slab.c 117.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

185
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
186 187
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188 189
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
206
	struct rcu_head head;
207
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
208
	void *addr;
L
Linus Torvalds 已提交
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
249
	spinlock_t lock;
250
	void *entry[];	/*
A
Andrew Morton 已提交
251 252 253
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
254 255 256 257
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
258
			 */
L
Linus Torvalds 已提交
259 260
};

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
278 279 280
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
281 282 283 284
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
285
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
286 287 288
};

/*
289
 * The slab lists for all objects.
L
Linus Torvalds 已提交
290 291
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
292 293 294 295 296
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
297
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
298 299 300
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
301 302
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
303 304
};

305 306 307
/*
 * Need this for bootstrapping a per node allocator.
 */
308
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310
#define	CACHE_CACHE 0
311 312
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
313

314 315 316 317
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
318
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
319
static void cache_reap(struct work_struct *unused);
320

321
/*
A
Andrew Morton 已提交
322 323
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
324
 */
325
static __always_inline int index_of(const size_t size)
326
{
327 328
	extern void __bad_size(void);

329 330 331 332 333 334 335 336
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
337
#include <linux/kmalloc_sizes.h>
338
#undef CACHE
339
		__bad_size();
340
	} else
341
		__bad_size();
342 343 344
	return 0;
}

345 346
static int slab_early_init = 1;

347 348
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
349

P
Pekka Enberg 已提交
350
static void kmem_list3_init(struct kmem_list3 *parent)
351 352 353 354 355 356
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
357
	parent->colour_next = 0;
358 359 360 361 362
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
363 364 365 366
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
367 368
	} while (0)

A
Andrew Morton 已提交
369 370
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
371 372 373 374
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
375 376 377 378 379

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
380 381 382
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
383
 *
A
Adrian Bunk 已提交
384
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
385 386 387 388 389 390 391 392 393 394
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
395
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
396 397 398 399 400
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
401 402
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
403
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
404
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
405 406 407 408 409
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
410 411 412 413 414 415 416 417 418
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
419
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
420 421 422
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
423
#define	STATS_INC_NODEFREES(x)	do { } while (0)
424
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
425
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
434 435
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
436
 * 0		: objp
437
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
438 439
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
440
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
441
 * 		redzone word.
442
 * cachep->obj_offset: The real object.
443 444
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
445
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
446
 */
447
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
448
{
449
	return cachep->obj_offset;
L
Linus Torvalds 已提交
450 451
}

452
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
453 454
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
455 456
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
457 458
}

459
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
460 461 462
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
463
		return (unsigned long long *)(objp + cachep->size -
464
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
465
					      REDZONE_ALIGN);
466
	return (unsigned long long *) (objp + cachep->size -
467
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
468 469
}

470
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
471 472
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
473
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
474 475 476 477
}

#else

478
#define obj_offset(x)			0
479 480
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
481 482 483 484 485
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
486 487
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
488
 */
489 490 491
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
492
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
493

494 495
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
496
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
497
	return page->slab_cache;
498 499 500 501
}

static inline struct slab *virt_to_slab(const void *obj)
{
502
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
503 504 505

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
506 507
}

508 509 510
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
511
	return slab->s_mem + cache->size * idx;
512 513
}

514
/*
515 516 517
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
518 519 520 521
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
522
{
523 524
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
525 526
}

A
Andrew Morton 已提交
527 528 529
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
547
	{NULL,}
L
Linus Torvalds 已提交
548 549 550 551
#undef CACHE
};

static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
552
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
553 554

/* internal cache of cache description objs */
555
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
556 557 558
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
559
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
560
	.name = "kmem_cache",
L
Linus Torvalds 已提交
561 562
};

563 564
#define BAD_ALIEN_MAGIC 0x01020304ul

565 566 567 568 569 570 571 572
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
573 574 575 576
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
577
 */
578 579 580
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

626
static void init_node_lock_keys(int q)
627
{
628 629
	struct cache_sizes *s = malloc_sizes;

630
	if (slab_state < UP)
631 632 633 634 635 636 637
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
638
			continue;
639 640 641

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
642 643
	}
}
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
	struct kmem_list3 *l3;
	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

665 666 667 668 669 670 671
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
672
#else
673 674 675 676
static void init_node_lock_keys(int q)
{
}

677
static inline void init_lock_keys(void)
678 679
{
}
680

681 682 683 684 685 686 687 688
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

689 690 691 692 693 694 695
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
696 697
#endif

698
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
699

700
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
701 702 703 704
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
705 706
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
707 708 709 710 711
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
712 713 714
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
715
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
716
#endif
717 718 719
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
720 721 722 723
	while (size > csizep->cs_size)
		csizep++;

	/*
724
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
725 726 727
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
728
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
729 730
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
731
#endif
L
Linus Torvalds 已提交
732 733 734
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
735
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 737 738 739
{
	return __find_general_cachep(size, gfpflags);
}

740
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
741
{
742 743
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
744

A
Andrew Morton 已提交
745 746 747
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
748 749 750 751 752 753 754
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
804 805
}

806
#if DEBUG
807
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
808

A
Andrew Morton 已提交
809 810
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
811 812
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
813
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
814
	dump_stack();
815
	add_taint(TAINT_BAD_PAGE);
L
Linus Torvalds 已提交
816
}
817
#endif
L
Linus Torvalds 已提交
818

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

835 836 837 838 839 840 841 842 843 844 845
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

846 847 848 849 850 851 852
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
853
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
854 855 856 857 858

static void init_reap_node(int cpu)
{
	int node;

859
	node = next_node(cpu_to_mem(cpu), node_online_map);
860
	if (node == MAX_NUMNODES)
861
		node = first_node(node_online_map);
862

863
	per_cpu(slab_reap_node, cpu) = node;
864 865 866 867
}

static void next_reap_node(void)
{
868
	int node = __this_cpu_read(slab_reap_node);
869 870 871 872

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
873
	__this_cpu_write(slab_reap_node, node);
874 875 876 877 878 879 880
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
881 882 883 884 885 886 887
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
888
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
889
{
890
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
891 892 893 894 895 896

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
897
	if (keventd_up() && reap_work->work.func == NULL) {
898
		init_reap_node(cpu);
899
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
900 901
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
902 903 904
	}
}

905
static struct array_cache *alloc_arraycache(int node, int entries,
906
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
907
{
P
Pekka Enberg 已提交
908
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
909 910
	struct array_cache *nc = NULL;

911
	nc = kmalloc_node(memsize, gfp, node);
912 913
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
914
	 * However, when such objects are allocated or transferred to another
915 916 917 918 919
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
920 921 922 923 924
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
925
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
926 927 928 929
	}
	return nc;
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

966
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
982
		for (i = 0; i < ac->avail; i++) {
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
999
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1027 1028 1029 1030
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
1031
		struct page *page = virt_to_head_page(objp);
1032 1033 1034 1035
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

1036 1037 1038 1039 1040 1041 1042 1043 1044
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1045 1046 1047
	ac->entry[ac->avail++] = objp;
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1058
	int nr = min3(from->avail, max, to->limit - to->avail);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1071 1072 1073 1074 1075
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1076
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1096
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1097 1098 1099 1100 1101 1102 1103
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1104
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1105
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1106

1107
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1108 1109
{
	struct array_cache **ac_ptr;
1110
	int memsize = sizeof(void *) * nr_node_ids;
1111 1112 1113 1114
	int i;

	if (limit > 1)
		limit = 12;
1115
	ac_ptr = kzalloc_node(memsize, gfp, node);
1116 1117
	if (ac_ptr) {
		for_each_node(i) {
1118
			if (i == node || !node_online(i))
1119
				continue;
1120
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1121
			if (!ac_ptr[i]) {
1122
				for (i--; i >= 0; i--)
1123 1124 1125 1126 1127 1128 1129 1130 1131
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1132
static void free_alien_cache(struct array_cache **ac_ptr)
1133 1134 1135 1136 1137 1138
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1139
	    kfree(ac_ptr[i]);
1140 1141 1142
	kfree(ac_ptr);
}

1143
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1144
				struct array_cache *ac, int node)
1145 1146 1147 1148 1149
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1150 1151 1152 1153 1154
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1155 1156
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1157

1158
		free_block(cachep, ac->entry, ac->avail, node);
1159 1160 1161 1162 1163
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1164 1165 1166 1167 1168
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1169
	int node = __this_cpu_read(slab_reap_node);
1170 1171 1172

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1173 1174

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1175 1176 1177 1178 1179 1180
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1181 1182
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1183
{
P
Pekka Enberg 已提交
1184
	int i = 0;
1185 1186 1187 1188
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1189
		ac = alien[i];
1190 1191 1192 1193 1194 1195 1196
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1197

1198
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1199 1200 1201 1202 1203
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1204 1205
	int node;

1206
	node = numa_mem_id();
1207 1208 1209 1210 1211

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1212
	if (likely(slabp->nodeid == node))
1213 1214
		return 0;

P
Pekka Enberg 已提交
1215
	l3 = cachep->nodelists[node];
1216 1217 1218
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1219
		spin_lock(&alien->lock);
1220 1221 1222 1223
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1224
		ac_put_obj(cachep, alien, objp);
1225 1226 1227 1228 1229 1230 1231 1232
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1233 1234
#endif

1235 1236 1237 1238 1239 1240 1241
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1242
 * Must hold slab_mutex.
1243 1244 1245 1246 1247 1248 1249
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1250
	list_for_each_entry(cachep, &slab_caches, list) {
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1266
			 * go.  slab_mutex is sufficient
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1281 1282 1283 1284
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1285
	int node = cpu_to_mem(cpu);
1286
	const struct cpumask *mask = cpumask_of_node(node);
1287

1288
	list_for_each_entry(cachep, &slab_caches, list) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1308
		if (!cpumask_empty(mask)) {
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1338
	list_for_each_entry(cachep, &slab_caches, list) {
1339 1340 1341 1342 1343 1344 1345 1346
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1347
{
1348
	struct kmem_cache *cachep;
1349
	struct kmem_list3 *l3 = NULL;
1350
	int node = cpu_to_mem(cpu);
1351
	int err;
L
Linus Torvalds 已提交
1352

1353 1354 1355 1356 1357 1358
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1359 1360 1361
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1362 1363 1364 1365 1366

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1367
	list_for_each_entry(cachep, &slab_caches, list) {
1368 1369 1370 1371 1372
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1373
					cachep->batchcount, GFP_KERNEL);
1374 1375 1376 1377 1378
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1379
				0xbaadf00d, GFP_KERNEL);
1380 1381
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1382
				goto bad;
1383
			}
1384 1385
		}
		if (use_alien_caches) {
1386
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1387 1388 1389
			if (!alien) {
				kfree(shared);
				kfree(nc);
1390
				goto bad;
1391
			}
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1406
#ifdef CONFIG_NUMA
1407 1408 1409
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1410
		}
1411 1412 1413 1414
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1415 1416
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1417 1418 1419
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1420
	}
1421 1422
	init_node_lock_keys(node);

1423 1424
	return 0;
bad:
1425
	cpuup_canceled(cpu);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1438
		mutex_lock(&slab_mutex);
1439
		err = cpuup_prepare(cpu);
1440
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1441 1442
		break;
	case CPU_ONLINE:
1443
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1444 1445 1446
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1447
  	case CPU_DOWN_PREPARE:
1448
  	case CPU_DOWN_PREPARE_FROZEN:
1449
		/*
1450
		 * Shutdown cache reaper. Note that the slab_mutex is
1451 1452 1453 1454
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1455
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1456
		/* Now the cache_reaper is guaranteed to be not running. */
1457
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1458 1459
  		break;
  	case CPU_DOWN_FAILED:
1460
  	case CPU_DOWN_FAILED_FROZEN:
1461 1462
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1463
	case CPU_DEAD:
1464
	case CPU_DEAD_FROZEN:
1465 1466 1467 1468 1469 1470 1471 1472
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1473
		/* fall through */
1474
#endif
L
Linus Torvalds 已提交
1475
	case CPU_UP_CANCELED:
1476
	case CPU_UP_CANCELED_FROZEN:
1477
		mutex_lock(&slab_mutex);
1478
		cpuup_canceled(cpu);
1479
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1480 1481
		break;
	}
1482
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1483 1484
}

1485 1486 1487
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1488

1489 1490 1491 1492 1493 1494
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1495
 * Must hold slab_mutex.
1496 1497 1498 1499 1500 1501
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1502
	list_for_each_entry(cachep, &slab_caches, list) {
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1533
		mutex_lock(&slab_mutex);
1534
		ret = init_cache_nodelists_node(nid);
1535
		mutex_unlock(&slab_mutex);
1536 1537
		break;
	case MEM_GOING_OFFLINE:
1538
		mutex_lock(&slab_mutex);
1539
		ret = drain_cache_nodelists_node(nid);
1540
		mutex_unlock(&slab_mutex);
1541 1542 1543 1544 1545 1546 1547 1548
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1549
	return notifier_from_errno(ret);
1550 1551 1552
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1553 1554 1555
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1556 1557
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1558 1559 1560
{
	struct kmem_list3 *ptr;

1561
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1562 1563 1564
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1565 1566 1567 1568 1569
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1570 1571 1572 1573
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598
/*
 * The memory after the last cpu cache pointer is used for the
 * the nodelists pointer.
 */
static void setup_nodelists_pointer(struct kmem_cache *cachep)
{
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
}

A
Andrew Morton 已提交
1599 1600 1601
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606
 */
void __init kmem_cache_init(void)
{
	struct cache_sizes *sizes;
	struct cache_names *names;
1607 1608
	int i;

1609
	kmem_cache = &kmem_cache_boot;
C
Christoph Lameter 已提交
1610
	setup_nodelists_pointer(kmem_cache);
1611

1612
	if (num_possible_nodes() == 1)
1613 1614
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1615
	for (i = 0; i < NUM_INIT_LISTS; i++)
1616
		kmem_list3_init(&initkmem_list3[i]);
C
Christoph Lameter 已提交
1617

1618
	set_up_list3s(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1619 1620 1621

	/*
	 * Fragmentation resistance on low memory - only use bigger
1622 1623
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1624
	 */
1625
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1626
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1627 1628 1629

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1630 1631 1632
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1633 1634 1635
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1636
	 * 2) Create the first kmalloc cache.
1637
	 *    The struct kmem_cache for the new cache is allocated normally.
1638 1639 1640
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1641
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1642
	 *    kmalloc cache with kmalloc allocated arrays.
1643
	 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1644 1645
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1646 1647
	 */

1648
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1649

E
Eric Dumazet 已提交
1650
	/*
1651
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1652
	 */
1653 1654 1655 1656 1657
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
				  nr_node_ids * sizeof(struct kmem_list3 *),
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1658 1659 1660 1661 1662

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1663 1664 1665 1666
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1667 1668
	 */

1669 1670 1671 1672 1673 1674 1675
	sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name,
					sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS);

	if (INDEX_AC != INDEX_L3)
		sizes[INDEX_L3].cs_cachep =
			create_kmalloc_cache(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS);
1676

1677 1678
	slab_early_init = 0;

L
Linus Torvalds 已提交
1679
	while (sizes->cs_size != ULONG_MAX) {
1680 1681
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1682 1683 1684
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1685 1686
		 * allow tighter packing of the smaller caches.
		 */
1687 1688 1689 1690
		if (!sizes->cs_cachep)
			sizes->cs_cachep = create_kmalloc_cache(names->name,
					sizes->cs_size, ARCH_KMALLOC_FLAGS);

1691
#ifdef CONFIG_ZONE_DMA
1692 1693 1694
		sizes->cs_dmacachep = create_kmalloc_cache(
			names->name_dma, sizes->cs_size,
			SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
1695
#endif
L
Linus Torvalds 已提交
1696 1697 1698 1699 1700
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1701
		struct array_cache *ptr;
1702

1703
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1704

1705
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1706
		       sizeof(struct arraycache_init));
1707 1708 1709 1710 1711
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1712
		kmem_cache->array[smp_processor_id()] = ptr;
1713

1714
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1715

1716
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1717
		       != &initarray_generic.cache);
1718
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1719
		       sizeof(struct arraycache_init));
1720 1721 1722 1723 1724
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1725
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1726
		    ptr;
L
Linus Torvalds 已提交
1727
	}
1728 1729
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1730 1731
		int nid;

1732
		for_each_online_node(nid) {
1733
			init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1734

1735
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1736
				  &initkmem_list3[SIZE_AC + nid], nid);
1737 1738 1739

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1740
					  &initkmem_list3[SIZE_L3 + nid], nid);
1741 1742 1743
			}
		}
	}
L
Linus Torvalds 已提交
1744

1745
	slab_state = UP;
1746 1747 1748 1749 1750 1751
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1752
	slab_state = UP;
P
Peter Zijlstra 已提交
1753

1754
	/* 6) resize the head arrays to their final sizes */
1755 1756
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1757 1758
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1759
	mutex_unlock(&slab_mutex);
1760

1761 1762 1763
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1764 1765 1766
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1767 1768 1769
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1770 1771 1772
	 */
	register_cpu_notifier(&cpucache_notifier);

1773 1774 1775 1776 1777 1778 1779 1780
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1781 1782 1783
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788 1789 1790
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1791 1792
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1793
	 */
1794
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1795
		start_cpu_timer(cpu);
1796 1797

	/* Done! */
1798
	slab_state = FULL;
L
Linus Torvalds 已提交
1799 1800 1801 1802
	return 0;
}
__initcall(cpucache_init);

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1815
		cachep->name, cachep->size, cachep->gfporder);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1849 1850 1851 1852 1853 1854 1855
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1856
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1857 1858
{
	struct page *page;
1859
	int nr_pages;
L
Linus Torvalds 已提交
1860 1861
	int i;

1862
#ifndef CONFIG_MMU
1863 1864 1865
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1866
	 */
1867
	flags |= __GFP_COMP;
1868
#endif
1869

1870
	flags |= cachep->allocflags;
1871 1872
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1873

L
Linus Torvalds 已提交
1874
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1875 1876 1877
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1878
		return NULL;
1879
	}
L
Linus Torvalds 已提交
1880

1881
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1882 1883 1884
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1885
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1886
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1887 1888 1889 1890 1891
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1892
	for (i = 0; i < nr_pages; i++) {
1893
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1894

1895 1896 1897
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}
G
Glauber Costa 已提交
1898
	memcg_bind_pages(cachep, cachep->gfporder);
1899

1900 1901 1902 1903 1904 1905 1906 1907
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1908

1909
	return page_address(page);
L
Linus Torvalds 已提交
1910 1911 1912 1913 1914
}

/*
 * Interface to system's page release.
 */
1915
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1916
{
P
Pekka Enberg 已提交
1917
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1918 1919 1920
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1921
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1922

1923 1924 1925 1926 1927 1928
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1929
	while (i--) {
N
Nick Piggin 已提交
1930
		BUG_ON(!PageSlab(page));
1931
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1932
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1933 1934
		page++;
	}
G
Glauber Costa 已提交
1935 1936

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1937 1938
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1939
	free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
L
Linus Torvalds 已提交
1940 1941 1942 1943
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1944
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1945
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1946 1947 1948 1949 1950 1951 1952 1953 1954

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1955
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1956
			    unsigned long caller)
L
Linus Torvalds 已提交
1957
{
1958
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1959

1960
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1961

P
Pekka Enberg 已提交
1962
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1963 1964
		return;

P
Pekka Enberg 已提交
1965 1966 1967 1968
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1969 1970 1971 1972 1973 1974 1975
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1976
				*addr++ = svalue;
L
Linus Torvalds 已提交
1977 1978 1979 1980 1981 1982 1983
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1984
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1985 1986 1987
}
#endif

1988
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1989
{
1990
	int size = cachep->object_size;
1991
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1992 1993

	memset(addr, val, size);
P
Pekka Enberg 已提交
1994
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1995 1996 1997 1998 1999
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
2000 2001 2002
	unsigned char error = 0;
	int bad_count = 0;

2003
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
2004 2005 2006 2007 2008 2009
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
2010 2011
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
2026 2027 2028 2029 2030
}
#endif

#if DEBUG

2031
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
2032 2033 2034 2035 2036
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2037
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2038 2039
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2040 2041 2042 2043
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2044
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2045
		print_symbol("(%s)",
A
Andrew Morton 已提交
2046
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2047 2048
		printk("\n");
	}
2049
	realobj = (char *)objp + obj_offset(cachep);
2050
	size = cachep->object_size;
P
Pekka Enberg 已提交
2051
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2052 2053
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2054 2055
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2056 2057 2058 2059
		dump_line(realobj, i, limit);
	}
}

2060
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2061 2062 2063 2064 2065
{
	char *realobj;
	int size, i;
	int lines = 0;

2066
	realobj = (char *)objp + obj_offset(cachep);
2067
	size = cachep->object_size;
L
Linus Torvalds 已提交
2068

P
Pekka Enberg 已提交
2069
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2070
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2071
		if (i == size - 1)
L
Linus Torvalds 已提交
2072 2073 2074 2075 2076 2077
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2078
				printk(KERN_ERR
2079 2080
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2081 2082 2083
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2084
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2085
			limit = 16;
P
Pekka Enberg 已提交
2086 2087
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2100
		struct slab *slabp = virt_to_slab(objp);
2101
		unsigned int objnr;
L
Linus Torvalds 已提交
2102

2103
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2104
		if (objnr) {
2105
			objp = index_to_obj(cachep, slabp, objnr - 1);
2106
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2107
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2108
			       realobj, size);
L
Linus Torvalds 已提交
2109 2110
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2111
		if (objnr + 1 < cachep->num) {
2112
			objp = index_to_obj(cachep, slabp, objnr + 1);
2113
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2114
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2115
			       realobj, size);
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2122
#if DEBUG
R
Rabin Vincent 已提交
2123
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2124 2125 2126
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2127
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2128 2129 2130

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2131
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2132
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2133
				kernel_map_pages(virt_to_page(objp),
2134
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2144
					   "was overwritten");
L
Linus Torvalds 已提交
2145 2146
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2147
					   "was overwritten");
L
Linus Torvalds 已提交
2148 2149
		}
	}
2150
}
L
Linus Torvalds 已提交
2151
#else
R
Rabin Vincent 已提交
2152
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2153 2154
{
}
L
Linus Torvalds 已提交
2155 2156
#endif

2157 2158 2159 2160 2161
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2162
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2163 2164
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2165
 */
2166
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2167 2168 2169
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2170
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2171 2172 2173
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2174
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2175 2176 2177 2178 2179
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2180 2181
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2182 2183 2184
	}
}

2185
/**
2186 2187 2188 2189 2190 2191 2192
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2193 2194 2195 2196 2197
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2198
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2199
			size_t size, size_t align, unsigned long flags)
2200
{
2201
	unsigned long offslab_limit;
2202
	size_t left_over = 0;
2203
	int gfporder;
2204

2205
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2206 2207 2208
		unsigned int num;
		size_t remainder;

2209
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2210 2211
		if (!num)
			continue;
2212

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2225

2226
		/* Found something acceptable - save it away */
2227
		cachep->num = num;
2228
		cachep->gfporder = gfporder;
2229 2230
		left_over = remainder;

2231 2232 2233 2234 2235 2236 2237 2238
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2239 2240 2241 2242
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2243
		if (gfporder >= slab_max_order)
2244 2245
			break;

2246 2247 2248
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2249
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2250 2251 2252 2253 2254
			break;
	}
	return left_over;
}

2255
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2256
{
2257
	if (slab_state >= FULL)
2258
		return enable_cpucache(cachep, gfp);
2259

2260
	if (slab_state == DOWN) {
2261
		/*
2262 2263 2264 2265 2266 2267 2268 2269 2270
		 * Note: Creation of first cache (kmem_cache).
		 * The setup_list3s is taken care
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2271 2272 2273 2274 2275 2276 2277
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2278
		 * the second cache, then we need to set up all its list3s,
2279 2280 2281 2282
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2283
			slab_state = PARTIAL_L3;
2284
		else
2285
			slab_state = PARTIAL_ARRAYCACHE;
2286
	} else {
2287
		/* Remaining boot caches */
2288
		cachep->array[smp_processor_id()] =
2289
			kmalloc(sizeof(struct arraycache_init), gfp);
2290

2291
		if (slab_state == PARTIAL_ARRAYCACHE) {
2292
			set_up_list3s(cachep, SIZE_L3);
2293
			slab_state = PARTIAL_L3;
2294 2295
		} else {
			int node;
2296
			for_each_online_node(node) {
2297 2298
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2299
						gfp, node);
2300 2301 2302 2303 2304
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2305
	cachep->nodelists[numa_mem_id()]->next_reap =
2306 2307 2308 2309 2310 2311 2312 2313 2314
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2315
	return 0;
2316 2317
}

L
Linus Torvalds 已提交
2318
/**
2319
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2320
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2321 2322 2323 2324
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2325
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2339
int
2340
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2341 2342
{
	size_t left_over, slab_size, ralign;
2343
	gfp_t gfp;
2344
	int err;
2345
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2355 2356
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2357
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2358 2359 2360 2361 2362 2363 2364
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2365 2366
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2367 2368 2369
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2370 2371 2372
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2373 2374
	}

2375
	/*
D
David Woodhouse 已提交
2376 2377 2378
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2379
	 */
D
David Woodhouse 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2390

2391
	/* 3) caller mandated alignment */
2392 2393
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2394
	}
2395 2396
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2397
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2398
	/*
2399
	 * 4) Store it.
L
Linus Torvalds 已提交
2400
	 */
2401
	cachep->align = ralign;
L
Linus Torvalds 已提交
2402

2403 2404 2405 2406 2407
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

C
Christoph Lameter 已提交
2408
	setup_nodelists_pointer(cachep);
L
Linus Torvalds 已提交
2409 2410
#if DEBUG

2411 2412 2413 2414
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2415 2416
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2417 2418
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2419 2420
	}
	if (flags & SLAB_STORE_USER) {
2421
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2422 2423
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2424
		 */
D
David Woodhouse 已提交
2425 2426 2427 2428
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2429 2430
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2431
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2432 2433 2434
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2435 2436 2437 2438 2439
		size = PAGE_SIZE;
	}
#endif
#endif

2440 2441 2442
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2443 2444
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2445
	 */
2446 2447
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2448 2449 2450 2451 2452 2453
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2454
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2455

2456
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2457

2458
	if (!cachep->num)
2459
		return -E2BIG;
L
Linus Torvalds 已提交
2460

P
Pekka Enberg 已提交
2461
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2462
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2475 2476
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2477 2478 2479 2480 2481 2482 2483 2484 2485

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2486 2487 2488 2489
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2490 2491
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2492
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2493 2494
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2495
	cachep->allocflags = 0;
2496
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2497
		cachep->allocflags |= GFP_DMA;
2498
	cachep->size = size;
2499
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2500

2501
	if (flags & CFLGS_OFF_SLAB) {
2502
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2503 2504 2505 2506 2507 2508 2509
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2510
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2511
	}
L
Linus Torvalds 已提交
2512

2513 2514
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2515
		__kmem_cache_shutdown(cachep);
2516
		return err;
2517
	}
L
Linus Torvalds 已提交
2518

2519 2520 2521 2522 2523 2524 2525 2526
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2527 2528
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2529

2530
	return 0;
L
Linus Torvalds 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2544
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2545 2546 2547
{
#ifdef CONFIG_SMP
	check_irq_off();
2548
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2549 2550
#endif
}
2551

2552
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2553 2554 2555 2556 2557 2558 2559
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2560 2561 2562 2563
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2564
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2565 2566
#endif

2567 2568 2569 2570
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2571 2572
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2573
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2574
	struct array_cache *ac;
2575
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2576 2577

	check_irq_off();
2578
	ac = cpu_cache_get(cachep);
2579 2580 2581
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2582 2583 2584
	ac->avail = 0;
}

2585
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2586
{
2587 2588 2589
	struct kmem_list3 *l3;
	int node;

2590
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2591
	check_irq_on();
P
Pekka Enberg 已提交
2592
	for_each_online_node(node) {
2593
		l3 = cachep->nodelists[node];
2594 2595 2596 2597 2598 2599 2600
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2601
			drain_array(cachep, l3, l3->shared, 1, node);
2602
	}
L
Linus Torvalds 已提交
2603 2604
}

2605 2606 2607 2608 2609 2610 2611 2612
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2613
{
2614 2615
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2616 2617
	struct slab *slabp;

2618 2619
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2620

2621
		spin_lock_irq(&l3->list_lock);
2622
		p = l3->slabs_free.prev;
2623 2624 2625 2626
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2627

2628
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2629
#if DEBUG
2630
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2631 2632
#endif
		list_del(&slabp->list);
2633 2634 2635 2636 2637
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2638
		spin_unlock_irq(&l3->list_lock);
2639 2640
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2641
	}
2642 2643
out:
	return nr_freed;
L
Linus Torvalds 已提交
2644 2645
}

2646
/* Called with slab_mutex held to protect against cpu hotplug */
2647
static int __cache_shrink(struct kmem_cache *cachep)
2648 2649 2650 2651 2652 2653 2654 2655 2656
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2657 2658 2659 2660 2661 2662 2663
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2664 2665 2666 2667
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2668 2669 2670 2671 2672 2673 2674
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2675
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2676
{
2677
	int ret;
2678
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2679

2680
	get_online_cpus();
2681
	mutex_lock(&slab_mutex);
2682
	ret = __cache_shrink(cachep);
2683
	mutex_unlock(&slab_mutex);
2684
	put_online_cpus();
2685
	return ret;
L
Linus Torvalds 已提交
2686 2687 2688
}
EXPORT_SYMBOL(kmem_cache_shrink);

2689
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2690
{
2691 2692 2693
	int i;
	struct kmem_list3 *l3;
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2694

2695 2696
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2697

2698 2699
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2700

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	return 0;
L
Linus Torvalds 已提交
2711 2712
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2724
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2725 2726
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2727 2728
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2729

L
Linus Torvalds 已提交
2730 2731
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2732
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2733
					      local_flags, nodeid);
2734 2735 2736 2737 2738 2739
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2740 2741
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2742 2743 2744
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2745
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2746 2747 2748 2749
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2750
	slabp->s_mem = objp + colour_off;
2751
	slabp->nodeid = nodeid;
2752
	slabp->free = 0;
L
Linus Torvalds 已提交
2753 2754 2755 2756 2757
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2758
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2759 2760
}

2761
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2762
			    struct slab *slabp)
L
Linus Torvalds 已提交
2763 2764 2765 2766
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2767
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2780 2781 2782
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2783 2784
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2785
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2786 2787 2788 2789

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2790
					   " end of an object");
L
Linus Torvalds 已提交
2791 2792
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2793
					   " start of an object");
L
Linus Torvalds 已提交
2794
		}
2795
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2796
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2797
			kernel_map_pages(virt_to_page(objp),
2798
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2799 2800
#else
		if (cachep->ctor)
2801
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2802
#endif
P
Pekka Enberg 已提交
2803
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2804
	}
P
Pekka Enberg 已提交
2805
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2806 2807
}

2808
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2809
{
2810 2811
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2812
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2813
		else
2814
			BUG_ON(cachep->allocflags & GFP_DMA);
2815
	}
L
Linus Torvalds 已提交
2816 2817
}

A
Andrew Morton 已提交
2818 2819
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2820
{
2821
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2835 2836
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2837
{
2838
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2839 2840 2841 2842 2843

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2844
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2845
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2846
				"'%s', objp %p\n", cachep->name, objp);
2847 2848 2849 2850 2851 2852 2853 2854
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2855 2856 2857
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2858
 * virtual address for kfree, ksize, and slab debugging.
2859 2860 2861
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2862
{
2863
	int nr_pages;
L
Linus Torvalds 已提交
2864 2865
	struct page *page;

2866
	page = virt_to_page(addr);
2867

2868
	nr_pages = 1;
2869
	if (likely(!PageCompound(page)))
2870 2871
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2872
	do {
C
Christoph Lameter 已提交
2873 2874
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2875
		page++;
2876
	} while (--nr_pages);
L
Linus Torvalds 已提交
2877 2878 2879 2880 2881 2882
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2883 2884
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2885
{
P
Pekka Enberg 已提交
2886 2887 2888
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2889
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2890

A
Andrew Morton 已提交
2891 2892 2893
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2894
	 */
C
Christoph Lameter 已提交
2895 2896
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2897

2898
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2899
	check_irq_off();
2900 2901
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2902 2903

	/* Get colour for the slab, and cal the next value. */
2904 2905 2906 2907 2908
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2909

2910
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2923 2924 2925
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2926
	 */
2927
	if (!objp)
2928
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2929
	if (!objp)
L
Linus Torvalds 已提交
2930 2931 2932
		goto failed;

	/* Get slab management. */
2933
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2934
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2935
	if (!slabp)
L
Linus Torvalds 已提交
2936 2937
		goto opps1;

2938
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2939

C
Christoph Lameter 已提交
2940
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2941 2942 2943 2944

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2945
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2946 2947

	/* Make slab active. */
2948
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2949
	STATS_INC_GROWN(cachep);
2950 2951
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2952
	return 1;
A
Andrew Morton 已提交
2953
opps1:
L
Linus Torvalds 已提交
2954
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2955
failed:
L
Linus Torvalds 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2972 2973
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2974 2975 2976
	}
}

2977 2978
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2979
	unsigned long long redzone1, redzone2;
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2995
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2996 2997 2998
			obj, redzone1, redzone2);
}

2999
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3000
				   unsigned long caller)
L
Linus Torvalds 已提交
3001 3002 3003 3004 3005
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

3006 3007
	BUG_ON(virt_to_cache(objp) != cachep);

3008
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
3009
	kfree_debugcheck(objp);
3010
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
3011

C
Christoph Lameter 已提交
3012
	slabp = page->slab_page;
L
Linus Torvalds 已提交
3013 3014

	if (cachep->flags & SLAB_RED_ZONE) {
3015
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
3016 3017 3018 3019
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
3020
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3021

3022
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
3023 3024

	BUG_ON(objnr >= cachep->num);
3025
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
3026

3027 3028 3029
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3030 3031
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
3032
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3033
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
3034
			kernel_map_pages(virt_to_page(objp),
3035
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3046
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3047 3048 3049
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3050

L
Linus Torvalds 已提交
3051 3052 3053 3054 3055 3056 3057
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3058 3059
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3060 3061 3062
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3063 3064 3065
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3075 3076
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3077 3078 3079 3080
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3081 3082
	int node;

L
Linus Torvalds 已提交
3083
	check_irq_off();
3084
	node = numa_mem_id();
3085 3086 3087
	if (unlikely(force_refill))
		goto force_grow;
retry:
3088
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3089 3090
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3091 3092 3093 3094
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3095 3096 3097
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3098
	l3 = cachep->nodelists[node];
3099 3100 3101

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3102

3103
	/* See if we can refill from the shared array */
3104 3105
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3106
		goto alloc_done;
3107
	}
3108

L
Linus Torvalds 已提交
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3124 3125 3126 3127 3128 3129

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3130
		BUG_ON(slabp->inuse >= cachep->num);
3131

L
Linus Torvalds 已提交
3132 3133 3134 3135 3136
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3137 3138
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3150
must_grow:
L
Linus Torvalds 已提交
3151
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3152
alloc_done:
3153
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3154 3155 3156

	if (unlikely(!ac->avail)) {
		int x;
3157
force_grow:
3158
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3159

A
Andrew Morton 已提交
3160
		/* cache_grow can reenable interrupts, then ac could change. */
3161
		ac = cpu_cache_get(cachep);
3162
		node = numa_mem_id();
3163 3164 3165

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3166 3167
			return NULL;

A
Andrew Morton 已提交
3168
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3169 3170 3171
			goto retry;
	}
	ac->touched = 1;
3172 3173

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3174 3175
}

A
Andrew Morton 已提交
3176 3177
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3178 3179 3180 3181 3182 3183 3184 3185
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3186
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3187
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3188
{
P
Pekka Enberg 已提交
3189
	if (!objp)
L
Linus Torvalds 已提交
3190
		return objp;
P
Pekka Enberg 已提交
3191
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3192
#ifdef CONFIG_DEBUG_PAGEALLOC
3193
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3194
			kernel_map_pages(virt_to_page(objp),
3195
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3196 3197 3198 3199 3200 3201 3202 3203
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3204
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3205 3206

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3207 3208 3209 3210
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3211
			printk(KERN_ERR
3212
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3213 3214
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3215 3216 3217 3218
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3219 3220 3221 3222 3223
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3224
		slabp = virt_to_head_page(objp)->slab_page;
3225
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3226 3227 3228
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3229
	objp += obj_offset(cachep);
3230
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3231
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3232 3233
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3234
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3235
		       objp, (int)ARCH_SLAB_MINALIGN);
3236
	}
L
Linus Torvalds 已提交
3237 3238 3239 3240 3241 3242
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3243
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3244
{
3245
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3246
		return false;
3247

3248
	return should_failslab(cachep->object_size, flags, cachep->flags);
3249 3250
}

3251
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3252
{
P
Pekka Enberg 已提交
3253
	void *objp;
L
Linus Torvalds 已提交
3254
	struct array_cache *ac;
3255
	bool force_refill = false;
L
Linus Torvalds 已提交
3256

3257
	check_irq_off();
3258

3259
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3260 3261
	if (likely(ac->avail)) {
		ac->touched = 1;
3262 3263
		objp = ac_get_obj(cachep, ac, flags, false);

3264
		/*
3265 3266
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3267
		 */
3268 3269 3270 3271 3272
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3273
	}
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3284 3285 3286 3287 3288
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3289 3290
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3291 3292 3293
	return objp;
}

3294
#ifdef CONFIG_NUMA
3295
/*
3296
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3297 3298 3299 3300 3301 3302 3303 3304
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3305
	if (in_interrupt() || (flags & __GFP_THISNODE))
3306
		return NULL;
3307
	nid_alloc = nid_here = numa_mem_id();
3308
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3309
		nid_alloc = cpuset_slab_spread_node();
3310
	else if (current->mempolicy)
3311
		nid_alloc = slab_node();
3312
	if (nid_alloc != nid_here)
3313
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3314 3315 3316
	return NULL;
}

3317 3318
/*
 * Fallback function if there was no memory available and no objects on a
3319 3320 3321 3322 3323
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3324
 */
3325
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3326
{
3327 3328
	struct zonelist *zonelist;
	gfp_t local_flags;
3329
	struct zoneref *z;
3330 3331
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3332
	void *obj = NULL;
3333
	int nid;
3334
	unsigned int cpuset_mems_cookie;
3335 3336 3337 3338

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3339
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3340

3341 3342
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3343
	zonelist = node_zonelist(slab_node(), flags);
3344

3345 3346 3347 3348 3349
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3350 3351
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3352

3353
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3354
			cache->nodelists[nid] &&
3355
			cache->nodelists[nid]->free_objects) {
3356 3357
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3358 3359 3360
				if (obj)
					break;
		}
3361 3362
	}

3363
	if (!obj) {
3364 3365 3366 3367 3368 3369
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3370 3371 3372
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3373
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3374 3375
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3392
				/* cache_grow already freed obj */
3393 3394 3395
				obj = NULL;
			}
		}
3396
	}
3397 3398 3399

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3400 3401 3402
	return obj;
}

3403 3404
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3405
 */
3406
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3407
				int nodeid)
3408 3409
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3410 3411 3412 3413 3414 3415 3416 3417
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3418
retry:
3419
	check_irq_off();
P
Pekka Enberg 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3439
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3440 3441 3442 3443 3444
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3445
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3446
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3447
	else
P
Pekka Enberg 已提交
3448
		list_add(&slabp->list, &l3->slabs_partial);
3449

P
Pekka Enberg 已提交
3450 3451
	spin_unlock(&l3->list_lock);
	goto done;
3452

A
Andrew Morton 已提交
3453
must_grow:
P
Pekka Enberg 已提交
3454
	spin_unlock(&l3->list_lock);
3455
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3456 3457
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3458

3459
	return fallback_alloc(cachep, flags);
3460

A
Andrew Morton 已提交
3461
done:
P
Pekka Enberg 已提交
3462
	return obj;
3463
}
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
3478
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3479
		   unsigned long caller)
3480 3481 3482
{
	unsigned long save_flags;
	void *ptr;
3483
	int slab_node = numa_mem_id();
3484

3485
	flags &= gfp_allowed_mask;
3486

3487 3488
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3489
	if (slab_should_failslab(cachep, flags))
3490 3491
		return NULL;

3492 3493
	cachep = memcg_kmem_get_cache(cachep, flags);

3494 3495 3496
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3497
	if (nodeid == NUMA_NO_NODE)
3498
		nodeid = slab_node;
3499 3500 3501 3502 3503 3504 3505

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3506
	if (nodeid == slab_node) {
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3522
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3523
				 flags);
3524

P
Pekka Enberg 已提交
3525
	if (likely(ptr))
3526
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3527

3528
	if (unlikely((flags & __GFP_ZERO) && ptr))
3529
		memset(ptr, 0, cachep->object_size);
3530

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3550 3551
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3567
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3568 3569 3570 3571
{
	unsigned long save_flags;
	void *objp;

3572
	flags &= gfp_allowed_mask;
3573

3574 3575
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3576
	if (slab_should_failslab(cachep, flags))
3577 3578
		return NULL;

3579 3580
	cachep = memcg_kmem_get_cache(cachep, flags);

3581 3582 3583 3584 3585
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3586
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3587
				 flags);
3588 3589
	prefetchw(objp);

P
Pekka Enberg 已提交
3590
	if (likely(objp))
3591
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3592

3593
	if (unlikely((flags & __GFP_ZERO) && objp))
3594
		memset(objp, 0, cachep->object_size);
3595

3596 3597
	return objp;
}
3598 3599 3600 3601

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3602
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3603
		       int node)
L
Linus Torvalds 已提交
3604 3605
{
	int i;
3606
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3607 3608

	for (i = 0; i < nr_objects; i++) {
3609
		void *objp;
L
Linus Torvalds 已提交
3610 3611
		struct slab *slabp;

3612 3613 3614
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3615
		slabp = virt_to_slab(objp);
3616
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3617
		list_del(&slabp->list);
3618
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3619
		check_slabp(cachep, slabp);
3620
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3621
		STATS_DEC_ACTIVE(cachep);
3622
		l3->free_objects++;
L
Linus Torvalds 已提交
3623 3624 3625 3626
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3627 3628
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3629 3630 3631 3632 3633 3634
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3635 3636
				slab_destroy(cachep, slabp);
			} else {
3637
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3638 3639 3640 3641 3642 3643
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3644
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3645 3646 3647 3648
		}
	}
}

3649
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3650 3651
{
	int batchcount;
3652
	struct kmem_list3 *l3;
3653
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3654 3655 3656 3657 3658 3659

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3660
	l3 = cachep->nodelists[node];
3661
	spin_lock(&l3->list_lock);
3662 3663
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3664
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3665 3666 3667
		if (max) {
			if (batchcount > max)
				batchcount = max;
3668
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3669
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3670 3671 3672 3673 3674
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3675
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3676
free_done:
L
Linus Torvalds 已提交
3677 3678 3679 3680 3681
#if STATS
	{
		int i = 0;
		struct list_head *p;

3682 3683
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3695
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3696
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3697
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3698 3699 3700
}

/*
A
Andrew Morton 已提交
3701 3702
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3703
 */
3704
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3705
				unsigned long caller)
L
Linus Torvalds 已提交
3706
{
3707
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3708 3709

	check_irq_off();
3710
	kmemleak_free_recursive(objp, cachep->flags);
3711
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3712

3713
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3714

3715 3716 3717 3718 3719 3720 3721
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3722
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3723 3724
		return;

L
Linus Torvalds 已提交
3725 3726 3727 3728 3729 3730
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3731

3732
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3743
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3744
{
3745
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3746

3747
	trace_kmem_cache_alloc(_RET_IP_, ret,
3748
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3749 3750

	return ret;
L
Linus Torvalds 已提交
3751 3752 3753
}
EXPORT_SYMBOL(kmem_cache_alloc);

3754
#ifdef CONFIG_TRACING
3755
void *
3756
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3757
{
3758 3759
	void *ret;

3760
	ret = slab_alloc(cachep, flags, _RET_IP_);
3761 3762

	trace_kmalloc(_RET_IP_, ret,
3763
		      size, cachep->size, flags);
3764
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3765
}
3766
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3767 3768
#endif

L
Linus Torvalds 已提交
3769
#ifdef CONFIG_NUMA
3770 3771
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3772
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3773

3774
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3775
				    cachep->object_size, cachep->size,
3776
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3777 3778

	return ret;
3779
}
L
Linus Torvalds 已提交
3780 3781
EXPORT_SYMBOL(kmem_cache_alloc_node);

3782
#ifdef CONFIG_TRACING
3783
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3784
				  gfp_t flags,
3785 3786
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3787
{
3788 3789
	void *ret;

3790
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3791

3792
	trace_kmalloc_node(_RET_IP_, ret,
3793
			   size, cachep->size,
3794 3795
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3796
}
3797
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3798 3799
#endif

3800
static __always_inline void *
3801
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3802
{
3803
	struct kmem_cache *cachep;
3804 3805

	cachep = kmem_find_general_cachep(size, flags);
3806 3807
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3808
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3809
}
3810

3811
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3812 3813
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3814
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3815
}
3816
EXPORT_SYMBOL(__kmalloc_node);
3817 3818

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3819
		int node, unsigned long caller)
3820
{
3821
	return __do_kmalloc_node(size, flags, node, caller);
3822 3823 3824 3825 3826
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3827
	return __do_kmalloc_node(size, flags, node, 0);
3828 3829
}
EXPORT_SYMBOL(__kmalloc_node);
3830
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3831
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3832 3833

/**
3834
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3835
 * @size: how many bytes of memory are required.
3836
 * @flags: the type of memory to allocate (see kmalloc).
3837
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3838
 */
3839
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3840
					  unsigned long caller)
L
Linus Torvalds 已提交
3841
{
3842
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3843
	void *ret;
L
Linus Torvalds 已提交
3844

3845 3846 3847 3848 3849 3850
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3851 3852
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3853
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3854

3855
	trace_kmalloc(caller, ret,
3856
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3857 3858

	return ret;
3859 3860 3861
}


3862
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3863 3864
void *__kmalloc(size_t size, gfp_t flags)
{
3865
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3866 3867 3868
}
EXPORT_SYMBOL(__kmalloc);

3869
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3870
{
3871
	return __do_kmalloc(size, flags, caller);
3872 3873
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3874 3875 3876 3877

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3878
	return __do_kmalloc(size, flags, 0);
3879 3880
}
EXPORT_SYMBOL(__kmalloc);
3881 3882
#endif

L
Linus Torvalds 已提交
3883 3884 3885 3886 3887 3888 3889 3890
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3891
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3892 3893
{
	unsigned long flags;
3894 3895 3896
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3897 3898

	local_irq_save(flags);
3899
	debug_check_no_locks_freed(objp, cachep->object_size);
3900
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3901
		debug_check_no_obj_freed(objp, cachep->object_size);
3902
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3903
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3904

3905
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3906 3907 3908 3909 3910 3911 3912
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3913 3914
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3915 3916 3917 3918 3919
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3920
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3921 3922
	unsigned long flags;

3923 3924
	trace_kfree(_RET_IP_, objp);

3925
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3926 3927 3928
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3929
	c = virt_to_cache(objp);
3930 3931 3932
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3933
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3934 3935 3936 3937
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3938
/*
S
Simon Arlott 已提交
3939
 * This initializes kmem_list3 or resizes various caches for all nodes.
3940
 */
3941
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3942 3943 3944
{
	int node;
	struct kmem_list3 *l3;
3945
	struct array_cache *new_shared;
3946
	struct array_cache **new_alien = NULL;
3947

3948
	for_each_online_node(node) {
3949

3950
                if (use_alien_caches) {
3951
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3952 3953 3954
                        if (!new_alien)
                                goto fail;
                }
3955

3956 3957 3958
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3959
				cachep->shared*cachep->batchcount,
3960
					0xbaadf00d, gfp);
3961 3962 3963 3964
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3965
		}
3966

A
Andrew Morton 已提交
3967 3968
		l3 = cachep->nodelists[node];
		if (l3) {
3969 3970
			struct array_cache *shared = l3->shared;

3971 3972
			spin_lock_irq(&l3->list_lock);

3973
			if (shared)
3974 3975
				free_block(cachep, shared->entry,
						shared->avail, node);
3976

3977 3978
			l3->shared = new_shared;
			if (!l3->alien) {
3979 3980 3981
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3982
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3983
					cachep->batchcount + cachep->num;
3984
			spin_unlock_irq(&l3->list_lock);
3985
			kfree(shared);
3986 3987 3988
			free_alien_cache(new_alien);
			continue;
		}
3989
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3990 3991 3992
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3993
			goto fail;
3994
		}
3995 3996 3997

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3998
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3999
		l3->shared = new_shared;
4000
		l3->alien = new_alien;
P
Pekka Enberg 已提交
4001
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
4002
					cachep->batchcount + cachep->num;
4003 4004
		cachep->nodelists[node] = l3;
	}
4005
	return 0;
4006

A
Andrew Morton 已提交
4007
fail:
4008
	if (!cachep->list.next) {
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
4023
	return -ENOMEM;
4024 4025
}

L
Linus Torvalds 已提交
4026
struct ccupdate_struct {
4027
	struct kmem_cache *cachep;
4028
	struct array_cache *new[0];
L
Linus Torvalds 已提交
4029 4030 4031 4032
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
4033
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
4034 4035 4036
	struct array_cache *old;

	check_irq_off();
4037
	old = cpu_cache_get(new->cachep);
4038

L
Linus Torvalds 已提交
4039 4040 4041 4042
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4043
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
4044
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
4045
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4046
{
4047
	struct ccupdate_struct *new;
4048
	int i;
L
Linus Torvalds 已提交
4049

4050 4051
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4052 4053 4054
	if (!new)
		return -ENOMEM;

4055
	for_each_online_cpu(i) {
4056
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4057
						batchcount, gfp);
4058
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4059
			for (i--; i >= 0; i--)
4060 4061
				kfree(new->new[i]);
			kfree(new);
4062
			return -ENOMEM;
L
Linus Torvalds 已提交
4063 4064
		}
	}
4065
	new->cachep = cachep;
L
Linus Torvalds 已提交
4066

4067
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4068

L
Linus Torvalds 已提交
4069 4070 4071
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4072
	cachep->shared = shared;
L
Linus Torvalds 已提交
4073

4074
	for_each_online_cpu(i) {
4075
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4076 4077
		if (!ccold)
			continue;
4078 4079 4080
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4081 4082
		kfree(ccold);
	}
4083
	kfree(new);
4084
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4085 4086
}

G
Glauber Costa 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

4102
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg(cachep, i);
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

4113
/* Called with slab_mutex held always */
4114
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4115 4116
{
	int err;
G
Glauber Costa 已提交
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
4127

G
Glauber Costa 已提交
4128 4129
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
4130 4131
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4132 4133
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4134
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4135 4136 4137 4138
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4139
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4140
		limit = 1;
4141
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4142
		limit = 8;
4143
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4144
		limit = 24;
4145
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4146 4147 4148 4149
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4150 4151
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4152 4153 4154 4155 4156 4157 4158 4159
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4160
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4161 4162 4163
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4164 4165 4166
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4167 4168 4169 4170
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4171 4172 4173
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
4174 4175
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4176
		       cachep->name, -err);
4177
	return err;
L
Linus Torvalds 已提交
4178 4179
}

4180 4181
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4182 4183
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4184
 */
4185
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4186
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4187 4188 4189
{
	int tofree;

4190 4191
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4192 4193
	if (ac->touched && !force) {
		ac->touched = 0;
4194
	} else {
4195
		spin_lock_irq(&l3->list_lock);
4196 4197 4198 4199 4200 4201 4202 4203 4204
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4205
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4206 4207 4208 4209 4210
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4211
 * @w: work descriptor
L
Linus Torvalds 已提交
4212 4213 4214 4215 4216 4217
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4218 4219
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4220
 */
4221
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4222
{
4223
	struct kmem_cache *searchp;
4224
	struct kmem_list3 *l3;
4225
	int node = numa_mem_id();
4226
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4227

4228
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4229
		/* Give up. Setup the next iteration. */
4230
		goto out;
L
Linus Torvalds 已提交
4231

4232
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4233 4234
		check_irq_on();

4235 4236 4237 4238 4239
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4240
		l3 = searchp->nodelists[node];
4241

4242
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4243

4244
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4245

4246 4247 4248 4249
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4250
		if (time_after(l3->next_reap, jiffies))
4251
			goto next;
L
Linus Torvalds 已提交
4252

4253
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4254

4255
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4256

4257
		if (l3->free_touched)
4258
			l3->free_touched = 0;
4259 4260
		else {
			int freed;
L
Linus Torvalds 已提交
4261

4262 4263 4264 4265
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4266
next:
L
Linus Torvalds 已提交
4267 4268 4269
		cond_resched();
	}
	check_irq_on();
4270
	mutex_unlock(&slab_mutex);
4271
	next_reap_node();
4272
out:
A
Andrew Morton 已提交
4273
	/* Set up the next iteration */
4274
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4275 4276
}

4277
#ifdef CONFIG_SLABINFO
4278
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4279
{
P
Pekka Enberg 已提交
4280 4281 4282 4283 4284
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4285
	const char *name;
L
Linus Torvalds 已提交
4286
	char *error = NULL;
4287 4288
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4289 4290 4291

	active_objs = 0;
	num_slabs = 0;
4292 4293 4294 4295 4296
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4297 4298
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4299

4300
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4301 4302 4303 4304 4305
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4306
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4307 4308 4309 4310 4311 4312 4313
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4314
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4315 4316 4317 4318 4319
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4320 4321
		if (l3->shared)
			shared_avail += l3->shared->avail;
4322

4323
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4324
	}
P
Pekka Enberg 已提交
4325 4326
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4327
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4328 4329
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4330
	name = cachep->name;
L
Linus Torvalds 已提交
4331 4332 4333
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4348
#if STATS
P
Pekka Enberg 已提交
4349
	{			/* list3 stats */
L
Linus Torvalds 已提交
4350 4351 4352 4353 4354 4355 4356
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4357
		unsigned long node_frees = cachep->node_frees;
4358
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4359

J
Joe Perches 已提交
4360 4361 4362 4363 4364
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4365 4366 4367 4368 4369 4370 4371 4372 4373
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4374
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4387
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4388
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4389
{
P
Pekka Enberg 已提交
4390
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4391
	int limit, batchcount, shared, res;
4392
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4393

L
Linus Torvalds 已提交
4394 4395 4396 4397
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4398
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4409
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4410
	res = -EINVAL;
4411
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4412
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4413 4414
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4415
				res = 0;
L
Linus Torvalds 已提交
4416
			} else {
4417
				res = do_tune_cpucache(cachep, limit,
4418 4419
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4420 4421 4422 4423
			}
			break;
		}
	}
4424
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4425 4426 4427 4428
	if (res >= 0)
		res = count;
	return res;
}
4429 4430 4431 4432 4433

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4434 4435
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4474
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4486
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4487

4488
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4489
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4490
		if (modname[0])
4491 4492 4493 4494 4495 4496 4497 4498 4499
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4500
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4525
		list_for_each_entry(slabp, &l3->slabs_full, list)
4526
			handle_slab(n, cachep, slabp);
4527
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4528 4529 4530 4531 4532 4533
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4534
		mutex_unlock(&slab_mutex);
4535 4536 4537 4538
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4539
			mutex_lock(&slab_mutex);
4540 4541 4542 4543
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4544
		mutex_lock(&slab_mutex);
4545 4546 4547 4548 4549 4550 4551 4552 4553
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4554

4555 4556 4557
	return 0;
}

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

4568
static const struct seq_operations slabstats_op = {
4569 4570 4571 4572 4573
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4604
#endif
4605 4606 4607
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4608 4609
#endif

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4622
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4623
{
4624 4625
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4626
		return 0;
L
Linus Torvalds 已提交
4627

4628
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4629
}
K
Kirill A. Shutemov 已提交
4630
EXPORT_SYMBOL(ksize);