timekeeping.c 46.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

50 51 52
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

53 54 55 56 57 58 59 60
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

61 62 63 64 65 66 67 68 69
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
	return ts;
}

70
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
71 72
{
	tk->xtime_sec = ts->tv_sec;
73
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
74 75
}

76
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
77 78
{
	tk->xtime_sec += ts->tv_sec;
79
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
80
	tk_normalize_xtime(tk);
81
}
82

83
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
84
{
85
	struct timespec64 tmp;
86 87 88 89 90

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
91
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
92
					-tk->wall_to_monotonic.tv_nsec);
93
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
94
	tk->wall_to_monotonic = wtm;
95 96
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
97
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
98 99
}

100
static void tk_set_sleep_time(struct timekeeper *tk, struct timespec64 t)
101 102
{
	/* Verify consistency before modifying */
103
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec64_to_ktime(tk->total_sleep_time).tv64);
104 105

	tk->total_sleep_time	= t;
106
	tk->offs_boot		= timespec64_to_ktime(t);
107 108
}

109
/**
110
 * tk_setup_internals - Set up internals to use clocksource clock.
111
 *
112
 * @tk:		The target timekeeper to setup.
113 114 115 116 117 118 119
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
120
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
121 122
{
	cycle_t interval;
123
	u64 tmp, ntpinterval;
124
	struct clocksource *old_clock;
125

126 127
	old_clock = tk->clock;
	tk->clock = clock;
128
	tk->cycle_last = clock->cycle_last = clock->read(clock);
129 130 131 132

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
133
	ntpinterval = tmp;
134 135
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
136 137 138 139
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
140
	tk->cycle_interval = interval;
141 142

	/* Go back from cycles -> shifted ns */
143 144 145
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
146
		((u64) interval * clock->mult) >> clock->shift;
147

148 149 150 151
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
152
			tk->xtime_nsec >>= -shift_change;
153
		else
154
			tk->xtime_nsec <<= shift_change;
155
	}
156
	tk->shift = clock->shift;
157

158 159
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
160 161 162 163 164 165

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
166
	tk->mult = clock->mult;
167
}
168

169
/* Timekeeper helper functions. */
170 171

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
172 173
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
174
#else
175
static inline u32 arch_gettimeoffset(void) { return 0; }
176 177
#endif

178
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
179 180 181
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
182
	s64 nsec;
183 184

	/* read clocksource: */
185
	clock = tk->clock;
186 187 188 189 190
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

191 192
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
193

194
	/* If arch requires, add in get_arch_timeoffset() */
195
	return nsec + arch_gettimeoffset();
196 197
}

198
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
199 200 201
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
202
	s64 nsec;
203 204

	/* read clocksource: */
205
	clock = tk->clock;
206 207 208 209 210
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

211 212 213
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

214
	/* If arch requires, add in get_arch_timeoffset() */
215
	return nsec + arch_gettimeoffset();
216 217
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
	struct timespec xt;

	xt = tk_xtime(tk);
	update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;
	tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
}
#else
#define old_vsyscall_fixup(tk)
#endif

252 253
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

254
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
255
{
256
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
257 258 259 260 261 262 263
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
264
	struct timekeeper *tk = &tk_core.timekeeper;
265 266 267
	unsigned long flags;
	int ret;

268
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
269
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
270
	update_pvclock_gtod(tk, true);
271
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
272 273 274 275 276 277 278 279 280 281 282 283 284 285

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

286
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
287
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
288
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
289 290 291 292 293

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

294
/* must hold timekeeper_lock */
295
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
296
{
297
	if (action & TK_CLEAR_NTP) {
298
		tk->ntp_error = 0;
299 300
		ntp_clear();
	}
301
	update_vsyscall(tk);
302
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
303

304
	if (action & TK_MIRROR)
305 306
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
307 308
}

309
/**
310
 * timekeeping_forward_now - update clock to the current time
311
 *
312 313 314
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
315
 */
316
static void timekeeping_forward_now(struct timekeeper *tk)
317 318
{
	cycle_t cycle_now, cycle_delta;
319
	struct clocksource *clock;
320
	s64 nsec;
321

322
	clock = tk->clock;
323
	cycle_now = clock->read(clock);
324
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
325
	tk->cycle_last = clock->cycle_last = cycle_now;
326

327
	tk->xtime_nsec += cycle_delta * tk->mult;
328

329
	/* If arch requires, add in get_arch_timeoffset() */
330
	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
331

332
	tk_normalize_xtime(tk);
333

334
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
335
	timespec64_add_ns(&tk->raw_time, nsec);
336 337 338
}

/**
339
 * __getnstimeofday64 - Returns the time of day in a timespec64.
340 341
 * @ts:		pointer to the timespec to be set
 *
342 343
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
344
 */
345
int __getnstimeofday64(struct timespec64 *ts)
346
{
347
	struct timekeeper *tk = &tk_core.timekeeper;
348
	unsigned long seq;
349
	s64 nsecs = 0;
350 351

	do {
352
		seq = read_seqcount_begin(&tk_core.seq);
353

354
		ts->tv_sec = tk->xtime_sec;
355
		nsecs = timekeeping_get_ns(tk);
356

357
	} while (read_seqcount_retry(&tk_core.seq, seq));
358

359
	ts->tv_nsec = 0;
360
	timespec64_add_ns(ts, nsecs);
361 362 363 364 365 366 367 368 369

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
370
EXPORT_SYMBOL(__getnstimeofday64);
371 372

/**
373
 * getnstimeofday64 - Returns the time of day in a timespec64.
374 375 376 377
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
378
void getnstimeofday64(struct timespec64 *ts)
379
{
380
	WARN_ON(__getnstimeofday64(ts));
381
}
382
EXPORT_SYMBOL(getnstimeofday64);
383

384 385
ktime_t ktime_get(void)
{
386
	struct timekeeper *tk = &tk_core.timekeeper;
387 388 389 390 391 392
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
393
		seq = read_seqcount_begin(&tk_core.seq);
394 395
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
396

397
	} while (read_seqcount_retry(&tk_core.seq, seq));
398 399

	return ktime_set(secs, nsecs);
400 401 402 403
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
404
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
405 406 407 408 409 410
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
411
void ktime_get_ts64(struct timespec64 *ts)
412
{
413
	struct timekeeper *tk = &tk_core.timekeeper;
414
	struct timespec64 tomono;
415
	s64 nsec;
416 417 418 419 420
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
421
		seq = read_seqcount_begin(&tk_core.seq);
422
		ts->tv_sec = tk->xtime_sec;
423
		nsec = timekeeping_get_ns(tk);
424
		tomono = tk->wall_to_monotonic;
425

426
	} while (read_seqcount_retry(&tk_core.seq, seq));
427

428 429 430
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
431
}
432
EXPORT_SYMBOL_GPL(ktime_get_ts64);
433

J
John Stultz 已提交
434 435 436 437 438 439 440 441 442

/**
 * timekeeping_clocktai - Returns the TAI time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void timekeeping_clocktai(struct timespec *ts)
{
443
	struct timekeeper *tk = &tk_core.timekeeper;
444
	struct timespec64 ts64;
J
John Stultz 已提交
445 446 447 448 449 450
	unsigned long seq;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
451
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
452

453
		ts64.tv_sec = tk->xtime_sec + tk->tai_offset;
J
John Stultz 已提交
454 455
		nsecs = timekeeping_get_ns(tk);

456
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
457

458 459 460
	ts64.tv_nsec = 0;
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
J
John Stultz 已提交
461 462 463 464 465

}
EXPORT_SYMBOL(timekeeping_clocktai);


466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * ktime_get_clocktai - Returns the TAI time of day in a ktime
 *
 * Returns the time of day in a ktime.
 */
ktime_t ktime_get_clocktai(void)
{
	struct timespec ts;

	timekeeping_clocktai(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL(ktime_get_clocktai);

480 481 482 483 484 485 486 487 488 489 490 491 492
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
493
	struct timekeeper *tk = &tk_core.timekeeper;
494 495 496 497 498 499
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
500
		seq = read_seqcount_begin(&tk_core.seq);
501

502
		*ts_raw = timespec64_to_timespec(tk->raw_time);
503
		ts_real->tv_sec = tk->xtime_sec;
504
		ts_real->tv_nsec = 0;
505

506 507
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
508

509
	} while (read_seqcount_retry(&tk_core.seq, seq));
510 511 512 513 514 515 516 517

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

518 519 520 521
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
522
 * NOTE: Users should be converted to using getnstimeofday()
523 524 525
 */
void do_gettimeofday(struct timeval *tv)
{
526
	struct timespec64 now;
527

528
	getnstimeofday64(&now);
529 530 531 532
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
533

534 535 536 537 538 539
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
540
int do_settimeofday(const struct timespec *tv)
541
{
542
	struct timekeeper *tk = &tk_core.timekeeper;
543
	struct timespec64 ts_delta, xt, tmp;
544
	unsigned long flags;
545

546
	if (!timespec_valid_strict(tv))
547 548
		return -EINVAL;

549
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
550
	write_seqcount_begin(&tk_core.seq);
551

552
	timekeeping_forward_now(tk);
553

554
	xt = tk_xtime(tk);
555 556 557
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

558
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
559

560 561
	tmp = timespec_to_timespec64(*tv);
	tk_set_xtime(tk, &tmp);
562

563
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
564

565
	write_seqcount_end(&tk_core.seq);
566
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
567 568 569 570 571 572 573 574

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

575 576 577 578 579 580 581 582
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
583
	struct timekeeper *tk = &tk_core.timekeeper;
584
	unsigned long flags;
585
	struct timespec64 ts64, tmp;
586
	int ret = 0;
587 588 589 590

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

591 592
	ts64 = timespec_to_timespec64(*ts);

593
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
594
	write_seqcount_begin(&tk_core.seq);
595

596
	timekeeping_forward_now(tk);
597

598
	/* Make sure the proposed value is valid */
599 600
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
601 602 603
		ret = -EINVAL;
		goto error;
	}
604

605 606
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
607

608
error: /* even if we error out, we forwarded the time, so call update */
609
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
610

611
	write_seqcount_end(&tk_core.seq);
612
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
613 614 615 616

	/* signal hrtimers about time change */
	clock_was_set();

617
	return ret;
618 619 620
}
EXPORT_SYMBOL(timekeeping_inject_offset);

621 622 623 624 625 626 627

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
628
	struct timekeeper *tk = &tk_core.timekeeper;
629 630 631 632
	unsigned int seq;
	s32 ret;

	do {
633
		seq = read_seqcount_begin(&tk_core.seq);
634
		ret = tk->tai_offset;
635
	} while (read_seqcount_retry(&tk_core.seq, seq));
636 637 638 639 640 641 642 643

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
644
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
645 646
{
	tk->tai_offset = tai_offset;
647
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
648 649 650 651 652 653 654 655
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
656
	struct timekeeper *tk = &tk_core.timekeeper;
657 658
	unsigned long flags;

659
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
660
	write_seqcount_begin(&tk_core.seq);
661
	__timekeeping_set_tai_offset(tk, tai_offset);
662
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
663
	write_seqcount_end(&tk_core.seq);
664
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
665
	clock_was_set();
666 667
}

668 669 670 671 672
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
673
static int change_clocksource(void *data)
674
{
675
	struct timekeeper *tk = &tk_core.timekeeper;
676
	struct clocksource *new, *old;
677
	unsigned long flags;
678

679
	new = (struct clocksource *) data;
680

681
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
682
	write_seqcount_begin(&tk_core.seq);
683

684
	timekeeping_forward_now(tk);
685 686 687 688 689 690 691 692 693 694 695 696 697 698
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
			old = tk->clock;
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
699
	}
700
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
701

702
	write_seqcount_end(&tk_core.seq);
703
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
704

705 706
	return 0;
}
707

708 709 710 711 712 713 714
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
715
int timekeeping_notify(struct clocksource *clock)
716
{
717
	struct timekeeper *tk = &tk_core.timekeeper;
718 719

	if (tk->clock == clock)
720
		return 0;
721
	stop_machine(change_clocksource, clock, NULL);
722
	tick_clock_notify();
723
	return tk->clock == clock ? 0 : -1;
724
}
725

726 727 728 729 730 731 732
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
733
	struct timespec64 now;
734

735
	getnstimeofday64(&now);
736

737
	return timespec64_to_ktime(now);
738 739
}
EXPORT_SYMBOL_GPL(ktime_get_real);
740

741 742 743 744 745 746 747 748
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
749
	struct timekeeper *tk = &tk_core.timekeeper;
750
	struct timespec64 ts64;
751 752 753 754
	unsigned long seq;
	s64 nsecs;

	do {
755
		seq = read_seqcount_begin(&tk_core.seq);
756
		nsecs = timekeeping_get_ns_raw(tk);
757
		ts64 = tk->raw_time;
758

759
	} while (read_seqcount_retry(&tk_core.seq, seq));
760

761 762
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
763 764 765
}
EXPORT_SYMBOL(getrawmonotonic);

766
/**
767
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
768
 */
769
int timekeeping_valid_for_hres(void)
770
{
771
	struct timekeeper *tk = &tk_core.timekeeper;
772 773 774 775
	unsigned long seq;
	int ret;

	do {
776
		seq = read_seqcount_begin(&tk_core.seq);
777

778
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
779

780
	} while (read_seqcount_retry(&tk_core.seq, seq));
781 782 783 784

	return ret;
}

785 786 787 788 789
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
790
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
791 792
	unsigned long seq;
	u64 ret;
793

J
John Stultz 已提交
794
	do {
795
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
796

797
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
798

799
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
800 801

	return ret;
802 803
}

804
/**
805
 * read_persistent_clock -  Return time from the persistent clock.
806 807
 *
 * Weak dummy function for arches that do not yet support it.
808 809
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
810 811 812
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
813
void __weak read_persistent_clock(struct timespec *ts)
814
{
815 816
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
817 818
}

819 820 821 822 823 824 825 826 827
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
828
void __weak read_boot_clock(struct timespec *ts)
829 830 831 832 833
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

834 835 836 837 838
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
839
	struct timekeeper *tk = &tk_core.timekeeper;
840
	struct clocksource *clock;
841
	unsigned long flags;
842 843
	struct timespec64 now, boot, tmp;
	struct timespec ts;
844

845 846 847
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
848 849 850 851
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
852 853
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
854

855 856 857
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
858 859 860 861 862
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
863

864
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
865
	write_seqcount_begin(&tk_core.seq);
866 867
	ntp_init();

868
	clock = clocksource_default_clock();
869 870
	if (clock->enable)
		clock->enable(clock);
871
	tk_setup_internals(tk, clock);
872

873 874 875
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
876
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
877
		boot = tk_xtime(tk);
878

879
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
880
	tk_set_wall_to_mono(tk, tmp);
881 882 883

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
884
	tk_set_sleep_time(tk, tmp);
885

886
	timekeeping_update(tk, TK_MIRROR);
887

888
	write_seqcount_end(&tk_core.seq);
889
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
890 891 892
}

/* time in seconds when suspend began */
893
static struct timespec64 timekeeping_suspend_time;
894

895 896 897 898 899 900 901
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
902
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
903
					   struct timespec64 *delta)
904
{
905
	if (!timespec64_valid_strict(delta)) {
906 907 908
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
909 910
		return;
	}
911
	tk_xtime_add(tk, delta);
912 913
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec64_add(tk->total_sleep_time, *delta));
914
	tk_debug_account_sleep_time(delta);
915 916 917 918 919 920 921 922 923 924 925 926 927 928
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
929
	struct timekeeper *tk = &tk_core.timekeeper;
930
	struct timespec64 tmp;
931
	unsigned long flags;
932

933 934 935 936 937
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
938 939
		return;

940
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
941
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
942

943
	timekeeping_forward_now(tk);
944

945 946
	tmp = timespec_to_timespec64(*delta);
	__timekeeping_inject_sleeptime(tk, &tmp);
947

948
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
949

950
	write_seqcount_end(&tk_core.seq);
951
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
952 953 954 955 956

	/* signal hrtimers about time change */
	clock_was_set();
}

957 958 959 960 961 962 963
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
964
static void timekeeping_resume(void)
965
{
966
	struct timekeeper *tk = &tk_core.timekeeper;
967
	struct clocksource *clock = tk->clock;
968
	unsigned long flags;
969 970
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
971 972
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
973

974 975
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
976

977
	clockevents_resume();
978 979
	clocksource_resume();

980
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
981
	write_seqcount_begin(&tk_core.seq);
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1018
		ts_delta = ns_to_timespec64(nsec);
1019
		suspendtime_found = true;
1020 1021
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1022
		suspendtime_found = true;
1023
	}
1024 1025 1026 1027 1028

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1029
	tk->cycle_last = clock->cycle_last = cycle_now;
1030
	tk->ntp_error = 0;
1031
	timekeeping_suspended = 0;
1032
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1033
	write_seqcount_end(&tk_core.seq);
1034
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1035 1036 1037 1038 1039 1040

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1041
	hrtimers_resume();
1042 1043
}

1044
static int timekeeping_suspend(void)
1045
{
1046
	struct timekeeper *tk = &tk_core.timekeeper;
1047
	unsigned long flags;
1048 1049 1050
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1051

1052 1053
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1054

1055 1056 1057 1058 1059 1060 1061 1062
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1063
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1064
	write_seqcount_begin(&tk_core.seq);
1065
	timekeeping_forward_now(tk);
1066
	timekeeping_suspended = 1;
1067 1068 1069 1070 1071 1072 1073

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1074 1075
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1076 1077 1078 1079 1080 1081 1082 1083 1084
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1085
			timespec64_add(timekeeping_suspend_time, delta_delta);
1086
	}
1087 1088

	timekeeping_update(tk, TK_MIRROR);
1089
	write_seqcount_end(&tk_core.seq);
1090
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1091 1092

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1093
	clocksource_suspend();
1094
	clockevents_suspend();
1095 1096 1097 1098 1099

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1100
static struct syscore_ops timekeeping_syscore_ops = {
1101 1102 1103 1104
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1105
static int __init timekeeping_init_ops(void)
1106
{
1107 1108
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1109 1110
}

1111
device_initcall(timekeeping_init_ops);
1112 1113 1114 1115 1116

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
1117 1118
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
1131
	 * here.  This is tuned so that an error of about 1 msec is adjusted
1132 1133
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
1134
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1135 1136 1137 1138 1139 1140 1141 1142
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
1143 1144
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1169
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1170
{
1171
	s64 error, interval = tk->cycle_interval;
1172 1173
	int adj;

1174
	/*
1175
	 * The point of this is to check if the error is greater than half
1176 1177 1178 1179 1180
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1181 1182
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1183
	 * larger than half an interval.
1184
	 *
1185
	 * Note: It does not "save" on aggravation when reading the code.
1186
	 */
1187
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1188
	if (error > interval) {
1189 1190
		/*
		 * We now divide error by 4(via shift), which checks if
1191
		 * the error is greater than twice the interval.
1192 1193 1194
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1195 1196 1197 1198
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1215

1216 1217
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1218
		printk_deferred_once(KERN_WARNING
1219
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1220 1221
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1222
	}
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1272 1273 1274 1275
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1276

1277
out_adjust:
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1292 1293 1294 1295
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1296 1297
	}

1298 1299
}

1300 1301 1302 1303 1304 1305 1306 1307
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1308
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1309 1310
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1311
	unsigned int clock_set = 0;
1312 1313 1314 1315 1316 1317 1318 1319 1320

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1321
		if (unlikely(leap)) {
1322
			struct timespec64 ts;
1323 1324

			tk->xtime_sec += leap;
1325

1326 1327 1328
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1329
				timespec64_sub(tk->wall_to_monotonic, ts));
1330

1331 1332
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1333
			clock_set = TK_CLOCK_WAS_SET;
1334
		}
1335
	}
1336
	return clock_set;
1337 1338
}

1339 1340 1341 1342 1343 1344 1345 1346 1347
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1348
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1349 1350
						u32 shift,
						unsigned int *clock_set)
1351
{
T
Thomas Gleixner 已提交
1352
	cycle_t interval = tk->cycle_interval << shift;
1353
	u64 raw_nsecs;
1354

1355
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1356
	if (offset < interval)
1357 1358 1359
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1360
	offset -= interval;
1361
	tk->cycle_last += interval;
1362

1363
	tk->xtime_nsec += tk->xtime_interval << shift;
1364
	*clock_set |= accumulate_nsecs_to_secs(tk);
1365

1366
	/* Accumulate raw time */
1367
	raw_nsecs = (u64)tk->raw_interval << shift;
1368
	raw_nsecs += tk->raw_time.tv_nsec;
1369 1370 1371
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1372
		tk->raw_time.tv_sec += raw_secs;
1373
	}
1374
	tk->raw_time.tv_nsec = raw_nsecs;
1375 1376

	/* Accumulate error between NTP and clock interval */
1377 1378 1379
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1380 1381 1382 1383

	return offset;
}

1384 1385 1386 1387
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1388
void update_wall_time(void)
1389
{
1390
	struct clocksource *clock;
1391
	struct timekeeper *real_tk = &tk_core.timekeeper;
1392
	struct timekeeper *tk = &shadow_timekeeper;
1393
	cycle_t offset;
1394
	int shift = 0, maxshift;
1395
	unsigned int clock_set = 0;
J
John Stultz 已提交
1396 1397
	unsigned long flags;

1398
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1399 1400 1401

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1402
		goto out;
1403

1404
	clock = real_tk->clock;
J
John Stultz 已提交
1405 1406

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1407
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1408 1409
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1410 1411
#endif

1412
	/* Check if there's really nothing to do */
1413
	if (offset < real_tk->cycle_interval)
1414 1415
		goto out;

1416 1417 1418 1419
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1420
	 * that is smaller than the offset.  We then accumulate that
1421 1422
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1423
	 */
1424
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1425
	shift = max(0, shift);
1426
	/* Bound shift to one less than what overflows tick_length */
1427
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1428
	shift = min(shift, maxshift);
1429
	while (offset >= tk->cycle_interval) {
1430 1431
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1432
		if (offset < tk->cycle_interval<<shift)
1433
			shift--;
1434 1435 1436
	}

	/* correct the clock when NTP error is too big */
1437
	timekeeping_adjust(tk, offset);
1438

J
John Stultz 已提交
1439
	/*
1440 1441 1442 1443
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1444

J
John Stultz 已提交
1445 1446
	/*
	 * Finally, make sure that after the rounding
1447
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1448
	 */
1449
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1450

1451
	write_seqcount_begin(&tk_core.seq);
1452 1453
	/* Update clock->cycle_last with the new value */
	clock->cycle_last = tk->cycle_last;
1454 1455 1456 1457 1458 1459 1460
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1461
	 * memcpy under the tk_core.seq against one before we start
1462 1463 1464
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1465
	timekeeping_update(real_tk, clock_set);
1466
	write_seqcount_end(&tk_core.seq);
1467
out:
1468
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1469
	if (clock_set)
1470 1471
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1472
}
T
Tomas Janousek 已提交
1473 1474 1475 1476 1477

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1478
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1479 1480 1481 1482 1483 1484 1485 1486
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1487
	struct timekeeper *tk = &tk_core.timekeeper;
1488
	struct timespec boottime = {
1489 1490 1491 1492
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1493
	};
1494 1495

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1496
}
1497
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1510
	struct timekeeper *tk = &tk_core.timekeeper;
1511
	struct timespec64 tomono, sleep, ret;
1512
	s64 nsec;
1513 1514 1515 1516 1517
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1518
		seq = read_seqcount_begin(&tk_core.seq);
1519
		ret.tv_sec = tk->xtime_sec;
1520
		nsec = timekeeping_get_ns(tk);
1521 1522
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1523

1524
	} while (read_seqcount_retry(&tk_core.seq, seq));
1525

1526 1527 1528 1529
	ret.tv_sec += tomono.tv_sec + sleep.tv_sec;
	ret.tv_nsec = 0;
	timespec64_add_ns(&ret, nsec + tomono.tv_nsec + sleep.tv_nsec);
	*ts = timespec64_to_timespec(ret);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1550 1551 1552 1553 1554 1555
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1556
	struct timekeeper *tk = &tk_core.timekeeper;
1557
	struct timespec64 ts64;
1558

1559 1560 1561
	ts64 = timespec_to_timespec64(*ts);
	ts64 = timespec64_add(ts64, tk->total_sleep_time);
	*ts = timespec64_to_timespec(ts64);
T
Tomas Janousek 已提交
1562
}
1563
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1564

1565 1566
unsigned long get_seconds(void)
{
1567
	struct timekeeper *tk = &tk_core.timekeeper;
1568 1569

	return tk->xtime_sec;
1570 1571 1572
}
EXPORT_SYMBOL(get_seconds);

1573 1574
struct timespec __current_kernel_time(void)
{
1575
	struct timekeeper *tk = &tk_core.timekeeper;
1576

1577
	return timespec64_to_timespec(tk_xtime(tk));
1578
}
1579

1580 1581
struct timespec current_kernel_time(void)
{
1582
	struct timekeeper *tk = &tk_core.timekeeper;
1583
	struct timespec64 now;
1584 1585 1586
	unsigned long seq;

	do {
1587
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1588

1589
		now = tk_xtime(tk);
1590
	} while (read_seqcount_retry(&tk_core.seq, seq));
1591

1592
	return timespec64_to_timespec(now);
1593 1594
}
EXPORT_SYMBOL(current_kernel_time);
1595 1596 1597

struct timespec get_monotonic_coarse(void)
{
1598
	struct timekeeper *tk = &tk_core.timekeeper;
1599
	struct timespec64 now, mono;
1600 1601 1602
	unsigned long seq;

	do {
1603
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1604

1605 1606
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1607
	} while (read_seqcount_retry(&tk_core.seq, seq));
1608

1609
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1610
				now.tv_nsec + mono.tv_nsec);
1611 1612

	return timespec64_to_timespec(now);
1613
}
1614 1615

/*
1616
 * Must hold jiffies_lock
1617 1618 1619 1620 1621 1622
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1623 1624

/**
1625 1626 1627 1628 1629 1630
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1631
 */
1632 1633
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1634
{
1635
	struct timekeeper *tk = &tk_core.timekeeper;
1636
	struct timespec64 ts;
1637 1638
	ktime_t now;
	unsigned int seq;
1639 1640

	do {
1641
		seq = read_seqcount_begin(&tk_core.seq);
1642 1643 1644 1645 1646

		ts = tk_xtime(tk);
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1647
	} while (read_seqcount_retry(&tk_core.seq, seq));
1648 1649 1650 1651

	now = ktime_set(ts.tv_sec, ts.tv_nsec);
	now = ktime_sub(now, *offs_real);
	return now;
1652
}
T
Torben Hohn 已提交
1653

1654 1655
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1656
 * ktime_get_update_offsets_now - hrtimer helper
1657 1658
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1659
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1660 1661
 *
 * Returns current monotonic time and updates the offsets
1662
 * Called from hrtimer_interrupt() or retrigger_next_event()
1663
 */
1664
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1665
							ktime_t *offs_tai)
1666
{
1667
	struct timekeeper *tk = &tk_core.timekeeper;
1668 1669 1670 1671 1672
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1673
		seq = read_seqcount_begin(&tk_core.seq);
1674

1675 1676
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1677

1678 1679
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1680
		*offs_tai = tk->offs_tai;
1681
	} while (read_seqcount_retry(&tk_core.seq, seq));
1682 1683 1684 1685 1686 1687 1688

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1689 1690 1691 1692 1693
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1694
	struct timekeeper *tk = &tk_core.timekeeper;
1695
	unsigned long seq;
1696
	struct timespec64 wtom;
1697 1698

	do {
1699
		seq = read_seqcount_begin(&tk_core.seq);
1700
		wtom = tk->wall_to_monotonic;
1701
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1702

1703
	return timespec64_to_ktime(wtom);
1704
}
1705 1706
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1707 1708 1709 1710 1711
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1712
	struct timekeeper *tk = &tk_core.timekeeper;
1713
	unsigned long flags;
1714
	struct timespec64 ts;
1715
	s32 orig_tai, tai;
1716 1717 1718 1719 1720 1721 1722
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1734
	getnstimeofday64(&ts);
1735

1736
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1737
	write_seqcount_begin(&tk_core.seq);
1738

1739
	orig_tai = tai = tk->tai_offset;
1740
	ret = __do_adjtimex(txc, &ts, &tai);
1741

1742 1743
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1744
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1745
	}
1746
	write_seqcount_end(&tk_core.seq);
1747 1748
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1749 1750 1751
	if (tai != orig_tai)
		clock_was_set();

1752 1753
	ntp_notify_cmos_timer();

1754 1755
	return ret;
}
1756 1757 1758 1759 1760 1761 1762

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1763 1764 1765
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1766
	write_seqcount_begin(&tk_core.seq);
1767

1768
	__hardpps(phase_ts, raw_ts);
1769

1770
	write_seqcount_end(&tk_core.seq);
1771
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1772 1773 1774 1775
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1776 1777 1778 1779 1780 1781 1782 1783
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1784
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1785
	do_timer(ticks);
1786
	write_sequnlock(&jiffies_lock);
1787
	update_wall_time();
T
Torben Hohn 已提交
1788
}