timekeeping.c 66.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/syscore_ops.h>
21 22 23 24
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
25
#include <linux/stop_machine.h>
26
#include <linux/pvclock_gtod.h>
27
#include <linux/compiler.h>
28

29
#include "tick-internal.h"
30
#include "ntp_internal.h"
31
#include "timekeeping_internal.h"
32

33 34
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
35
#define TK_CLOCK_WAS_SET	(1 << 2)
36

37 38 39 40 41 42 43 44 45
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

46
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47
static struct timekeeper shadow_timekeeper;
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
84

85 86 87
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

88 89
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
90 91
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92 93
		tk->xtime_sec++;
	}
94 95 96 97
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
98 99
}

100 101 102 103 104
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
105
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106 107 108
	return ts;
}

109
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 111
{
	tk->xtime_sec = ts->tv_sec;
112
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 114
}

115
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 117
{
	tk->xtime_sec += ts->tv_sec;
118
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119
	tk_normalize_xtime(tk);
120
}
121

122
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123
{
124
	struct timespec64 tmp;
125 126 127 128 129

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
130
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
132
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133
	tk->wall_to_monotonic = wtm;
134 135
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
136
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 138
}

139
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140
{
141 142 143
	/* Update both bases so mono and raw stay coupled. */
	tk->tkr_mono.base += delta;
	tk->tkr_raw.base += delta;
144 145 146

	/* Accumulate time spent in suspend */
	tk->time_suspended += delta;
147 148
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
static inline u64 tk_clock_read(struct tk_read_base *tkr)
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

169
#ifdef CONFIG_DEBUG_TIMEKEEPING
170 171
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

172
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
173 174
{

175
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
176
	const char *name = tk->tkr_mono.clock->name;
177 178

	if (offset > max_cycles) {
179
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
180
				offset, name, max_cycles);
181
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
182 183
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
184
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
185 186 187 188
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
189

190 191
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
192 193 194
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
195
			tk->last_warning = jiffies;
196
		}
197
		tk->underflow_seen = 0;
198 199
	}

200 201
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
202 203 204
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
205
			tk->last_warning = jiffies;
206
		}
207
		tk->overflow_seen = 0;
208
	}
209
}
210

211
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
212
{
213
	struct timekeeper *tk = &tk_core.timekeeper;
214
	u64 now, last, mask, max, delta;
215
	unsigned int seq;
216

217 218 219 220 221 222 223 224 225
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
226
		now = tk_clock_read(tkr);
227 228 229 230
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
231

232
	delta = clocksource_delta(now, last, mask);
233

234 235 236 237
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
238
	if (unlikely((~delta & mask) < (mask >> 3))) {
239
		tk->underflow_seen = 1;
240
		delta = 0;
241
	}
242

243
	/* Cap delta value to the max_cycles values to avoid mult overflows */
244
	if (unlikely(delta > max)) {
245
		tk->overflow_seen = 1;
246
		delta = tkr->clock->max_cycles;
247
	}
248 249 250

	return delta;
}
251
#else
252
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
253 254
{
}
255
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
256
{
257
	u64 cycle_now, delta;
258 259

	/* read clocksource */
260
	cycle_now = tk_clock_read(tkr);
261 262 263 264 265 266

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
267 268
#endif

269
/**
270
 * tk_setup_internals - Set up internals to use clocksource clock.
271
 *
272
 * @tk:		The target timekeeper to setup.
273 274 275 276 277 278 279
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
280
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
281
{
282
	u64 interval;
283
	u64 tmp, ntpinterval;
284
	struct clocksource *old_clock;
285

286
	++tk->cs_was_changed_seq;
287 288 289
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
290
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
291

P
Peter Zijlstra 已提交
292 293 294 295
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

296 297 298
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
299
	ntpinterval = tmp;
300 301
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
302 303 304
	if (tmp == 0)
		tmp = 1;

305
	interval = (u64) tmp;
306
	tk->cycle_interval = interval;
307 308

	/* Go back from cycles -> shifted ns */
309
	tk->xtime_interval = interval * clock->mult;
310
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
311
	tk->raw_interval = interval * clock->mult;
312

313 314 315
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
316
		if (shift_change < 0) {
317
			tk->tkr_mono.xtime_nsec >>= -shift_change;
318 319
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
320
			tk->tkr_mono.xtime_nsec <<= shift_change;
321 322
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
323
	}
P
Peter Zijlstra 已提交
324

325
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
326
	tk->tkr_raw.shift = clock->shift;
327

328 329
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
330
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
331 332 333 334 335 336

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
337
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
338
	tk->tkr_raw.mult = clock->mult;
339
	tk->ntp_err_mult = 0;
340
	tk->skip_second_overflow = 0;
341
}
342

343
/* Timekeeper helper functions. */
344 345

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
346 347
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
348
#else
349
static inline u32 arch_gettimeoffset(void) { return 0; }
350 351
#endif

352
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
353
{
354
	u64 nsec;
355 356 357 358 359 360 361 362

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

363
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
364
{
365
	u64 delta;
366

367
	delta = timekeeping_get_delta(tkr);
368 369
	return timekeeping_delta_to_ns(tkr, delta);
}
370

371
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
372
{
373
	u64 delta;
374

375 376 377
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
378 379
}

380 381
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
382
 * @tkr: Timekeeping readout base from which we take the update
383 384 385 386
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
387
 * Employ the latch technique; see @raw_write_seqcount_latch.
388 389 390 391 392 393
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
394
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
395
{
396
	struct tk_read_base *base = tkf->base;
397 398

	/* Force readers off to base[1] */
399
	raw_write_seqcount_latch(&tkf->seq);
400 401

	/* Update base[0] */
402
	memcpy(base, tkr, sizeof(*base));
403 404

	/* Force readers back to base[0] */
405
	raw_write_seqcount_latch(&tkf->seq);
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
443
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
444 445 446 447 448 449
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
450
		seq = raw_read_seqcount_latch(&tkf->seq);
451
		tkr = tkf->base + (seq & 0x01);
452 453
		now = ktime_to_ns(tkr->base);

454 455
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
456
					tk_clock_read(tkr),
457 458
					tkr->cycle_last,
					tkr->mask));
459
	} while (read_seqcount_retry(&tkf->seq, seq));
460 461 462

	return now;
}
463 464 465 466 467

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
468 469
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
470 471 472 473 474 475
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

/*
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 */
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_real);

		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tk_clock_read(tkr),
					tkr->cycle_last,
					tkr->mask));
	} while (read_seqcount_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast_ns(&tk_fast_mono);
}
537
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
538

539 540 541 542 543 544 545 546 547 548 549 550 551
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
552
	struct tk_read_base *tkr = &tk->tkr_mono;
553 554

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
555 556
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
557
	tkr_dummy.base_real = tkr->base + tk->offs_real;
558
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
559 560 561

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
562
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
563
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
564 565
}

566 567
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

568
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
569
{
570
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
571 572 573 574 575 576 577
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
578
	struct timekeeper *tk = &tk_core.timekeeper;
579 580 581
	unsigned long flags;
	int ret;

582
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
583
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
584
	update_pvclock_gtod(tk, true);
585
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
586 587 588 589 590 591 592 593 594 595 596 597 598 599

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

600
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
601
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
602
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
603 604 605 606 607

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

608 609 610 611 612 613
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
614
	if (tk->next_leap_ktime != KTIME_MAX)
615 616 617 618
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

619 620 621 622 623
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
624 625
	u64 seconds;
	u32 nsec;
626 627 628 629 630 631 632 633

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
634 635
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
636
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
637

638 639 640 641 642
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
643
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
644 645 646
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
647 648

	/* Update the monotonic raw base */
649
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
650 651
}

652
/* must hold timekeeper_lock */
653
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
654
{
655
	if (action & TK_CLEAR_NTP) {
656
		tk->ntp_error = 0;
657 658
		ntp_clear();
	}
659

660
	tk_update_leap_state(tk);
661 662
	tk_update_ktime_data(tk);

663 664 665
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

666
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
667
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
668
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
669 670 671

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
672 673 674 675 676 677 678 679
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
680 681
}

682
/**
683
 * timekeeping_forward_now - update clock to the current time
684
 *
685 686 687
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
688
 */
689
static void timekeeping_forward_now(struct timekeeper *tk)
690
{
691
	u64 cycle_now, delta;
692

693
	cycle_now = tk_clock_read(&tk->tkr_mono);
694 695
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
696
	tk->tkr_raw.cycle_last  = cycle_now;
697

698
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
699

700
	/* If arch requires, add in get_arch_timeoffset() */
701
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
702

703

704 705 706 707 708 709
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
710 711 712
}

/**
713
 * __getnstimeofday64 - Returns the time of day in a timespec64.
714 715
 * @ts:		pointer to the timespec to be set
 *
716 717
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
718
 */
719
int __getnstimeofday64(struct timespec64 *ts)
720
{
721
	struct timekeeper *tk = &tk_core.timekeeper;
722
	unsigned long seq;
723
	u64 nsecs;
724 725

	do {
726
		seq = read_seqcount_begin(&tk_core.seq);
727

728
		ts->tv_sec = tk->xtime_sec;
729
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
730

731
	} while (read_seqcount_retry(&tk_core.seq, seq));
732

733
	ts->tv_nsec = 0;
734
	timespec64_add_ns(ts, nsecs);
735 736 737 738 739 740 741 742 743

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
744
EXPORT_SYMBOL(__getnstimeofday64);
745 746

/**
747
 * getnstimeofday64 - Returns the time of day in a timespec64.
748
 * @ts:		pointer to the timespec64 to be set
749
 *
750
 * Returns the time of day in a timespec64 (WARN if suspended).
751
 */
752
void getnstimeofday64(struct timespec64 *ts)
753
{
754
	WARN_ON(__getnstimeofday64(ts));
755
}
756
EXPORT_SYMBOL(getnstimeofday64);
757

758 759
ktime_t ktime_get(void)
{
760
	struct timekeeper *tk = &tk_core.timekeeper;
761
	unsigned int seq;
762
	ktime_t base;
763
	u64 nsecs;
764 765 766 767

	WARN_ON(timekeeping_suspended);

	do {
768
		seq = read_seqcount_begin(&tk_core.seq);
769 770
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
771

772
	} while (read_seqcount_retry(&tk_core.seq, seq));
773

774
	return ktime_add_ns(base, nsecs);
775 776 777
}
EXPORT_SYMBOL_GPL(ktime_get);

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

795 796 797 798 799 800 801 802 803 804 805
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
806
	u64 nsecs;
807 808 809 810 811

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
812 813
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
814 815 816 817 818 819 820 821

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

842 843 844 845 846 847 848 849
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
850
	u64 nsecs;
851 852 853

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
854 855
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
856 857 858 859 860 861 862

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

863
/**
864
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
865 866 867 868
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
869
 * in normalized timespec64 format in the variable pointed to by @ts.
870
 */
871
void ktime_get_ts64(struct timespec64 *ts)
872
{
873
	struct timekeeper *tk = &tk_core.timekeeper;
874
	struct timespec64 tomono;
875
	unsigned int seq;
876
	u64 nsec;
877 878 879 880

	WARN_ON(timekeeping_suspended);

	do {
881
		seq = read_seqcount_begin(&tk_core.seq);
882
		ts->tv_sec = tk->xtime_sec;
883
		nsec = timekeeping_get_ns(&tk->tkr_mono);
884
		tomono = tk->wall_to_monotonic;
885

886
	} while (read_seqcount_retry(&tk_core.seq, seq));
887

888 889 890
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
891
}
892
EXPORT_SYMBOL_GPL(ktime_get_ts64);
893

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/**
 * ktime_get_active_ts64 - Get the active non-suspended monotonic clock
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime clock and
 * the wall_to_monotonic offset, subtracts the accumulated suspend time and
 * stores the result in normalized timespec64 format in the variable
 * pointed to by @ts.
 */
void ktime_get_active_ts64(struct timespec64 *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	struct timespec64 tomono, tsusp;
	u64 nsec, nssusp;
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		ts->tv_sec = tk->xtime_sec;
		nsec = timekeeping_get_ns(&tk->tkr_mono);
		tomono = tk->wall_to_monotonic;
		nssusp = tk->time_suspended;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
	tsusp = ns_to_timespec64(nssusp);
	*ts = timespec64_sub(*ts, tsusp);
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

975 976 977 978 979 980 981 982 983 984 985 986
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

987 988 989 990 991 992 993 994 995 996
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
997 998
	u64 nsec_raw;
	u64 nsec_real;
999
	u64 now;
1000

1001 1002
	WARN_ON_ONCE(timekeeping_suspended);

1003 1004
	do {
		seq = read_seqcount_begin(&tk_core.seq);
1005
		now = tk_clock_read(&tk->tkr_mono);
1006 1007
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1057 1058
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1071
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1121
static bool cycle_between(u64 before, u64 test, u64 after)
1122 1123 1124 1125 1126 1127 1128 1129
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1130 1131
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1132
 * @get_time_fn:	Callback to get simultaneous device time and
1133
 *	system counter from the device driver
1134 1135 1136
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1137 1138 1139 1140 1141 1142 1143 1144 1145
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1146
				  struct system_time_snapshot *history_begin,
1147 1148 1149 1150
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1151
	u64 cycles, now, interval_start;
1152
	unsigned int clock_was_set_seq = 0;
1153
	ktime_t base_real, base_raw;
1154
	u64 nsec_real, nsec_raw;
1155
	u8 cs_was_changed_seq;
1156
	unsigned long seq;
1157
	bool do_interp;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1177 1178 1179 1180 1181 1182
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1183
		now = tk_clock_read(&tk->tkr_mono);
1184 1185 1186 1187 1188 1189 1190 1191 1192
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1206 1207 1208 1209 1210 1211

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1212
		u64 partial_history_cycles, total_history_cycles;
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1238 1239 1240 1241
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1242 1243 1244 1245
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1246
 * NOTE: Users should be converted to using getnstimeofday()
1247 1248 1249
 */
void do_gettimeofday(struct timeval *tv)
{
1250
	struct timespec64 now;
1251

1252
	getnstimeofday64(&now);
1253 1254 1255 1256
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1257

1258
/**
1259 1260
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1261 1262 1263
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1264
int do_settimeofday64(const struct timespec64 *ts)
1265
{
1266
	struct timekeeper *tk = &tk_core.timekeeper;
1267
	struct timespec64 ts_delta, xt;
1268
	unsigned long flags;
1269
	int ret = 0;
1270

1271
	if (!timespec64_valid_strict(ts))
1272 1273
		return -EINVAL;

1274
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1275
	write_seqcount_begin(&tk_core.seq);
1276

1277
	timekeeping_forward_now(tk);
1278

1279
	xt = tk_xtime(tk);
1280 1281
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1282

1283 1284 1285 1286 1287
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1288
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1289

1290
	tk_set_xtime(tk, ts);
1291
out:
1292
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1293

1294
	write_seqcount_end(&tk_core.seq);
1295
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1296 1297 1298 1299

	/* signal hrtimers about time change */
	clock_was_set();

1300
	return ret;
1301
}
1302
EXPORT_SYMBOL(do_settimeofday64);
1303

1304 1305 1306 1307 1308 1309
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1310
static int timekeeping_inject_offset(struct timespec64 *ts)
1311
{
1312
	struct timekeeper *tk = &tk_core.timekeeper;
1313
	unsigned long flags;
1314
	struct timespec64 tmp;
1315
	int ret = 0;
1316

1317
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1318 1319
		return -EINVAL;

1320
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1321
	write_seqcount_begin(&tk_core.seq);
1322

1323
	timekeeping_forward_now(tk);
1324

1325
	/* Make sure the proposed value is valid */
1326 1327
	tmp = timespec64_add(tk_xtime(tk), *ts);
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1328
	    !timespec64_valid_strict(&tmp)) {
1329 1330 1331
		ret = -EINVAL;
		goto error;
	}
1332

1333 1334
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1335

1336
error: /* even if we error out, we forwarded the time, so call update */
1337
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1338

1339
	write_seqcount_end(&tk_core.seq);
1340
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1341 1342 1343 1344

	/* signal hrtimers about time change */
	clock_was_set();

1345
	return ret;
1346
}
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
1373
		struct timespec64 adjust;
1374 1375 1376 1377 1378 1379 1380

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1381

1382
/**
1383
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1384 1385
 *
 */
1386
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1387 1388
{
	tk->tai_offset = tai_offset;
1389
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1390 1391
}

1392 1393 1394 1395 1396
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1397
static int change_clocksource(void *data)
1398
{
1399
	struct timekeeper *tk = &tk_core.timekeeper;
1400
	struct clocksource *new, *old;
1401
	unsigned long flags;
1402

1403
	new = (struct clocksource *) data;
1404

1405
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1406
	write_seqcount_begin(&tk_core.seq);
1407

1408
	timekeeping_forward_now(tk);
1409 1410 1411 1412 1413 1414
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1415
			old = tk->tkr_mono.clock;
1416 1417 1418 1419 1420 1421 1422
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1423
	}
1424
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1425

1426
	write_seqcount_end(&tk_core.seq);
1427
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1428

1429 1430
	return 0;
}
1431

1432 1433 1434 1435 1436 1437 1438
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1439
int timekeeping_notify(struct clocksource *clock)
1440
{
1441
	struct timekeeper *tk = &tk_core.timekeeper;
1442

1443
	if (tk->tkr_mono.clock == clock)
1444
		return 0;
1445
	stop_machine(change_clocksource, clock, NULL);
1446
	tick_clock_notify();
1447
	return tk->tkr_mono.clock == clock ? 0 : -1;
1448
}
1449

1450
/**
1451 1452
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1453 1454 1455
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1456
void getrawmonotonic64(struct timespec64 *ts)
1457
{
1458
	struct timekeeper *tk = &tk_core.timekeeper;
1459
	unsigned long seq;
1460
	u64 nsecs;
1461 1462

	do {
1463
		seq = read_seqcount_begin(&tk_core.seq);
1464
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1465
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1466

1467
	} while (read_seqcount_retry(&tk_core.seq, seq));
1468

1469 1470
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1471
}
1472 1473
EXPORT_SYMBOL(getrawmonotonic64);

1474

1475
/**
1476
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1477
 */
1478
int timekeeping_valid_for_hres(void)
1479
{
1480
	struct timekeeper *tk = &tk_core.timekeeper;
1481 1482 1483 1484
	unsigned long seq;
	int ret;

	do {
1485
		seq = read_seqcount_begin(&tk_core.seq);
1486

1487
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1488

1489
	} while (read_seqcount_retry(&tk_core.seq, seq));
1490 1491 1492 1493

	return ret;
}

1494 1495 1496 1497 1498
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1499
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1500 1501
	unsigned long seq;
	u64 ret;
1502

J
John Stultz 已提交
1503
	do {
1504
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1505

1506
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1507

1508
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1509 1510

	return ret;
1511 1512
}

1513
/**
1514
 * read_persistent_clock -  Return time from the persistent clock.
1515 1516
 *
 * Weak dummy function for arches that do not yet support it.
1517 1518
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1519 1520 1521
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1522
void __weak read_persistent_clock(struct timespec *ts)
1523
{
1524 1525
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1526 1527
}

1528 1529 1530 1531 1532 1533 1534 1535
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1536
/**
X
Xunlei Pang 已提交
1537
 * read_boot_clock64 -  Return time of the system start.
1538 1539 1540
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1541
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1542 1543 1544
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1545
void __weak read_boot_clock64(struct timespec64 *ts)
1546 1547 1548 1549 1550
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1551 1552 1553 1554 1555 1556
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1557 1558 1559 1560 1561
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1562
	struct timekeeper *tk = &tk_core.timekeeper;
1563
	struct clocksource *clock;
1564
	unsigned long flags;
1565
	struct timespec64 now, boot, tmp;
1566

1567
	read_persistent_clock64(&now);
1568
	if (!timespec64_valid_strict(&now)) {
1569 1570 1571 1572
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1573
	} else if (now.tv_sec || now.tv_nsec)
1574
		persistent_clock_exists = true;
1575

1576
	read_boot_clock64(&boot);
1577
	if (!timespec64_valid_strict(&boot)) {
1578 1579 1580 1581 1582
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1583

1584
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1585
	write_seqcount_begin(&tk_core.seq);
1586 1587
	ntp_init();

1588
	clock = clocksource_default_clock();
1589 1590
	if (clock->enable)
		clock->enable(clock);
1591
	tk_setup_internals(tk, clock);
1592

1593
	tk_set_xtime(tk, &now);
1594
	tk->raw_sec = 0;
1595
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1596
		boot = tk_xtime(tk);
1597

1598
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1599
	tk_set_wall_to_mono(tk, tmp);
1600

1601
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1602

1603
	write_seqcount_end(&tk_core.seq);
1604
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1605 1606
}

1607
/* time in seconds when suspend began for persistent clock */
1608
static struct timespec64 timekeeping_suspend_time;
1609

1610 1611 1612 1613 1614 1615 1616
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1617
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1618
					   struct timespec64 *delta)
1619
{
1620
	if (!timespec64_valid_strict(delta)) {
1621 1622 1623
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1624 1625
		return;
	}
1626
	tk_xtime_add(tk, delta);
1627
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1628
	tk_debug_account_sleep_time(delta);
1629 1630
}

1631
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1667
/**
1668 1669
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1670
 *
1671
 * This hook is for architectures that cannot support read_persistent_clock64
1672
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1673
 * and also don't have an effective nonstop clocksource.
1674 1675 1676 1677
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1678
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1679
{
1680
	struct timekeeper *tk = &tk_core.timekeeper;
1681
	unsigned long flags;
1682

1683
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1684
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1685

1686
	timekeeping_forward_now(tk);
1687

1688
	__timekeeping_inject_sleeptime(tk, delta);
1689

1690
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1691

1692
	write_seqcount_end(&tk_core.seq);
1693
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1694 1695 1696 1697

	/* signal hrtimers about time change */
	clock_was_set();
}
1698
#endif
1699

1700 1701 1702
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1703
void timekeeping_resume(void)
1704
{
1705
	struct timekeeper *tk = &tk_core.timekeeper;
1706
	struct clocksource *clock = tk->tkr_mono.clock;
1707
	unsigned long flags;
1708
	struct timespec64 ts_new, ts_delta;
1709
	u64 cycle_now;
1710

1711
	sleeptime_injected = false;
1712
	read_persistent_clock64(&ts_new);
1713

1714
	clockevents_resume();
1715 1716
	clocksource_resume();

1717
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1718
	write_seqcount_begin(&tk_core.seq);
1719

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1732
	cycle_now = tk_clock_read(&tk->tkr_mono);
1733
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1734
		cycle_now > tk->tkr_mono.cycle_last) {
1735
		u64 nsec, cyc_delta;
1736

1737 1738 1739
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1740
		ts_delta = ns_to_timespec64(nsec);
1741
		sleeptime_injected = true;
1742 1743
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1744
		sleeptime_injected = true;
1745
	}
1746

1747
	if (sleeptime_injected)
1748 1749 1750
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1751
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1752 1753
	tk->tkr_raw.cycle_last  = cycle_now;

1754
	tk->ntp_error = 0;
1755
	timekeeping_suspended = 0;
1756
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1757
	write_seqcount_end(&tk_core.seq);
1758
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1759 1760 1761

	touch_softlockup_watchdog();

1762
	tick_resume();
1763
	hrtimers_resume();
1764 1765
}

1766
int timekeeping_suspend(void)
1767
{
1768
	struct timekeeper *tk = &tk_core.timekeeper;
1769
	unsigned long flags;
1770 1771
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1772

1773
	read_persistent_clock64(&timekeeping_suspend_time);
1774

1775 1776 1777 1778 1779 1780
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1781
		persistent_clock_exists = true;
1782

1783
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1784
	write_seqcount_begin(&tk_core.seq);
1785
	timekeeping_forward_now(tk);
1786
	timekeeping_suspended = 1;
1787

1788
	if (persistent_clock_exists) {
1789
		/*
1790 1791 1792 1793
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1794
		 */
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1808
	}
1809 1810

	timekeeping_update(tk, TK_MIRROR);
1811
	halt_fast_timekeeper(tk);
1812
	write_seqcount_end(&tk_core.seq);
1813
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1814

1815
	tick_suspend();
M
Magnus Damm 已提交
1816
	clocksource_suspend();
1817
	clockevents_suspend();
1818 1819 1820 1821 1822

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1823
static struct syscore_ops timekeeping_syscore_ops = {
1824 1825 1826 1827
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1828
static int __init timekeeping_init_ops(void)
1829
{
1830 1831
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1832
}
1833
device_initcall(timekeeping_init_ops);
1834 1835

/*
1836
 * Apply a multiplier adjustment to the timekeeper
1837
 */
1838 1839
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
1840
							 s32 mult_adj)
1841
{
1842
	s64 interval = tk->cycle_interval;
1843

1844 1845 1846
	if (mult_adj == 0) {
		return;
	} else if (mult_adj == -1) {
1847
		interval = -interval;
1848 1849 1850 1851
		offset = -offset;
	} else if (mult_adj != 1) {
		interval *= mult_adj;
		offset *= mult_adj;
1852
	}
1853

1854 1855 1856
	/*
	 * So the following can be confusing.
	 *
1857
	 * To keep things simple, lets assume mult_adj == 1 for now.
1858
	 *
1859
	 * When mult_adj != 1, remember that the interval and offset values
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 */
1901
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1902 1903 1904 1905 1906
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1907
	tk->tkr_mono.mult += mult_adj;
1908
	tk->xtime_interval += interval;
1909
	tk->tkr_mono.xtime_nsec -= offset;
1910 1911 1912
}

/*
1913 1914
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
1915
 */
1916
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1917
{
1918
	u32 mult;
1919

1920
	/*
1921 1922
	 * Determine the multiplier from the current NTP tick length.
	 * Avoid expensive division when the tick length doesn't change.
1923
	 */
1924 1925 1926 1927 1928 1929
	if (likely(tk->ntp_tick == ntp_tick_length())) {
		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
	} else {
		tk->ntp_tick = ntp_tick_length();
		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
				 tk->xtime_remainder, tk->cycle_interval);
1930
	}
1931

1932 1933 1934 1935 1936 1937 1938 1939
	/*
	 * If the clock is behind the NTP time, increase the multiplier by 1
	 * to catch up with it. If it's ahead and there was a remainder in the
	 * tick division, the clock will slow down. Otherwise it will stay
	 * ahead until the tick length changes to a non-divisible value.
	 */
	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
	mult += tk->ntp_err_mult;
1940

1941
	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1942

1943 1944 1945
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1946 1947
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1948 1949
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1950
	}
1951 1952 1953 1954 1955 1956 1957

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
1958 1959 1960
	 * Now, since we have already accumulated the second and the NTP
	 * subsystem has been notified via second_overflow(), we need to skip
	 * the next update.
1961
	 */
1962
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1963 1964 1965 1966
		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
							tk->tkr_mono.shift;
		tk->xtime_sec--;
		tk->skip_second_overflow = 1;
1967
	}
1968 1969
}

1970 1971 1972
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1973
 * Helper function that accumulates the nsecs greater than a second
1974 1975 1976 1977
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1978
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1979
{
1980
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1981
	unsigned int clock_set = 0;
1982

1983
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1984 1985
		int leap;

1986
		tk->tkr_mono.xtime_nsec -= nsecps;
1987 1988
		tk->xtime_sec++;

1989 1990 1991 1992 1993 1994 1995 1996 1997
		/*
		 * Skip NTP update if this second was accumulated before,
		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
		 */
		if (unlikely(tk->skip_second_overflow)) {
			tk->skip_second_overflow = 0;
			continue;
		}

1998 1999
		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
2000
		if (unlikely(leap)) {
2001
			struct timespec64 ts;
2002 2003

			tk->xtime_sec += leap;
2004

2005 2006 2007
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
2008
				timespec64_sub(tk->wall_to_monotonic, ts));
2009

2010 2011
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

2012
			clock_set = TK_CLOCK_WAS_SET;
2013
		}
2014
	}
2015
	return clock_set;
2016 2017
}

2018 2019 2020 2021 2022 2023 2024 2025 2026
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
2027 2028
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
2029
{
2030
	u64 interval = tk->cycle_interval << shift;
2031
	u64 snsec_per_sec;
2032

Z
Zhen Lei 已提交
2033
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2034
	if (offset < interval)
2035 2036 2037
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2038
	offset -= interval;
2039
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2040
	tk->tkr_raw.cycle_last  += interval;
2041

2042
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2043
	*clock_set |= accumulate_nsecs_to_secs(tk);
2044

2045
	/* Accumulate raw time */
2046 2047 2048 2049
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2050
		tk->raw_sec++;
2051 2052 2053
	}

	/* Accumulate error between NTP and clock interval */
2054
	tk->ntp_error += tk->ntp_tick << shift;
2055 2056
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2057 2058 2059 2060

	return offset;
}

2061 2062 2063 2064
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2065
void update_wall_time(void)
2066
{
2067
	struct timekeeper *real_tk = &tk_core.timekeeper;
2068
	struct timekeeper *tk = &shadow_timekeeper;
2069
	u64 offset;
2070
	int shift = 0, maxshift;
2071
	unsigned int clock_set = 0;
J
John Stultz 已提交
2072 2073
	unsigned long flags;

2074
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2075 2076 2077

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2078
		goto out;
2079

J
John Stultz 已提交
2080
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2081
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2082
#else
2083
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2084
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2085 2086
#endif

2087
	/* Check if there's really nothing to do */
2088
	if (offset < real_tk->cycle_interval)
2089 2090
		goto out;

2091
	/* Do some additional sanity checking */
2092
	timekeeping_check_update(tk, offset);
2093

2094 2095 2096 2097
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2098
	 * that is smaller than the offset.  We then accumulate that
2099 2100
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2101
	 */
2102
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2103
	shift = max(0, shift);
2104
	/* Bound shift to one less than what overflows tick_length */
2105
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2106
	shift = min(shift, maxshift);
2107
	while (offset >= tk->cycle_interval) {
2108 2109
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2110
		if (offset < tk->cycle_interval<<shift)
2111
			shift--;
2112 2113
	}

2114
	/* Adjust the multiplier to correct NTP error */
2115
	timekeeping_adjust(tk, offset);
2116

J
John Stultz 已提交
2117 2118
	/*
	 * Finally, make sure that after the rounding
2119
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2120
	 */
2121
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2122

2123
	write_seqcount_begin(&tk_core.seq);
2124 2125 2126 2127 2128 2129 2130
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2131
	 * memcpy under the tk_core.seq against one before we start
2132 2133
	 * updating.
	 */
2134
	timekeeping_update(tk, clock_set);
2135
	memcpy(real_tk, tk, sizeof(*tk));
2136
	/* The memcpy must come last. Do not put anything here! */
2137
	write_seqcount_end(&tk_core.seq);
2138
out:
2139
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2140
	if (clock_set)
2141 2142
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2143
}
T
Tomas Janousek 已提交
2144 2145

/**
2146 2147
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2148
 *
2149
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2150 2151 2152 2153 2154 2155
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2156
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2157
{
2158
	struct timekeeper *tk = &tk_core.timekeeper;
2159
	ktime_t t = ktime_sub(tk->offs_real, tk->time_suspended);
2160

2161
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2162
}
2163
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2164

2165 2166
unsigned long get_seconds(void)
{
2167
	struct timekeeper *tk = &tk_core.timekeeper;
2168 2169

	return tk->xtime_sec;
2170 2171 2172
}
EXPORT_SYMBOL(get_seconds);

2173 2174
struct timespec __current_kernel_time(void)
{
2175
	struct timekeeper *tk = &tk_core.timekeeper;
2176

2177
	return timespec64_to_timespec(tk_xtime(tk));
2178
}
2179

2180
struct timespec64 current_kernel_time64(void)
2181
{
2182
	struct timekeeper *tk = &tk_core.timekeeper;
2183
	struct timespec64 now;
2184 2185 2186
	unsigned long seq;

	do {
2187
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2188

2189
		now = tk_xtime(tk);
2190
	} while (read_seqcount_retry(&tk_core.seq, seq));
2191

2192
	return now;
2193
}
2194
EXPORT_SYMBOL(current_kernel_time64);
2195

2196
struct timespec64 get_monotonic_coarse64(void)
2197
{
2198
	struct timekeeper *tk = &tk_core.timekeeper;
2199
	struct timespec64 now, mono;
2200 2201 2202
	unsigned long seq;

	do {
2203
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2204

2205 2206
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2207
	} while (read_seqcount_retry(&tk_core.seq, seq));
2208

2209
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2210
				now.tv_nsec + mono.tv_nsec);
2211

2212
	return now;
2213
}
2214
EXPORT_SYMBOL(get_monotonic_coarse64);
2215 2216

/*
2217
 * Must hold jiffies_lock
2218 2219 2220 2221 2222 2223
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2224

2225
/**
2226
 * ktime_get_update_offsets_now - hrtimer helper
2227
 * @cwsseq:	pointer to check and store the clock was set sequence number
2228 2229
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2230
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2231
 *
2232 2233 2234 2235
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2236
 * Called from hrtimer_interrupt() or retrigger_next_event()
2237
 */
2238 2239
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2240
{
2241
	struct timekeeper *tk = &tk_core.timekeeper;
2242
	unsigned int seq;
2243 2244
	ktime_t base;
	u64 nsecs;
2245 2246

	do {
2247
		seq = read_seqcount_begin(&tk_core.seq);
2248

2249 2250
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2251 2252
		base = ktime_add_ns(base, nsecs);

2253 2254 2255 2256 2257 2258
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2259 2260

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2261
		if (unlikely(base >= tk->next_leap_ktime))
2262 2263
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2264
	} while (read_seqcount_retry(&tk_core.seq, seq));
2265

2266
	return base;
2267 2268
}

2269
/**
2270
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2271
 */
2272
static int timekeeping_validate_timex(struct timex *txc)
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be postive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;
2310

2311 2312
		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
2313 2314
				return -EINVAL;
		} else {
2315
			if (txc->time.tv_usec >= USEC_PER_SEC)
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2335 2336 2337 2338 2339
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2340
	struct timekeeper *tk = &tk_core.timekeeper;
2341
	unsigned long flags;
2342
	struct timespec64 ts;
2343
	s32 orig_tai, tai;
2344 2345 2346
	int ret;

	/* Validate the data before disabling interrupts */
2347
	ret = timekeeping_validate_timex(txc);
2348 2349 2350
	if (ret)
		return ret;

2351
	if (txc->modes & ADJ_SETOFFSET) {
2352
		struct timespec64 delta;
2353 2354 2355 2356 2357 2358 2359 2360 2361
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2362
	getnstimeofday64(&ts);
2363

2364
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2365
	write_seqcount_begin(&tk_core.seq);
2366

2367
	orig_tai = tai = tk->tai_offset;
2368
	ret = __do_adjtimex(txc, &ts, &tai);
2369

2370 2371
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2372
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2373
	}
2374 2375
	tk_update_leap_state(tk);

2376
	write_seqcount_end(&tk_core.seq);
2377 2378
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2379 2380 2381
	if (tai != orig_tai)
		clock_was_set();

2382 2383
	ntp_notify_cmos_timer();

2384 2385
	return ret;
}
2386 2387 2388 2389 2390

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2391
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2392
{
2393 2394 2395
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2396
	write_seqcount_begin(&tk_core.seq);
2397

2398
	__hardpps(phase_ts, raw_ts);
2399

2400
	write_seqcount_end(&tk_core.seq);
2401
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2402 2403
}
EXPORT_SYMBOL(hardpps);
2404
#endif /* CONFIG_NTP_PPS */
2405

T
Torben Hohn 已提交
2406 2407 2408 2409 2410 2411 2412 2413
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2414
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2415
	do_timer(ticks);
2416
	write_sequnlock(&jiffies_lock);
2417
	update_wall_time();
T
Torben Hohn 已提交
2418
}