timekeeping.c 45.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35
static struct timekeeper timekeeper;
36 37
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
static seqcount_t timekeeper_seq;
38
static struct timekeeper shadow_timekeeper;
39

40 41 42
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

43 44 45
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

46 47 48 49 50 51 52 53 54 55 56
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
57
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
58 59 60 61 62
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
63
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
64
	tk_normalize_xtime(tk);
65
}
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
81
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
82 83 84 85 86 87 88 89 90 91 92
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

93
/**
94
 * tk_setup_internals - Set up internals to use clocksource clock.
95
 *
96
 * @tk:		The target timekeeper to setup.
97 98 99 100 101 102 103
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
104
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
105 106
{
	cycle_t interval;
107
	u64 tmp, ntpinterval;
108
	struct clocksource *old_clock;
109

110 111
	old_clock = tk->clock;
	tk->clock = clock;
112
	tk->cycle_last = clock->cycle_last = clock->read(clock);
113 114 115 116

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
117
	ntpinterval = tmp;
118 119
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
120 121 122 123
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
124
	tk->cycle_interval = interval;
125 126

	/* Go back from cycles -> shifted ns */
127 128 129
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
130
		((u64) interval * clock->mult) >> clock->shift;
131

132 133 134 135
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
136
			tk->xtime_nsec >>= -shift_change;
137
		else
138
			tk->xtime_nsec <<= shift_change;
139
	}
140
	tk->shift = clock->shift;
141

142 143
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
144 145 146 147 148 149

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
150
	tk->mult = clock->mult;
151
}
152

153
/* Timekeeper helper functions. */
154 155 156 157 158 159 160 161 162 163 164 165 166 167

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
u32 (*arch_gettimeoffset)(void);

u32 get_arch_timeoffset(void)
{
	if (likely(arch_gettimeoffset))
		return arch_gettimeoffset();
	return 0;
}
#else
static inline u32 get_arch_timeoffset(void) { return 0; }
#endif

168
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
169 170 171
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
172
	s64 nsec;
173 174

	/* read clocksource: */
175
	clock = tk->clock;
176 177 178 179 180
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

181 182
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
183

184 185
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
186 187
}

188
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
189 190 191
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
192
	s64 nsec;
193 194

	/* read clocksource: */
195
	clock = tk->clock;
196 197 198 199 200
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

201 202 203
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

204 205
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
206 207
}

208 209
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

210
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
211
{
212
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
213 214 215 216 217 218 219 220 221 222 223
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;
	int ret;

224
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
225
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
226
	update_pvclock_gtod(tk, true);
227
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
228 229 230 231 232 233 234 235 236 237 238 239 240 241

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

242
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
243
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
244
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
245 246 247 248 249

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

250
/* must hold timekeeper_lock */
251
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
252
{
253
	if (action & TK_CLEAR_NTP) {
254
		tk->ntp_error = 0;
255 256
		ntp_clear();
	}
257
	update_vsyscall(tk);
258
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
259

260
	if (action & TK_MIRROR)
261
		memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
262 263
}

264
/**
265
 * timekeeping_forward_now - update clock to the current time
266
 *
267 268 269
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
270
 */
271
static void timekeeping_forward_now(struct timekeeper *tk)
272 273
{
	cycle_t cycle_now, cycle_delta;
274
	struct clocksource *clock;
275
	s64 nsec;
276

277
	clock = tk->clock;
278
	cycle_now = clock->read(clock);
279
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
280
	tk->cycle_last = clock->cycle_last = cycle_now;
281

282
	tk->xtime_nsec += cycle_delta * tk->mult;
283

284 285
	/* If arch requires, add in get_arch_timeoffset() */
	tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
286

287
	tk_normalize_xtime(tk);
288

289
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
290
	timespec_add_ns(&tk->raw_time, nsec);
291 292 293
}

/**
294
 * __getnstimeofday - Returns the time of day in a timespec.
295 296
 * @ts:		pointer to the timespec to be set
 *
297 298
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
299
 */
300
int __getnstimeofday(struct timespec *ts)
301
{
302
	struct timekeeper *tk = &timekeeper;
303
	unsigned long seq;
304
	s64 nsecs = 0;
305 306

	do {
307
		seq = read_seqcount_begin(&timekeeper_seq);
308

309
		ts->tv_sec = tk->xtime_sec;
310
		nsecs = timekeeping_get_ns(tk);
311

312
	} while (read_seqcount_retry(&timekeeper_seq, seq));
313

314
	ts->tv_nsec = 0;
315
	timespec_add_ns(ts, nsecs);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
EXPORT_SYMBOL(__getnstimeofday);

/**
 * getnstimeofday - Returns the time of day in a timespec.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
void getnstimeofday(struct timespec *ts)
{
	WARN_ON(__getnstimeofday(ts));
336 337 338
}
EXPORT_SYMBOL(getnstimeofday);

339 340
ktime_t ktime_get(void)
{
341
	struct timekeeper *tk = &timekeeper;
342 343 344 345 346 347
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
348
		seq = read_seqcount_begin(&timekeeper_seq);
349 350
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
351

352
	} while (read_seqcount_retry(&timekeeper_seq, seq));
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
371
	struct timekeeper *tk = &timekeeper;
372
	struct timespec tomono;
373
	s64 nsec;
374 375 376 377 378
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
379
		seq = read_seqcount_begin(&timekeeper_seq);
380
		ts->tv_sec = tk->xtime_sec;
381
		nsec = timekeeping_get_ns(tk);
382
		tomono = tk->wall_to_monotonic;
383

384
	} while (read_seqcount_retry(&timekeeper_seq, seq));
385

386 387 388
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec);
389 390 391
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

J
John Stultz 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

/**
 * timekeeping_clocktai - Returns the TAI time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void timekeeping_clocktai(struct timespec *ts)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long seq;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
408
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
409 410 411 412

		ts->tv_sec = tk->xtime_sec + tk->tai_offset;
		nsecs = timekeeping_get_ns(tk);

413
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
414 415 416 417 418 419 420 421

	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsecs);

}
EXPORT_SYMBOL(timekeeping_clocktai);


422 423 424 425 426 427 428 429 430 431 432 433 434 435
/**
 * ktime_get_clocktai - Returns the TAI time of day in a ktime
 *
 * Returns the time of day in a ktime.
 */
ktime_t ktime_get_clocktai(void)
{
	struct timespec ts;

	timekeeping_clocktai(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL(ktime_get_clocktai);

436 437 438 439 440 441 442 443 444 445 446 447 448
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
449
	struct timekeeper *tk = &timekeeper;
450 451 452 453 454 455
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
456
		seq = read_seqcount_begin(&timekeeper_seq);
457

458 459
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
460
		ts_real->tv_nsec = 0;
461

462 463
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
464

465
	} while (read_seqcount_retry(&timekeeper_seq, seq));
466 467 468 469 470 471 472 473

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

474 475 476 477
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
478
 * NOTE: Users should be converted to using getnstimeofday()
479 480 481 482 483
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

484
	getnstimeofday(&now);
485 486 487 488
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
489

490 491 492 493 494 495
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
496
int do_settimeofday(const struct timespec *tv)
497
{
498
	struct timekeeper *tk = &timekeeper;
499
	struct timespec ts_delta, xt;
500
	unsigned long flags;
501

502
	if (!timespec_valid_strict(tv))
503 504
		return -EINVAL;

505 506
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
507

508
	timekeeping_forward_now(tk);
509

510
	xt = tk_xtime(tk);
511 512 513
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

514
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
515

516
	tk_set_xtime(tk, tv);
517

518
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
519

520 521
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
522 523 524 525 526 527 528 529

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

530 531 532 533 534 535 536 537
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
538
	struct timekeeper *tk = &timekeeper;
539
	unsigned long flags;
540 541
	struct timespec tmp;
	int ret = 0;
542 543 544 545

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

546 547
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
548

549
	timekeeping_forward_now(tk);
550

551 552
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
553
	if (!timespec_valid_strict(&tmp)) {
554 555 556
		ret = -EINVAL;
		goto error;
	}
557

558 559
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
560

561
error: /* even if we error out, we forwarded the time, so call update */
562
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
563

564 565
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
566 567 568 569

	/* signal hrtimers about time change */
	clock_was_set();

570
	return ret;
571 572 573
}
EXPORT_SYMBOL(timekeeping_inject_offset);

574 575 576 577 578 579 580 581 582 583 584 585

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
	struct timekeeper *tk = &timekeeper;
	unsigned int seq;
	s32 ret;

	do {
586
		seq = read_seqcount_begin(&timekeeper_seq);
587
		ret = tk->tai_offset;
588
	} while (read_seqcount_retry(&timekeeper_seq, seq));
589 590 591 592 593 594 595 596

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
597
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
598 599
{
	tk->tai_offset = tai_offset;
600
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
601 602 603 604 605 606 607 608 609 610 611
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;

612 613
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
614
	__timekeeping_set_tai_offset(tk, tai_offset);
615
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
616 617
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
618
	clock_was_set();
619 620
}

621 622 623 624 625
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
626
static int change_clocksource(void *data)
627
{
628
	struct timekeeper *tk = &timekeeper;
629
	struct clocksource *new, *old;
630
	unsigned long flags;
631

632
	new = (struct clocksource *) data;
633

634 635
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
636

637
	timekeeping_forward_now(tk);
638 639 640 641 642 643 644 645 646 647 648 649 650 651
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
			old = tk->clock;
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
652
	}
653
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
654

655 656
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
657

658 659
	return 0;
}
660

661 662 663 664 665 666 667
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
668
int timekeeping_notify(struct clocksource *clock)
669
{
670 671 672
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
673
		return 0;
674
	stop_machine(change_clocksource, clock, NULL);
675
	tick_clock_notify();
676
	return tk->clock == clock ? 0 : -1;
677
}
678

679 680 681 682 683 684 685 686 687 688 689 690 691 692
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
693

694 695 696 697 698 699 700 701
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
702
	struct timekeeper *tk = &timekeeper;
703 704 705 706
	unsigned long seq;
	s64 nsecs;

	do {
707
		seq = read_seqcount_begin(&timekeeper_seq);
708 709
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
710

711
	} while (read_seqcount_retry(&timekeeper_seq, seq));
712 713 714 715 716

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

717
/**
718
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
719
 */
720
int timekeeping_valid_for_hres(void)
721
{
722
	struct timekeeper *tk = &timekeeper;
723 724 725 726
	unsigned long seq;
	int ret;

	do {
727
		seq = read_seqcount_begin(&timekeeper_seq);
728

729
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
730

731
	} while (read_seqcount_retry(&timekeeper_seq, seq));
732 733 734 735

	return ret;
}

736 737 738 739 740
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
741
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
742 743
	unsigned long seq;
	u64 ret;
744

J
John Stultz 已提交
745
	do {
746
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
747

748
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
749

750
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
751 752

	return ret;
753 754
}

755
/**
756
 * read_persistent_clock -  Return time from the persistent clock.
757 758
 *
 * Weak dummy function for arches that do not yet support it.
759 760
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
761 762 763
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
764
void __weak read_persistent_clock(struct timespec *ts)
765
{
766 767
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
768 769
}

770 771 772 773 774 775 776 777 778
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
779
void __weak read_boot_clock(struct timespec *ts)
780 781 782 783 784
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

785 786 787 788 789
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
790
	struct timekeeper *tk = &timekeeper;
791
	struct clocksource *clock;
792
	unsigned long flags;
793
	struct timespec now, boot, tmp;
794 795

	read_persistent_clock(&now);
796

797
	if (!timespec_valid_strict(&now)) {
798 799 800 801
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
802 803
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
804

805
	read_boot_clock(&boot);
806
	if (!timespec_valid_strict(&boot)) {
807 808 809 810 811
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
812

813 814
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
815 816
	ntp_init();

817
	clock = clocksource_default_clock();
818 819
	if (clock->enable)
		clock->enable(clock);
820
	tk_setup_internals(tk, clock);
821

822 823 824
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
825
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
826
		boot = tk_xtime(tk);
827

828
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
829
	tk_set_wall_to_mono(tk, tmp);
830 831 832

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
833
	tk_set_sleep_time(tk, tmp);
834

835 836
	memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));

837 838
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
839 840 841
}

/* time in seconds when suspend began */
842
static struct timespec timekeeping_suspend_time;
843

844 845 846 847 848 849 850
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
851 852
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
853
{
854
	if (!timespec_valid_strict(delta)) {
855 856 857
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
858 859
		return;
	}
860
	tk_xtime_add(tk, delta);
861 862
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
863
	tk_debug_account_sleep_time(delta);
864 865 866 867 868 869 870 871 872 873 874 875 876 877
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
878
	struct timekeeper *tk = &timekeeper;
879
	unsigned long flags;
880

881 882 883 884 885
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
886 887
		return;

888 889
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
890

891
	timekeeping_forward_now(tk);
892

893
	__timekeeping_inject_sleeptime(tk, delta);
894

895
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
896

897 898
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
899 900 901 902 903

	/* signal hrtimers about time change */
	clock_was_set();
}

904 905 906 907 908 909 910
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
911
static void timekeeping_resume(void)
912
{
913
	struct timekeeper *tk = &timekeeper;
914
	struct clocksource *clock = tk->clock;
915
	unsigned long flags;
916 917 918
	struct timespec ts_new, ts_delta;
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
919

920
	read_persistent_clock(&ts_new);
921

922
	clockevents_resume();
923 924
	clocksource_resume();

925 926
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
927

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

		ts_delta = ns_to_timespec(nsec);
		suspendtime_found = true;
	} else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
		suspendtime_found = true;
968
	}
969 970 971 972 973

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
974
	tk->cycle_last = clock->cycle_last = cycle_now;
975
	tk->ntp_error = 0;
976
	timekeeping_suspended = 0;
977
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
978 979
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
980 981 982 983 984 985

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
986
	hrtimers_resume();
987 988
}

989
static int timekeeping_suspend(void)
990
{
991
	struct timekeeper *tk = &timekeeper;
992
	unsigned long flags;
993 994
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
995

996
	read_persistent_clock(&timekeeping_suspend_time);
997

998 999 1000 1001 1002 1003 1004 1005
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1006 1007
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
1008
	timekeeping_forward_now(tk);
1009
	timekeeping_suspended = 1;
1010 1011 1012 1013 1014 1015 1016

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1017
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
1030 1031

	timekeeping_update(tk, TK_MIRROR);
1032 1033
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1034 1035

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1036
	clocksource_suspend();
1037
	clockevents_suspend();
1038 1039 1040 1041 1042

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1043
static struct syscore_ops timekeeping_syscore_ops = {
1044 1045 1046 1047
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1048
static int __init timekeeping_init_ops(void)
1049
{
1050 1051
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1052 1053
}

1054
device_initcall(timekeeping_init_ops);
1055 1056 1057 1058 1059

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
1060 1061
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
1074
	 * here.  This is tuned so that an error of about 1 msec is adjusted
1075 1076
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
1077
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1078 1079 1080 1081 1082 1083 1084 1085
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
1086 1087
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1112
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1113
{
1114
	s64 error, interval = tk->cycle_interval;
1115 1116
	int adj;

1117
	/*
1118
	 * The point of this is to check if the error is greater than half
1119 1120 1121 1122 1123
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1124 1125
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1126
	 * larger than half an interval.
1127
	 *
1128
	 * Note: It does not "save" on aggravation when reading the code.
1129
	 */
1130
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1131
	if (error > interval) {
1132 1133
		/*
		 * We now divide error by 4(via shift), which checks if
1134
		 * the error is greater than twice the interval.
1135 1136 1137
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1138 1139 1140 1141
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1158

1159 1160
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1161
		printk_deferred_once(KERN_WARNING
1162
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1163 1164
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1165
	}
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1215 1216 1217 1218
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1219

1220
out_adjust:
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1235 1236 1237 1238
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1239 1240
	}

1241 1242
}

1243 1244 1245 1246 1247 1248 1249 1250
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1251
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1252 1253
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1254
	unsigned int clock_set = 0;
1255 1256 1257 1258 1259 1260 1261 1262 1263

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1264 1265 1266 1267
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1268

1269 1270 1271 1272 1273
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

1274 1275
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1276
			clock_set = TK_CLOCK_WAS_SET;
1277
		}
1278
	}
1279
	return clock_set;
1280 1281
}

1282 1283 1284 1285 1286 1287 1288 1289 1290
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1291
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1292 1293
						u32 shift,
						unsigned int *clock_set)
1294
{
T
Thomas Gleixner 已提交
1295
	cycle_t interval = tk->cycle_interval << shift;
1296
	u64 raw_nsecs;
1297

1298
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1299
	if (offset < interval)
1300 1301 1302
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1303
	offset -= interval;
1304
	tk->cycle_last += interval;
1305

1306
	tk->xtime_nsec += tk->xtime_interval << shift;
1307
	*clock_set |= accumulate_nsecs_to_secs(tk);
1308

1309
	/* Accumulate raw time */
1310
	raw_nsecs = (u64)tk->raw_interval << shift;
1311
	raw_nsecs += tk->raw_time.tv_nsec;
1312 1313 1314
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1315
		tk->raw_time.tv_sec += raw_secs;
1316
	}
1317
	tk->raw_time.tv_nsec = raw_nsecs;
1318 1319

	/* Accumulate error between NTP and clock interval */
1320 1321 1322
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1323 1324 1325 1326

	return offset;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;
1346
	tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
1347 1348 1349 1350 1351 1352 1353
}
#else
#define old_vsyscall_fixup(tk)
#endif



1354 1355 1356 1357
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1358
void update_wall_time(void)
1359
{
1360
	struct clocksource *clock;
1361 1362
	struct timekeeper *real_tk = &timekeeper;
	struct timekeeper *tk = &shadow_timekeeper;
1363
	cycle_t offset;
1364
	int shift = 0, maxshift;
1365
	unsigned int clock_set = 0;
J
John Stultz 已提交
1366 1367
	unsigned long flags;

1368
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1369 1370 1371

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1372
		goto out;
1373

1374
	clock = real_tk->clock;
J
John Stultz 已提交
1375 1376

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1377
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1378 1379
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1380 1381
#endif

1382
	/* Check if there's really nothing to do */
1383
	if (offset < real_tk->cycle_interval)
1384 1385
		goto out;

1386 1387 1388 1389
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1390
	 * that is smaller than the offset.  We then accumulate that
1391 1392
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1393
	 */
1394
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1395
	shift = max(0, shift);
1396
	/* Bound shift to one less than what overflows tick_length */
1397
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1398
	shift = min(shift, maxshift);
1399
	while (offset >= tk->cycle_interval) {
1400 1401
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1402
		if (offset < tk->cycle_interval<<shift)
1403
			shift--;
1404 1405 1406
	}

	/* correct the clock when NTP error is too big */
1407
	timekeeping_adjust(tk, offset);
1408

J
John Stultz 已提交
1409
	/*
1410 1411 1412 1413
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1414

J
John Stultz 已提交
1415 1416
	/*
	 * Finally, make sure that after the rounding
1417
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1418
	 */
1419
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1420

1421
	write_seqcount_begin(&timekeeper_seq);
1422 1423
	/* Update clock->cycle_last with the new value */
	clock->cycle_last = tk->cycle_last;
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
	 * memcpy under the timekeeper_seq against one before we start
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1435
	timekeeping_update(real_tk, clock_set);
1436
	write_seqcount_end(&timekeeper_seq);
1437
out:
1438
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1439
	if (clock_set)
1440 1441
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1442
}
T
Tomas Janousek 已提交
1443 1444 1445 1446 1447

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1448
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1449 1450 1451 1452 1453 1454 1455 1456
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1457
	struct timekeeper *tk = &timekeeper;
1458
	struct timespec boottime = {
1459 1460 1461 1462
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1463
	};
1464 1465

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1466
}
1467
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1468

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1480
	struct timekeeper *tk = &timekeeper;
1481
	struct timespec tomono, sleep;
1482
	s64 nsec;
1483 1484 1485 1486 1487
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1488
		seq = read_seqcount_begin(&timekeeper_seq);
1489
		ts->tv_sec = tk->xtime_sec;
1490
		nsec = timekeeping_get_ns(tk);
1491 1492
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1493

1494
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1495

1496 1497 1498
	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1519 1520 1521 1522 1523 1524
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1525 1526 1527
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1528
}
1529
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1530

1531 1532
unsigned long get_seconds(void)
{
1533 1534 1535
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1536 1537 1538
}
EXPORT_SYMBOL(get_seconds);

1539 1540
struct timespec __current_kernel_time(void)
{
1541 1542 1543
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1544
}
1545

1546 1547
struct timespec current_kernel_time(void)
{
1548
	struct timekeeper *tk = &timekeeper;
1549 1550 1551 1552
	struct timespec now;
	unsigned long seq;

	do {
1553
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1554

1555
		now = tk_xtime(tk);
1556
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1557 1558 1559 1560

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1561 1562 1563

struct timespec get_monotonic_coarse(void)
{
1564
	struct timekeeper *tk = &timekeeper;
1565 1566 1567 1568
	struct timespec now, mono;
	unsigned long seq;

	do {
1569
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1570

1571 1572
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1573
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1574 1575 1576 1577 1578

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1579 1580

/*
1581
 * Must hold jiffies_lock
1582 1583 1584 1585 1586 1587
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1588 1589

/**
1590 1591
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1592 1593
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1594
 * @sleep:	pointer to timespec to be set with time in suspend
1595
 */
1596 1597
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1598
{
1599
	struct timekeeper *tk = &timekeeper;
1600 1601 1602
	unsigned long seq;

	do {
1603
		seq = read_seqcount_begin(&timekeeper_seq);
1604 1605 1606
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
1607
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1608
}
T
Torben Hohn 已提交
1609

1610 1611 1612 1613 1614
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1615
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1616 1617
 *
 * Returns current monotonic time and updates the offsets
1618
 * Called from hrtimer_interrupt() or retrigger_next_event()
1619
 */
1620 1621
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1622
{
1623
	struct timekeeper *tk = &timekeeper;
1624 1625 1626 1627 1628
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1629
		seq = read_seqcount_begin(&timekeeper_seq);
1630

1631 1632
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1633

1634 1635
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1636
		*offs_tai = tk->offs_tai;
1637
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1638 1639 1640 1641 1642 1643 1644

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1645 1646 1647 1648 1649
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1650
	struct timekeeper *tk = &timekeeper;
1651 1652 1653 1654
	unsigned long seq;
	struct timespec wtom;

	do {
1655
		seq = read_seqcount_begin(&timekeeper_seq);
1656
		wtom = tk->wall_to_monotonic;
1657
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
1658

1659 1660
	return timespec_to_ktime(wtom);
}
1661 1662
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1663 1664 1665 1666 1667
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1668
	struct timekeeper *tk = &timekeeper;
1669
	unsigned long flags;
1670
	struct timespec ts;
1671
	s32 orig_tai, tai;
1672 1673 1674 1675 1676 1677 1678
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1690 1691
	getnstimeofday(&ts);

1692 1693 1694
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);

1695
	orig_tai = tai = tk->tai_offset;
1696
	ret = __do_adjtimex(txc, &ts, &tai);
1697

1698 1699
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1700
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1701
	}
1702 1703 1704
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1705 1706 1707
	if (tai != orig_tai)
		clock_was_set();

1708 1709
	ntp_notify_cmos_timer();

1710 1711
	return ret;
}
1712 1713 1714 1715 1716 1717 1718

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1719 1720 1721 1722 1723
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);

1724
	__hardpps(phase_ts, raw_ts);
1725 1726 1727

	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1728 1729 1730 1731
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1732 1733 1734 1735 1736 1737 1738 1739
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1740
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1741
	do_timer(ticks);
1742
	write_sequnlock(&jiffies_lock);
1743
	update_wall_time();
T
Torben Hohn 已提交
1744
}