_ = false;
878
    }
E
eclipsess 已提交
879 880 881 882 883 884
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
885
  const RType *Input() const { return input_; }
E
eclipsess 已提交
886

N
nhzlx 已提交
887
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
888

N
nhzlx 已提交
889
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
890

N
nhzlx 已提交
891
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
892

W
wangliu 已提交
893
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
894

W
wangliu 已提交
895
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
896

W
wangliu 已提交
897
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
898

W
wangliu 已提交
899
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
900 901 902 903 904 905 906 907 908 909 910

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

911 912 913 914
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
915
 private:
N
nhzlx 已提交
916 917 918 919
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
920 921 922 923
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
924 925 926 927 928
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
929
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
930
};
L
liuruilong 已提交
931
#endif
E
eclipsess 已提交
932

L
liuruilong 已提交
933
#ifdef BOXCODER_OP
N
nhzlx 已提交
934
template <typename Dtype>
E
eclipsess 已提交
935
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
936 937 938
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
939 940
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
941
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
942 943 944 945
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
946
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
947
  }
N
nhzlx 已提交
948
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
949

N
nhzlx 已提交
950
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
951

N
nhzlx 已提交
952
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
953

N
nhzlx 已提交
954
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
955 956 957 958

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
959 960 961 962
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
963 964
  std::string code_type_;
};
L
liuruilong 已提交
965
#endif
W
wangliu 已提交
966

L
liuruilong 已提交
967
#ifdef SOFTMAX_OP
N
nhzlx 已提交
968
template <typename Dtype>
W
wangliu 已提交
969
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
970 971 972
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
973 974
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
975
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
976 977
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
978
  }
N
nhzlx 已提交
979 980
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
981 982

 private:
N
nhzlx 已提交
983 984
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
985 986 987 988

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
989
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
990 991 992
  fpga::BypassArgs fpga_bypass_args;

 public:
993
  RType *FloatInput() const {
H
hanbuhe 已提交
994 995 996 997 998 999
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1000
};
L
liuruilong 已提交
1001
#endif
W
wangliu 已提交
1002

L
liuruilong 已提交
1003
#ifdef SIGMOID_OP
N
nhzlx 已提交
1004
template <typename Dtype>
W
wangliu 已提交
1005
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1006 1007 1008
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1009 1010
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1011
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1012 1013
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1014
  }
N
nhzlx 已提交
1015 1016
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1017 1018

 private:
N
nhzlx 已提交
1019 1020
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
1021
};
L
liuruilong 已提交
1022 1023 1024
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1025
template <typename Dtype>
E
eclipsess 已提交
1026
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1027 1028 1029
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1030 1031 1032 1033
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1034 1035 1036
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1037 1038 1039 1040 1041 1042 1043 1044
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1045
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1046

Y
yangfei 已提交
1047
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1048

N
nhzlx 已提交
1049
  RType *Out() const { return out_; }
E
eclipsess 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1064 1065 1066
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1067 1068 1069 1070 1071 1072 1073
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1074
#endif
W
wangliu 已提交
1075

L
lijiancheng0614 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1098
template <typename Dtype>
L
liuruilong 已提交
1099
class FeedParam : public OpParam {
N
nhzlx 已提交
1100 1101 1102
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1103 1104
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1105 1106 1107 1108
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1109
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1110
  }
Y
yangfei 已提交
1111
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1112
  GType *Out() const { return out_; }
W
wangliu 已提交
1113
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1114

L
liuruilong 已提交
1115
 private:
Y
yangfei 已提交
1116
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1117
  GType *out_;
W
wangliu 已提交
1118
  int batch_size;
L
liuruilong 已提交
1119 1120
};

N
nhzlx 已提交
1121
template <typename Dtype>
L
liuruilong 已提交
1122
class FetchParam : public OpParam {
N
nhzlx 已提交
1123 1124 1125
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1126 1127
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1128
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1129
    input_x_ = InputXFrom<GType>(inputs, scope);
1130
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1131
  }
L
liuruilong 已提交
1132

N
nhzlx 已提交
1133
  const RType *InputX() const { return input_x_; }
1134 1135 1136
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1137
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1138
  }
L
liuruilong 已提交
1139

L
liuruilong 已提交
1140
 private:
N
nhzlx 已提交
1141
  RType *input_x_;
Y
yangfei 已提交
1142
  Tensor *out_;
L
liuruilong 已提交
1143 1144
};

L
lijiancheng0614 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1181
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1182
template <typename Dtype>
E
eclipsess 已提交
1183
class TransposeParam : public OpParam {
N
nhzlx 已提交
1184 1185 1186
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1187 1188 1189
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1190 1191
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1192 1193 1194
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1195
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1196

N
nhzlx 已提交
1197
  RType *Out() const { return out_; }
E
eclipsess 已提交
1198 1199 1200 1201

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1202 1203
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1204 1205
  vector<int> axis_;
};
L
liuruilong 已提交
1206
#endif
E
eclipsess 已提交
1207

L
lijiancheng0614 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1305
#ifdef RESHAPE_OP
N
nhzlx 已提交
1306
template <typename Dtype>
E
eclipsess 已提交
1307
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1308 1309 1310
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1311 1312 1313
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1314 1315 1316
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1317
    shape_ = GetAttr<vector<int>>("shape", attrs);
1318 1319 1320 1321 1322 1323 1324

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1325 1326
  }

N
nhzlx 已提交
1327
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1328

N
nhzlx 已提交
1329
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1330

N
nhzlx 已提交
1331
  RType *Out() const { return out_; }
E
eclipsess 已提交
1332 1333 1334 1335 1336 1337

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1338 1339 1340
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1341 1342 1343
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1344
#endif
E
eclipsess 已提交
1345

L
lijiancheng0614 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1367
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1368

E
eclipsess 已提交
1369
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1370

E
eclipsess 已提交
1371
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1372

E
eclipsess 已提交
1373
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1374 1375 1376 1377 1378 1379

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1380 1381 1382 1383
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1384 1385 1386 1387 1388
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1389
#ifdef SCALE_OP
N
nhzlx 已提交
1390
template <typename Dtype>
I
itminner 已提交
1391
class ScaleParam : public OpParam {
N
nhzlx 已提交
1392 1393 1394
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1395 1396 1397
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1398 1399 1400
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1401 1402 1403 1404 1405 1406
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1407
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1408

N
nhzlx 已提交
1409
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1410

N
nhzlx 已提交
1411
  RType *Out() const { return out_; }
I
itminner 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1422 1423 1424
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1425 1426 1427 1428 1429
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1430 1431 1432
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1433
template <typename Dtype>
I
itminner 已提交
1434
class SliceParam : public OpParam {
N
nhzlx 已提交
1435 1436 1437
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1438 1439 1440
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1441 1442 1443
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1444 1445 1446 1447 1448
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1449
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1450

N
nhzlx 已提交
1451
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1452

N
nhzlx 已提交
1453
  RType *Out() const { return out_; }
I
itminner 已提交
1454 1455 1456 1457 1458 1459 1460 1461

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1462 1463 1464
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1465 1466 1467 1468
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1469 1470 1471
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1472
template <typename Dtype>
T
Tian 已提交
1473
class ResizeParam : public OpParam {
N
nhzlx 已提交
1474 1475 1476
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1477 1478 1479
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1480 1481 1482
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1483 1484 1485 1486 1487 1488
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1489

N
nhzlx 已提交
1490
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1491

N
nhzlx 已提交
1492
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1493

N
nhzlx 已提交
1494
  RType *Out() const { return out_; }
T
Tian 已提交
1495

I
itminner 已提交
1496
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1497

I
itminner 已提交
1498
  const int &Height() const { return height_; }
T
Tian 已提交
1499

I
itminner 已提交
1500
  const int &Width() const { return width_; }
T
Tian 已提交
1501

I
itminner 已提交
1502
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1503

I
itminner 已提交
1504
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1505

I
itminner 已提交
1506
 private:
N
nhzlx 已提交
1507 1508 1509
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1510 1511 1512 1513 1514
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1515 1516 1517
};
#endif

L
liuruilong 已提交
1518
#ifdef RELU_OP
L
liuruilong 已提交
1519 1520 1521
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1522
template <typename Dtype>
D
relu  
dolphin8 已提交
1523
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1524 1525 1526
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1527
 public:
D
relu  
dolphin8 已提交
1528
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1529
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1530 1531
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1532 1533
  }

N
nhzlx 已提交
1534
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1535

N
nhzlx 已提交
1536
  RType *Out() const { return out_; }
E
eclipsess 已提交
1537 1538

 private:
N
nhzlx 已提交
1539 1540
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1541
};
D
relu  
dolphin8 已提交
1542 1543 1544

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1545
 public:
D
relu  
dolphin8 已提交
1546 1547 1548
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1549
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1550 1551
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1552
 public:
D
relu  
dolphin8 已提交
1553
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1554 1555 1556
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1557 1558
  framework::CLImage midImage;
};
Y
yangfei 已提交
1559
#endif
D
relu  
dolphin8 已提交
1560

L
liuruilong 已提交
1561
#endif
E
eclipsess 已提交
1562

Z
zhangyang 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1595
};
L
liuruilong 已提交
1596
#endif
E
eclipsess 已提交
1597

T
Tian 已提交
1598
#ifdef PRELU_OP
N
nhzlx 已提交
1599
template <typename Dtype>
T
Tian 已提交
1600
class PReluParam : public OpParam {
N
nhzlx 已提交
1601 1602 1603
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1604 1605 1606
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1607
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1608
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1609
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1610
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1611
    out_ = OutFrom<GType>(outputs, scope);
1612
    mode_ = GetStringAttr("mode", attrs);
1613
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1614
  }
N
nhzlx 已提交
1615
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1616
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1617
  RType *Out() const { return out_; }
1618
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1619

I
itminner 已提交
1620
 private:
N
nhzlx 已提交
1621 1622
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1623
  RType *alpha_;
1624
  std::string mode_;
T
Tian 已提交
1625 1626 1627
};
#endif

N
nhzlx 已提交
1628
template <typename Dtype>
L
liuruilong 已提交
1629
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1630 1631 1632
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1633
 public:
L
liuruilong 已提交
1634
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1635
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1636 1637 1638 1639
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1640 1641 1642 1643
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1644
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1645

Y
yangfei 已提交
1646
  RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1647

Y
yangfei 已提交
1648
  RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1649

xiebaiyuan's avatar
xiebaiyuan 已提交
1650
  GType *Out() const { return out_; }
E
eclipsess 已提交
1651 1652 1653 1654 1655 1656 1657 1658

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1659
  GType *input_x_;
N
nhzlx 已提交
1660 1661
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1662
  GType *out_;
E
eclipsess 已提交
1663 1664 1665
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1666

Z
ZhenWang 已提交
1667
#ifdef PADDLE_MOBILE_FPGA
1668
 private:  // NOLINT
Z
zhangyang 已提交
1669
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1670 1671

 public:
Z
zhangyang 已提交
1672 1673
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1674
#endif
E
eclipsess 已提交
1675
};
1676 1677

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1678 1679
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1680
#endif
E
eclipsess 已提交
1681

N
nhzlx 已提交
1682
template <typename Dtype>
1683
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1684 1685 1686
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1687
 public:
L
liuruilong 已提交
1688
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1689
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1690 1691 1692 1693 1694
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1695
  }
N
nhzlx 已提交
1696
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1697 1698 1699

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1700
  RType *Output() const { return output_; }
W
wangliu 已提交
1701

L
liuruilong 已提交
1702
 protected:
N
nhzlx 已提交
1703
  RType *bias_;
W
wangliu 已提交
1704
  int axis_;
N
nhzlx 已提交
1705
  RType *output_;
W
wangliu 已提交
1706 1707
};

N
nhzlx 已提交
1708 1709
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1710

Z
zhangyang 已提交
1711
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1712 1713
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1714
 public:
L
liuruilong 已提交
1715
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1716 1717
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
1718
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1719 1720 1721
};
#endif

1722
#ifdef FUSION_CONVADDPRELU_OP
1723 1724 1725 1726
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1727 1728 1729 1730

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1731 1732 1733
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1734
    mode_ = OpParam::GetStringAttr("mode", attrs);
1735
    framework::DDim dims = alpha_->dims();
1736 1737 1738
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1756 1757 1758 1759
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1760 1761 1762 1763

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1764 1765 1766 1767
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1768
    mode_ = OpParam::GetStringAttr("mode", attrs);
1769
    framework::DDim dims = alpha_->dims();
1770 1771 1772 1773 1774 1775
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1776
    if (keyX1_ == keyOutput_) {
1777
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1778
    } else if (keyY1_ == keyOutput_) {
1779
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1804
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1805
template <typename Dtype>
1806
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1807 1808 1809
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1810 1811 1812
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1825
  }
N
nhzlx 已提交
1826
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1827 1828 1829

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1830
  RType *Output() const { return output_; }
E
eclipsess 已提交
1831

N
nhzlx 已提交
1832
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1833

N
nhzlx 已提交
1834
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1835

N
nhzlx 已提交
1836
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1837

N
nhzlx 已提交
1838
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1839 1840 1841 1842 1843 1844 1845

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1846
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1847

N
nhzlx 已提交
1848
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1849

N
nhzlx 已提交
1850
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1851

N
nhzlx 已提交
1852
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1853 1854

 protected:
N
nhzlx 已提交
1855
  RType *bias_;
E
eclipsess 已提交
1856
  int axis_;
N
nhzlx 已提交
1857 1858 1859 1860 1861
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1862 1863 1864
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1865 1866
  RType *new_bias_;
  RType *new_scale_;
1867 1868 1869 1870 1871
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1872
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1873 1874 1875 1876 1877 1878
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1893
    if (keyX_ == keyBNY_) {
1894
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1895
    } else if (keyY_ == keyBNY_) {
1896
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1897
    }
1898
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
1944
};
1945
#endif
E
eclipsess 已提交
1946

Z
zhangyang 已提交
1947
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1948
template <typename Dtype>
1949
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1950 1951 1952
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1953 1954 1955
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1966
  }
N
nhzlx 已提交
1967
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1968

N
nhzlx 已提交
1969
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1970

N
nhzlx 已提交
1971
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1972

N
nhzlx 已提交
1973
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1974

N
nhzlx 已提交
1975
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1976 1977 1978 1979 1980 1981 1982

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1983
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1984

N
nhzlx 已提交
1985
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1986

N
nhzlx 已提交
1987
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1988

N
nhzlx 已提交
1989
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1990 1991

 protected:
N
nhzlx 已提交
1992 1993 1994 1995 1996
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1997 1998 1999
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2000 2001
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2002 2003 2004
};
#endif

2005
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2006
template <typename Dtype>
2007
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2008 2009 2010
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2011 2012 2013
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2026
  }
N
nhzlx 已提交
2027
  RType *Bias() const { return bias_; }
2028 2029 2030

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2031
  RType *Output() const { return output_y_; }
2032

N
nhzlx 已提交
2033
  const RType *InputBias() const { return input_bias_; }
2034

N
nhzlx 已提交
2035
  const RType *InputMean() const { return input_mean_; }
2036

N
nhzlx 已提交
2037
  const RType *InputScale() const { return input_scale_; }
2038

N
nhzlx 已提交
2039
  const RType *InputVariance() const { return input_variance_; }
2040 2041 2042 2043 2044 2045 2046

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2047
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2048

N
nhzlx 已提交
2049
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2050

N
nhzlx 已提交
2051
  const RType *NewScale() const { return new_scale_; }
2052

N
nhzlx 已提交
2053
  const RType *NewBias() const { return new_bias_; }
2054 2055

 protected:
N
nhzlx 已提交
2056
  RType *bias_;
2057
  int axis_;
N
nhzlx 已提交
2058 2059 2060 2061 2062
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2063 2064 2065
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2066 2067
  RType *new_bias_;
  RType *new_scale_;
2068
};
E
eclipsess 已提交
2069
#endif
Y
Yao,kun 已提交
2070

E
eclipsess 已提交
2071
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2072
template <typename Dtype>
2073
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2074 2075 2076
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2077 2078 2079
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2090
  }
N
nhzlx 已提交
2091
  RType *Output() const { return output_; }
E
eclipsess 已提交
2092

N
nhzlx 已提交
2093
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2094

N
nhzlx 已提交
2095
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2096

N
nhzlx 已提交
2097
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2098

N
nhzlx 已提交
2099
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2100 2101 2102 2103 2104 2105 2106

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2107
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2108

N
nhzlx 已提交
2109
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2110

N
nhzlx 已提交
2111
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2112

N
nhzlx 已提交
2113
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2114 2115

 protected:
N
nhzlx 已提交
2116 2117 2118 2119 2120
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2121 2122 2123
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2124 2125
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2126 2127 2128 2129
};

#endif

2130
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2131
template <typename Dtype>
2132
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2133 2134 2135
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2136 2137 2138
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2149
  }
N
nhzlx 已提交
2150
  RType *Output() const { return output_; }
2151

N
nhzlx 已提交
2152
  const RType *InputBias() const { return input_bias_; }
2153

N
nhzlx 已提交
2154
  const RType *InputMean() const { return input_mean_; }
2155

N
nhzlx 已提交
2156
  const RType *InputScale() const { return input_scale_; }
2157

N
nhzlx 已提交
2158
  const RType *InputVariance() const { return input_variance_; }
2159 2160 2161 2162 2163 2164 2165

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2166
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2167

N
nhzlx 已提交
2168
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2169

N
nhzlx 已提交
2170
  const RType *NewScale() const { return new_scale_; }
2171

N
nhzlx 已提交
2172
  const RType *NewBias() const { return new_bias_; }
2173 2174

 protected:
N
nhzlx 已提交
2175 2176 2177 2178 2179
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2180 2181 2182
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2183 2184
  RType *new_bias_;
  RType *new_scale_;
2185 2186 2187
};
#endif

Y
Yao,kun 已提交
2188
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2189
template <typename Dtype>
Y
Yao,kun 已提交
2190
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2191 2192 2193
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2194 2195 2196 2197
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2198 2199
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2200 2201 2202 2203 2204
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2205
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2206

E
eclipsess 已提交
2207
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2208 2209 2210 2211 2212 2213 2214 2215

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2216 2217
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2218 2219 2220 2221
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2222
#endif
Y
Yao,kun 已提交
2223

2224
#ifdef DROPOUT_OP
N
nhzlx 已提交
2225
template <typename Dtype>
Y
Yao,kun 已提交
2226
class DropoutParam : public OpParam {
N
nhzlx 已提交
2227 2228 2229
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2230 2231 2232
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2233 2234
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2235 2236

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2237 2238
  }

N
nhzlx 已提交
2239
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2240

N
nhzlx 已提交
2241
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2242

Y
yangfei 已提交
2243 2244
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2245
 private:
N
nhzlx 已提交
2246 2247
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2248
  float dropout_prob_;
Y
Yao,kun 已提交
2249
};
2250
#endif
Y
Yao,kun 已提交
2251

N
nhzlx 已提交
2252
template <typename Dtype>
L
liuruilong 已提交
2253
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2254 2255 2256
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2257 2258 2259 2260
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2261 2262
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2263
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2264
    if (outputs.count("Output")) {
2265
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2266
    }
L
liuruilong 已提交
2267 2268 2269 2270 2271 2272
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2273
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2274

N
nhzlx 已提交
2275
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2276

N
nhzlx 已提交
2277
  RType *Output() const { return output_; }
L
liuruilong 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2288 2289 2290
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2291 2292 2293 2294
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
#endif
L
liuruilong 已提交
2305
};
Z
zhangyang 已提交
2306

qnqinan's avatar
qnqinan 已提交
2307 2308 2309 2310 2311
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2312 2313

 public:
qnqinan's avatar
qnqinan 已提交
2314
  FusionDeconvAddParam(const VariableNameMap &inputs,
2315 2316 2317
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2339

Z
zhangyang 已提交
2340 2341 2342 2343 2344
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2370 2371
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2416
    axis = GetAttr<int>("axis", attrs);
2417 2418 2419
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2420
  const int &Axis() const { return axis; }
2421 2422 2423 2424

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2425
  int axis;
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2439
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2440
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2441 2442 2443 2444 2445 2446
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2447 2448
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2449 2450 2451 2452 2453
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2454 2455 2456

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2457
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2458
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2459 2460 2461
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2462 2463 2464 2465 2466 2467 2468 2469 2470
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2487 2488
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2489 2490
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2491
  const RType *InputOutPutSize() const { return input_outsize_; }
2492
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2493 2494
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2495 2496 2497 2498 2499

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2500 2501
  int out_h_;
  int out_w_;
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2517
  const RType *Input() const { return input_; }
2518 2519 2520 2521 2522 2523 2524 2525
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

H
hjchen2 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, scope);
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  RType *indices_;
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2572
#ifdef QUANT_OP
2573
template <typename Dtype>
2574 2575 2576 2577 2578
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2579 2580
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2581
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2582
    output_ = OutFrom<GType>(outputs, scope);
2583 2584
    // online
    // scale = max(abs(x))
H
hjchen2 已提交
2585
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
2586
    // offline
2587
    if (inputs.count("InScale")) {
2588 2589
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2590 2591
    }
    // x = round(scale * x)
2592 2593
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2594
    }
2595 2596 2597 2598
  }

 public:
  // op input
2599
  GType *input_;
2600
  // op output
2601
  GType *output_;
2602
  RType *online_scale_;
2603 2604 2605 2606
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2607
  // round method type
H
hjchen2 已提交
2608 2609
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2610
};
2611
#endif
2612

2613
#ifdef DEQUANT_OP
2614
template <typename Dtype>
2615 2616 2617 2618 2619
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2620 2621
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2622
    input_ = InputXFrom<GType>(inputs, scope);
2623
    output_ = OutFrom<GType>(outputs, scope);
H
hjchen2 已提交
2624
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, scope);
2625
    // dequantization is performed as x = x / static_scale / online_scale
2626 2627
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2628
    } else {
2629
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2630 2631 2632 2633 2634
    }
  }

 public:
  // op input
2635
  GType *input_;
2636
  // op output
2637
  GType *output_;
2638 2639 2640
  RType *activation_scale_;
  float weight_scale_;
};
2641
#endif
2642

2643 2644 2645 2646
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2647
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2648
template <typename Dtype>
2649
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2650 2651 2652 2653
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2654 2655 2656
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
H
hjchen2 已提交
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
  RType *bn_mean_;
  RType *bn_variance_;
  RType *bn_scale_;
  RType *bn_bias_;
  float epsilon_;
2673 2674 2675
};
#endif

2676 2677 2678 2679
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
  }

 public:
  // elementwise add
  int axis_;
  RType *bias_;
};
#endif

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
                               const AttributeMap &attrs, const Scope &scope)
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
    // offline
2716 2717 2718
    if (inputs.count("InScale")) {
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2719 2720 2721 2722 2723 2724 2725 2726 2727
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  RType *online_scale_;
2728 2729 2730 2731
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2732 2733 2734 2735 2736 2737
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

朔-望's avatar
朔-望 已提交
2738 2739
}  // namespace operators
}  // namespace paddle_mobile