timekeeping.c 51.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#ifdef CONFIG_DEBUG_TIMEKEEPING
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

	cycle_t max_cycles = tk->tkr.clock->max_cycles;
	const char *name = tk->tkr.clock->name;

	if (offset > max_cycles) {
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow\n",
				offset, name, max_cycles);
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope\n");
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
}
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
#endif

146
/**
147
 * tk_setup_internals - Set up internals to use clocksource clock.
148
 *
149
 * @tk:		The target timekeeper to setup.
150 151 152 153 154 155 156
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
157
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
158 159
{
	cycle_t interval;
160
	u64 tmp, ntpinterval;
161
	struct clocksource *old_clock;
162

163 164 165 166 167
	old_clock = tk->tkr.clock;
	tk->tkr.clock = clock;
	tk->tkr.read = clock->read;
	tk->tkr.mask = clock->mask;
	tk->tkr.cycle_last = tk->tkr.read(clock);
168 169 170 171

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
172
	ntpinterval = tmp;
173 174
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
175 176 177 178
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
179
	tk->cycle_interval = interval;
180 181

	/* Go back from cycles -> shifted ns */
182 183 184
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
185
		((u64) interval * clock->mult) >> clock->shift;
186

187 188 189 190
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
191
			tk->tkr.xtime_nsec >>= -shift_change;
192
		else
193
			tk->tkr.xtime_nsec <<= shift_change;
194
	}
195
	tk->tkr.shift = clock->shift;
196

197 198
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
199
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
200 201 202 203 204 205

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
206
	tk->tkr.mult = clock->mult;
207
	tk->ntp_err_mult = 0;
208
}
209

210
/* Timekeeper helper functions. */
211 212

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
213 214
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
215
#else
216
static inline u32 arch_gettimeoffset(void) { return 0; }
217 218
#endif

219
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
220
{
221
	cycle_t cycle_now, delta;
222
	s64 nsec;
223 224

	/* read clocksource: */
225
	cycle_now = tkr->read(tkr->clock);
226 227

	/* calculate the delta since the last update_wall_time: */
228
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
229

230 231
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
232

233
	/* If arch requires, add in get_arch_timeoffset() */
234
	return nsec + arch_gettimeoffset();
235 236
}

237
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
238
{
239
	struct clocksource *clock = tk->tkr.clock;
240
	cycle_t cycle_now, delta;
241
	s64 nsec;
242 243

	/* read clocksource: */
244
	cycle_now = tk->tkr.read(clock);
245 246

	/* calculate the delta since the last update_wall_time: */
247
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
248

249
	/* convert delta to nanoseconds. */
250
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
251

252
	/* If arch requires, add in get_arch_timeoffset() */
253
	return nsec + arch_gettimeoffset();
254 255
}

256 257
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
258
 * @tkr: Timekeeping readout base from which we take the update
259 260 261 262 263 264 265 266 267 268 269
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
270
 * update(tkf->base[0], tkr);
271 272 273
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
274
 * update(tkf->base[1], tkr);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
295
static void update_fast_timekeeper(struct tk_read_base *tkr)
296 297 298 299 300 301 302
{
	struct tk_read_base *base = tk_fast_mono.base;

	/* Force readers off to base[1] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[0] */
303
	memcpy(base, tkr, sizeof(*base));
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

	/* Force readers back to base[0] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount(&tk_fast_mono.seq);
		tkr = tk_fast_mono.base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);

	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
	return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
	struct tk_read_base *tkr = &tk->tkr;

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy);
}

389 390 391 392
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
393
	struct timespec xt, wm;
394

395
	xt = timespec64_to_timespec(tk_xtime(tk));
396 397
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
398
			    tk->tkr.cycle_last);
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
415 416 417
	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
	tk->tkr.xtime_nsec -= remainder;
	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
418
	tk->ntp_error += remainder << tk->ntp_error_shift;
419
	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
420 421 422 423 424
}
#else
#define old_vsyscall_fixup(tk)
#endif

425 426
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

427
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
428
{
429
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
430 431 432 433 434 435 436
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
437
	struct timekeeper *tk = &tk_core.timekeeper;
438 439 440
	unsigned long flags;
	int ret;

441
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
442
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
443
	update_pvclock_gtod(tk, true);
444
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
445 446 447 448 449 450 451 452 453 454 455 456 457 458

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

459
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
460
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
461
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
462 463 464 465 466

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

467 468 469 470 471
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
472 473
	u64 seconds;
	u32 nsec;
474 475 476 477 478 479 480 481

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
482 483 484
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
	tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
485 486 487

	/* Update the monotonic raw base */
	tk->base_raw = timespec64_to_ktime(tk->raw_time);
488 489 490 491 492 493 494 495 496 497

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
	nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
498 499
}

500
/* must hold timekeeper_lock */
501
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
502
{
503
	if (action & TK_CLEAR_NTP) {
504
		tk->ntp_error = 0;
505 506
		ntp_clear();
	}
507

508 509
	tk_update_ktime_data(tk);

510 511 512
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

513
	if (action & TK_MIRROR)
514 515
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
516

517
	update_fast_timekeeper(&tk->tkr);
518 519
}

520
/**
521
 * timekeeping_forward_now - update clock to the current time
522
 *
523 524 525
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
526
 */
527
static void timekeeping_forward_now(struct timekeeper *tk)
528
{
529
	struct clocksource *clock = tk->tkr.clock;
530
	cycle_t cycle_now, delta;
531
	s64 nsec;
532

533 534 535
	cycle_now = tk->tkr.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
	tk->tkr.cycle_last = cycle_now;
536

537
	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
538

539
	/* If arch requires, add in get_arch_timeoffset() */
540
	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
541

542
	tk_normalize_xtime(tk);
543

544
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
545
	timespec64_add_ns(&tk->raw_time, nsec);
546 547 548
}

/**
549
 * __getnstimeofday64 - Returns the time of day in a timespec64.
550 551
 * @ts:		pointer to the timespec to be set
 *
552 553
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
554
 */
555
int __getnstimeofday64(struct timespec64 *ts)
556
{
557
	struct timekeeper *tk = &tk_core.timekeeper;
558
	unsigned long seq;
559
	s64 nsecs = 0;
560 561

	do {
562
		seq = read_seqcount_begin(&tk_core.seq);
563

564
		ts->tv_sec = tk->xtime_sec;
565
		nsecs = timekeeping_get_ns(&tk->tkr);
566

567
	} while (read_seqcount_retry(&tk_core.seq, seq));
568

569
	ts->tv_nsec = 0;
570
	timespec64_add_ns(ts, nsecs);
571 572 573 574 575 576 577 578 579

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
580
EXPORT_SYMBOL(__getnstimeofday64);
581 582

/**
583
 * getnstimeofday64 - Returns the time of day in a timespec64.
584
 * @ts:		pointer to the timespec64 to be set
585
 *
586
 * Returns the time of day in a timespec64 (WARN if suspended).
587
 */
588
void getnstimeofday64(struct timespec64 *ts)
589
{
590
	WARN_ON(__getnstimeofday64(ts));
591
}
592
EXPORT_SYMBOL(getnstimeofday64);
593

594 595
ktime_t ktime_get(void)
{
596
	struct timekeeper *tk = &tk_core.timekeeper;
597
	unsigned int seq;
598 599
	ktime_t base;
	s64 nsecs;
600 601 602 603

	WARN_ON(timekeeping_suspended);

	do {
604
		seq = read_seqcount_begin(&tk_core.seq);
605
		base = tk->tkr.base_mono;
606
		nsecs = timekeeping_get_ns(&tk->tkr);
607

608
	} while (read_seqcount_retry(&tk_core.seq, seq));
609

610
	return ktime_add_ns(base, nsecs);
611 612 613
}
EXPORT_SYMBOL_GPL(ktime_get);

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
631
		base = ktime_add(tk->tkr.base_mono, *offset);
632
		nsecs = timekeeping_get_ns(&tk->tkr);
633 634 635 636 637 638 639 640

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->base_raw;
		nsecs = timekeeping_get_ns_raw(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

682
/**
683
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
684 685 686 687
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
688
 * in normalized timespec64 format in the variable pointed to by @ts.
689
 */
690
void ktime_get_ts64(struct timespec64 *ts)
691
{
692
	struct timekeeper *tk = &tk_core.timekeeper;
693
	struct timespec64 tomono;
694
	s64 nsec;
695 696 697 698 699
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
700
		seq = read_seqcount_begin(&tk_core.seq);
701
		ts->tv_sec = tk->xtime_sec;
702
		nsec = timekeeping_get_ns(&tk->tkr);
703
		tomono = tk->wall_to_monotonic;
704

705
	} while (read_seqcount_retry(&tk_core.seq, seq));
706

707 708 709
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
710
}
711
EXPORT_SYMBOL_GPL(ktime_get_ts64);
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

761 762 763 764 765 766 767 768 769 770 771 772 773
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
774
	struct timekeeper *tk = &tk_core.timekeeper;
775 776 777 778 779 780
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
781
		seq = read_seqcount_begin(&tk_core.seq);
782

783
		*ts_raw = timespec64_to_timespec(tk->raw_time);
784
		ts_real->tv_sec = tk->xtime_sec;
785
		ts_real->tv_nsec = 0;
786

787
		nsecs_raw = timekeeping_get_ns_raw(tk);
788
		nsecs_real = timekeeping_get_ns(&tk->tkr);
789

790
	} while (read_seqcount_retry(&tk_core.seq, seq));
791 792 793 794 795 796 797 798

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

799 800 801 802
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
803
 * NOTE: Users should be converted to using getnstimeofday()
804 805 806
 */
void do_gettimeofday(struct timeval *tv)
{
807
	struct timespec64 now;
808

809
	getnstimeofday64(&now);
810 811 812 813
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
814

815
/**
816 817
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
818 819 820
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
821
int do_settimeofday64(const struct timespec64 *ts)
822
{
823
	struct timekeeper *tk = &tk_core.timekeeper;
824
	struct timespec64 ts_delta, xt;
825
	unsigned long flags;
826

827
	if (!timespec64_valid_strict(ts))
828 829
		return -EINVAL;

830
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
831
	write_seqcount_begin(&tk_core.seq);
832

833
	timekeeping_forward_now(tk);
834

835
	xt = tk_xtime(tk);
836 837
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
838

839
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
840

841
	tk_set_xtime(tk, ts);
842

843
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
844

845
	write_seqcount_end(&tk_core.seq);
846
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
847 848 849 850 851 852

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
853
EXPORT_SYMBOL(do_settimeofday64);
854

855 856 857 858 859 860 861 862
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
863
	struct timekeeper *tk = &tk_core.timekeeper;
864
	unsigned long flags;
865
	struct timespec64 ts64, tmp;
866
	int ret = 0;
867 868 869 870

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

871 872
	ts64 = timespec_to_timespec64(*ts);

873
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
874
	write_seqcount_begin(&tk_core.seq);
875

876
	timekeeping_forward_now(tk);
877

878
	/* Make sure the proposed value is valid */
879 880
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
881 882 883
		ret = -EINVAL;
		goto error;
	}
884

885 886
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
887

888
error: /* even if we error out, we forwarded the time, so call update */
889
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
890

891
	write_seqcount_end(&tk_core.seq);
892
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
893 894 895 896

	/* signal hrtimers about time change */
	clock_was_set();

897
	return ret;
898 899 900
}
EXPORT_SYMBOL(timekeeping_inject_offset);

901 902 903 904 905 906 907

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
908
	struct timekeeper *tk = &tk_core.timekeeper;
909 910 911 912
	unsigned int seq;
	s32 ret;

	do {
913
		seq = read_seqcount_begin(&tk_core.seq);
914
		ret = tk->tai_offset;
915
	} while (read_seqcount_retry(&tk_core.seq, seq));
916 917 918 919 920 921 922 923

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
924
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
925 926
{
	tk->tai_offset = tai_offset;
927
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
928 929 930 931 932 933 934 935
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
936
	struct timekeeper *tk = &tk_core.timekeeper;
937 938
	unsigned long flags;

939
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
940
	write_seqcount_begin(&tk_core.seq);
941
	__timekeeping_set_tai_offset(tk, tai_offset);
942
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
943
	write_seqcount_end(&tk_core.seq);
944
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
945
	clock_was_set();
946 947
}

948 949 950 951 952
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
953
static int change_clocksource(void *data)
954
{
955
	struct timekeeper *tk = &tk_core.timekeeper;
956
	struct clocksource *new, *old;
957
	unsigned long flags;
958

959
	new = (struct clocksource *) data;
960

961
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
962
	write_seqcount_begin(&tk_core.seq);
963

964
	timekeeping_forward_now(tk);
965 966 967 968 969 970
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
971
			old = tk->tkr.clock;
972 973 974 975 976 977 978
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
979
	}
980
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
981

982
	write_seqcount_end(&tk_core.seq);
983
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
984

985 986
	return 0;
}
987

988 989 990 991 992 993 994
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
995
int timekeeping_notify(struct clocksource *clock)
996
{
997
	struct timekeeper *tk = &tk_core.timekeeper;
998

999
	if (tk->tkr.clock == clock)
1000
		return 0;
1001
	stop_machine(change_clocksource, clock, NULL);
1002
	tick_clock_notify();
1003
	return tk->tkr.clock == clock ? 0 : -1;
1004
}
1005

1006
/**
1007 1008
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1009 1010 1011
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1012
void getrawmonotonic64(struct timespec64 *ts)
1013
{
1014
	struct timekeeper *tk = &tk_core.timekeeper;
1015
	struct timespec64 ts64;
1016 1017 1018 1019
	unsigned long seq;
	s64 nsecs;

	do {
1020
		seq = read_seqcount_begin(&tk_core.seq);
1021
		nsecs = timekeeping_get_ns_raw(tk);
1022
		ts64 = tk->raw_time;
1023

1024
	} while (read_seqcount_retry(&tk_core.seq, seq));
1025

1026
	timespec64_add_ns(&ts64, nsecs);
1027
	*ts = ts64;
1028
}
1029 1030
EXPORT_SYMBOL(getrawmonotonic64);

1031

1032
/**
1033
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1034
 */
1035
int timekeeping_valid_for_hres(void)
1036
{
1037
	struct timekeeper *tk = &tk_core.timekeeper;
1038 1039 1040 1041
	unsigned long seq;
	int ret;

	do {
1042
		seq = read_seqcount_begin(&tk_core.seq);
1043

1044
		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1045

1046
	} while (read_seqcount_retry(&tk_core.seq, seq));
1047 1048 1049 1050

	return ret;
}

1051 1052 1053 1054 1055
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1056
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1057 1058
	unsigned long seq;
	u64 ret;
1059

J
John Stultz 已提交
1060
	do {
1061
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1062

1063
		ret = tk->tkr.clock->max_idle_ns;
J
John Stultz 已提交
1064

1065
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1066 1067

	return ret;
1068 1069
}

1070
/**
1071
 * read_persistent_clock -  Return time from the persistent clock.
1072 1073
 *
 * Weak dummy function for arches that do not yet support it.
1074 1075
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1076 1077 1078
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1079
void __weak read_persistent_clock(struct timespec *ts)
1080
{
1081 1082
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1083 1084
}

1085 1086 1087 1088 1089 1090 1091 1092 1093
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1094
void __weak read_boot_clock(struct timespec *ts)
1095 1096 1097 1098 1099
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1100 1101 1102 1103 1104
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1105
	struct timekeeper *tk = &tk_core.timekeeper;
1106
	struct clocksource *clock;
1107
	unsigned long flags;
1108 1109
	struct timespec64 now, boot, tmp;
	struct timespec ts;
1110

1111 1112 1113
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1114 1115 1116 1117
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1118 1119
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1120

1121 1122 1123
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1124 1125 1126 1127 1128
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1129

1130
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1131
	write_seqcount_begin(&tk_core.seq);
1132 1133
	ntp_init();

1134
	clock = clocksource_default_clock();
1135 1136
	if (clock->enable)
		clock->enable(clock);
1137
	tk_setup_internals(tk, clock);
1138

1139 1140 1141
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1142
	tk->base_raw.tv64 = 0;
1143
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1144
		boot = tk_xtime(tk);
1145

1146
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1147
	tk_set_wall_to_mono(tk, tmp);
1148

1149
	timekeeping_update(tk, TK_MIRROR);
1150

1151
	write_seqcount_end(&tk_core.seq);
1152
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1153 1154 1155
}

/* time in seconds when suspend began */
1156
static struct timespec64 timekeeping_suspend_time;
1157

1158 1159 1160 1161 1162 1163 1164
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1165
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1166
					   struct timespec64 *delta)
1167
{
1168
	if (!timespec64_valid_strict(delta)) {
1169 1170 1171
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1172 1173
		return;
	}
1174
	tk_xtime_add(tk, delta);
1175
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1176
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1177
	tk_debug_account_sleep_time(delta);
1178 1179 1180
}

/**
1181 1182
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1183 1184 1185 1186 1187 1188 1189
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1190
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1191
{
1192
	struct timekeeper *tk = &tk_core.timekeeper;
1193
	unsigned long flags;
1194

1195 1196 1197 1198 1199
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1200 1201
		return;

1202
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1203
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1204

1205
	timekeeping_forward_now(tk);
1206

1207
	__timekeeping_inject_sleeptime(tk, delta);
1208

1209
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1210

1211
	write_seqcount_end(&tk_core.seq);
1212
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1213 1214 1215 1216 1217

	/* signal hrtimers about time change */
	clock_was_set();
}

1218 1219 1220 1221 1222 1223 1224
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1225
void timekeeping_resume(void)
1226
{
1227
	struct timekeeper *tk = &tk_core.timekeeper;
1228
	struct clocksource *clock = tk->tkr.clock;
1229
	unsigned long flags;
1230 1231
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1232 1233
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1234

1235 1236
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1237

1238
	clockevents_resume();
1239 1240
	clocksource_resume();

1241
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1242
	write_seqcount_begin(&tk_core.seq);
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1256
	cycle_now = tk->tkr.read(clock);
1257
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1258
		cycle_now > tk->tkr.cycle_last) {
1259 1260 1261 1262 1263
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1264 1265
		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
						tk->tkr.mask);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1280
		ts_delta = ns_to_timespec64(nsec);
1281
		suspendtime_found = true;
1282 1283
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1284
		suspendtime_found = true;
1285
	}
1286 1287 1288 1289 1290

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1291
	tk->tkr.cycle_last = cycle_now;
1292
	tk->ntp_error = 0;
1293
	timekeeping_suspended = 0;
1294
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1295
	write_seqcount_end(&tk_core.seq);
1296
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1297 1298 1299 1300 1301 1302

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1303
	hrtimers_resume();
1304 1305
}

1306
int timekeeping_suspend(void)
1307
{
1308
	struct timekeeper *tk = &tk_core.timekeeper;
1309
	unsigned long flags;
1310 1311 1312
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1313

1314 1315
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1316

1317 1318 1319 1320 1321 1322 1323 1324
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1325
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1326
	write_seqcount_begin(&tk_core.seq);
1327
	timekeeping_forward_now(tk);
1328
	timekeeping_suspended = 1;
1329 1330 1331 1332 1333 1334 1335

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1336 1337
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1338 1339 1340 1341 1342 1343 1344 1345 1346
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1347
			timespec64_add(timekeeping_suspend_time, delta_delta);
1348
	}
1349 1350

	timekeeping_update(tk, TK_MIRROR);
1351
	halt_fast_timekeeper(tk);
1352
	write_seqcount_end(&tk_core.seq);
1353
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1354 1355

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1356
	clocksource_suspend();
1357
	clockevents_suspend();
1358 1359 1360 1361 1362

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1363
static struct syscore_ops timekeeping_syscore_ops = {
1364 1365 1366 1367
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1368
static int __init timekeeping_init_ops(void)
1369
{
1370 1371
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1372
}
1373
device_initcall(timekeeping_init_ops);
1374 1375

/*
1376
 * Apply a multiplier adjustment to the timekeeper
1377
 */
1378 1379 1380 1381
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1382
{
1383 1384
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1385

1386 1387 1388 1389
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1390
	}
1391 1392 1393
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1394

1395 1396 1397
	/*
	 * So the following can be confusing.
	 *
1398
	 * To keep things simple, lets assume mult_adj == 1 for now.
1399
	 *
1400
	 * When mult_adj != 1, remember that the interval and offset values
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1444
	if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1445 1446 1447 1448 1449
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1450
	tk->tkr.mult += mult_adj;
1451
	tk->xtime_interval += interval;
1452
	tk->tkr.xtime_nsec -= offset;
1453
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1473 1474
	tk->ntp_tick = ntp_tick_length();

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

	if (unlikely(tk->tkr.clock->maxadj &&
1515 1516
		(abs(tk->tkr.mult - tk->tkr.clock->mult)
			> tk->tkr.clock->maxadj))) {
1517 1518 1519 1520 1521
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
			tk->tkr.clock->name, (long)tk->tkr.mult,
			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
	}
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1537 1538 1539
	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr.xtime_nsec;
		tk->tkr.xtime_nsec = 0;
1540
		tk->ntp_error += neg << tk->ntp_error_shift;
1541
	}
1542 1543
}

1544 1545 1546 1547 1548 1549 1550 1551
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1552
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1553
{
1554
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1555
	unsigned int clock_set = 0;
1556

1557
	while (tk->tkr.xtime_nsec >= nsecps) {
1558 1559
		int leap;

1560
		tk->tkr.xtime_nsec -= nsecps;
1561 1562 1563 1564
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1565
		if (unlikely(leap)) {
1566
			struct timespec64 ts;
1567 1568

			tk->xtime_sec += leap;
1569

1570 1571 1572
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1573
				timespec64_sub(tk->wall_to_monotonic, ts));
1574

1575 1576
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1577
			clock_set = TK_CLOCK_WAS_SET;
1578
		}
1579
	}
1580
	return clock_set;
1581 1582
}

1583 1584 1585 1586 1587 1588 1589 1590 1591
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1592
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1593 1594
						u32 shift,
						unsigned int *clock_set)
1595
{
T
Thomas Gleixner 已提交
1596
	cycle_t interval = tk->cycle_interval << shift;
1597
	u64 raw_nsecs;
1598

1599
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1600
	if (offset < interval)
1601 1602 1603
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1604
	offset -= interval;
1605
	tk->tkr.cycle_last += interval;
1606

1607
	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1608
	*clock_set |= accumulate_nsecs_to_secs(tk);
1609

1610
	/* Accumulate raw time */
1611
	raw_nsecs = (u64)tk->raw_interval << shift;
1612
	raw_nsecs += tk->raw_time.tv_nsec;
1613 1614 1615
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1616
		tk->raw_time.tv_sec += raw_secs;
1617
	}
1618
	tk->raw_time.tv_nsec = raw_nsecs;
1619 1620

	/* Accumulate error between NTP and clock interval */
1621
	tk->ntp_error += tk->ntp_tick << shift;
1622 1623
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1624 1625 1626 1627

	return offset;
}

1628 1629 1630 1631
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1632
void update_wall_time(void)
1633
{
1634
	struct timekeeper *real_tk = &tk_core.timekeeper;
1635
	struct timekeeper *tk = &shadow_timekeeper;
1636
	cycle_t offset;
1637
	int shift = 0, maxshift;
1638
	unsigned int clock_set = 0;
J
John Stultz 已提交
1639 1640
	unsigned long flags;

1641
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1642 1643 1644

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1645
		goto out;
1646

J
John Stultz 已提交
1647
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1648
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1649
#else
1650 1651
	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
				   tk->tkr.cycle_last, tk->tkr.mask);
1652 1653
#endif

1654
	/* Check if there's really nothing to do */
1655
	if (offset < real_tk->cycle_interval)
1656 1657
		goto out;

1658 1659 1660
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1661 1662 1663 1664
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1665
	 * that is smaller than the offset.  We then accumulate that
1666 1667
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1668
	 */
1669
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1670
	shift = max(0, shift);
1671
	/* Bound shift to one less than what overflows tick_length */
1672
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1673
	shift = min(shift, maxshift);
1674
	while (offset >= tk->cycle_interval) {
1675 1676
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1677
		if (offset < tk->cycle_interval<<shift)
1678
			shift--;
1679 1680 1681
	}

	/* correct the clock when NTP error is too big */
1682
	timekeeping_adjust(tk, offset);
1683

J
John Stultz 已提交
1684
	/*
1685 1686 1687 1688
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1689

J
John Stultz 已提交
1690 1691
	/*
	 * Finally, make sure that after the rounding
1692
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1693
	 */
1694
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1695

1696
	write_seqcount_begin(&tk_core.seq);
1697 1698 1699 1700 1701 1702 1703
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1704
	 * memcpy under the tk_core.seq against one before we start
1705 1706 1707
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1708
	timekeeping_update(real_tk, clock_set);
1709
	write_seqcount_end(&tk_core.seq);
1710
out:
1711
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1712
	if (clock_set)
1713 1714
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1715
}
T
Tomas Janousek 已提交
1716 1717

/**
1718 1719
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1720
 *
1721
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1722 1723 1724 1725 1726 1727
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1728
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1729
{
1730
	struct timekeeper *tk = &tk_core.timekeeper;
1731 1732
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1733
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1734
}
1735
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1736

1737 1738
unsigned long get_seconds(void)
{
1739
	struct timekeeper *tk = &tk_core.timekeeper;
1740 1741

	return tk->xtime_sec;
1742 1743 1744
}
EXPORT_SYMBOL(get_seconds);

1745 1746
struct timespec __current_kernel_time(void)
{
1747
	struct timekeeper *tk = &tk_core.timekeeper;
1748

1749
	return timespec64_to_timespec(tk_xtime(tk));
1750
}
1751

1752 1753
struct timespec current_kernel_time(void)
{
1754
	struct timekeeper *tk = &tk_core.timekeeper;
1755
	struct timespec64 now;
1756 1757 1758
	unsigned long seq;

	do {
1759
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1760

1761
		now = tk_xtime(tk);
1762
	} while (read_seqcount_retry(&tk_core.seq, seq));
1763

1764
	return timespec64_to_timespec(now);
1765 1766
}
EXPORT_SYMBOL(current_kernel_time);
1767

1768
struct timespec64 get_monotonic_coarse64(void)
1769
{
1770
	struct timekeeper *tk = &tk_core.timekeeper;
1771
	struct timespec64 now, mono;
1772 1773 1774
	unsigned long seq;

	do {
1775
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1776

1777 1778
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1779
	} while (read_seqcount_retry(&tk_core.seq, seq));
1780

1781
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1782
				now.tv_nsec + mono.tv_nsec);
1783

1784
	return now;
1785
}
1786 1787

/*
1788
 * Must hold jiffies_lock
1789 1790 1791 1792 1793 1794
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1795 1796

/**
1797 1798 1799 1800 1801 1802
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1803
 */
1804 1805
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1806
{
1807
	struct timekeeper *tk = &tk_core.timekeeper;
1808
	unsigned int seq;
1809 1810
	ktime_t base;
	u64 nsecs;
1811 1812

	do {
1813
		seq = read_seqcount_begin(&tk_core.seq);
1814

1815 1816
		base = tk->tkr.base_mono;
		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1817

1818 1819 1820
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1821
	} while (read_seqcount_retry(&tk_core.seq, seq));
1822

1823
	return ktime_add_ns(base, nsecs);
1824
}
T
Torben Hohn 已提交
1825

1826 1827
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1828
 * ktime_get_update_offsets_now - hrtimer helper
1829 1830
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1831
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1832 1833
 *
 * Returns current monotonic time and updates the offsets
1834
 * Called from hrtimer_interrupt() or retrigger_next_event()
1835
 */
1836
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1837
							ktime_t *offs_tai)
1838
{
1839
	struct timekeeper *tk = &tk_core.timekeeper;
1840
	unsigned int seq;
1841 1842
	ktime_t base;
	u64 nsecs;
1843 1844

	do {
1845
		seq = read_seqcount_begin(&tk_core.seq);
1846

1847
		base = tk->tkr.base_mono;
1848
		nsecs = timekeeping_get_ns(&tk->tkr);
1849

1850 1851
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1852
		*offs_tai = tk->offs_tai;
1853
	} while (read_seqcount_retry(&tk_core.seq, seq));
1854

1855
	return ktime_add_ns(base, nsecs);
1856 1857 1858
}
#endif

1859 1860 1861 1862 1863
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1864
	struct timekeeper *tk = &tk_core.timekeeper;
1865
	unsigned long flags;
1866
	struct timespec64 ts;
1867
	s32 orig_tai, tai;
1868 1869 1870 1871 1872 1873 1874
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1886
	getnstimeofday64(&ts);
1887

1888
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1889
	write_seqcount_begin(&tk_core.seq);
1890

1891
	orig_tai = tai = tk->tai_offset;
1892
	ret = __do_adjtimex(txc, &ts, &tai);
1893

1894 1895
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1896
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1897
	}
1898
	write_seqcount_end(&tk_core.seq);
1899 1900
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1901 1902 1903
	if (tai != orig_tai)
		clock_was_set();

1904 1905
	ntp_notify_cmos_timer();

1906 1907
	return ret;
}
1908 1909 1910 1911 1912 1913 1914

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1915 1916 1917
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1918
	write_seqcount_begin(&tk_core.seq);
1919

1920
	__hardpps(phase_ts, raw_ts);
1921

1922
	write_seqcount_end(&tk_core.seq);
1923
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1924 1925 1926 1927
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1928 1929 1930 1931 1932 1933 1934 1935
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1936
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1937
	do_timer(ticks);
1938
	write_sequnlock(&jiffies_lock);
1939
	update_wall_time();
T
Torben Hohn 已提交
1940
}