timekeeping.c 41.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25

26
#include "tick-internal.h"
27

28
static struct timekeeper timekeeper;
29 30
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
static seqcount_t timekeeper_seq;
31

32 33 34
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

35 36 37
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

38 39 40 41 42 43 44 45 46 47 48
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
49
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
50 51 52 53 54
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
55
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
56
	tk_normalize_xtime(tk);
57
}
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
73
	tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tk->tai_offset, 0));
74 75 76 77 78 79 80 81 82 83 84
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

85 86 87 88 89 90 91 92 93 94
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
95
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
96 97
{
	cycle_t interval;
98
	u64 tmp, ntpinterval;
99
	struct clocksource *old_clock;
100

101 102
	old_clock = tk->clock;
	tk->clock = clock;
103 104 105 106 107
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
108
	ntpinterval = tmp;
109 110
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
111 112 113 114
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
115
	tk->cycle_interval = interval;
116 117

	/* Go back from cycles -> shifted ns */
118 119 120
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
121
		((u64) interval * clock->mult) >> clock->shift;
122

123 124 125 126
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
127
			tk->xtime_nsec >>= -shift_change;
128
		else
129
			tk->xtime_nsec <<= shift_change;
130
	}
131
	tk->shift = clock->shift;
132

133 134
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
135 136 137 138 139 140

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
141
	tk->mult = clock->mult;
142
}
143

144
/* Timekeeper helper functions. */
145 146 147 148 149 150 151 152 153 154 155 156 157 158

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
u32 (*arch_gettimeoffset)(void);

u32 get_arch_timeoffset(void)
{
	if (likely(arch_gettimeoffset))
		return arch_gettimeoffset();
	return 0;
}
#else
static inline u32 get_arch_timeoffset(void) { return 0; }
#endif

159
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
160 161 162
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
163
	s64 nsec;
164 165

	/* read clocksource: */
166
	clock = tk->clock;
167 168 169 170 171
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

172 173
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
174

175 176
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
177 178
}

179
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
180 181 182
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
183
	s64 nsec;
184 185

	/* read clocksource: */
186
	clock = tk->clock;
187 188 189 190 191
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

192 193 194
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

195 196
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
197 198
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

static void update_pvclock_gtod(struct timekeeper *tk)
{
	raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk);
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;
	int ret;

215
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
216 217
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
	update_pvclock_gtod(tk);
218
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
219 220 221 222 223 224 225 226 227 228 229 230 231 232

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

233
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
234
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
235
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
236 237 238 239 240

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

241
/* must hold timekeeper_lock */
242
static void timekeeping_update(struct timekeeper *tk, bool clearntp)
243 244
{
	if (clearntp) {
245
		tk->ntp_error = 0;
246 247
		ntp_clear();
	}
248
	update_vsyscall(tk);
249
	update_pvclock_gtod(tk);
250 251
}

252
/**
253
 * timekeeping_forward_now - update clock to the current time
254
 *
255 256 257
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
258
 */
259
static void timekeeping_forward_now(struct timekeeper *tk)
260 261
{
	cycle_t cycle_now, cycle_delta;
262
	struct clocksource *clock;
263
	s64 nsec;
264

265
	clock = tk->clock;
266
	cycle_now = clock->read(clock);
267
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
268
	clock->cycle_last = cycle_now;
269

270
	tk->xtime_nsec += cycle_delta * tk->mult;
271

272 273
	/* If arch requires, add in get_arch_timeoffset() */
	tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
274

275
	tk_normalize_xtime(tk);
276

277
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
278
	timespec_add_ns(&tk->raw_time, nsec);
279 280 281
}

/**
282
 * __getnstimeofday - Returns the time of day in a timespec.
283 284
 * @ts:		pointer to the timespec to be set
 *
285 286
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
287
 */
288
int __getnstimeofday(struct timespec *ts)
289
{
290
	struct timekeeper *tk = &timekeeper;
291
	unsigned long seq;
292
	s64 nsecs = 0;
293 294

	do {
295
		seq = read_seqcount_begin(&timekeeper_seq);
296

297
		ts->tv_sec = tk->xtime_sec;
298
		nsecs = timekeeping_get_ns(tk);
299

300
	} while (read_seqcount_retry(&timekeeper_seq, seq));
301

302
	ts->tv_nsec = 0;
303
	timespec_add_ns(ts, nsecs);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
EXPORT_SYMBOL(__getnstimeofday);

/**
 * getnstimeofday - Returns the time of day in a timespec.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
void getnstimeofday(struct timespec *ts)
{
	WARN_ON(__getnstimeofday(ts));
324 325 326
}
EXPORT_SYMBOL(getnstimeofday);

327 328
ktime_t ktime_get(void)
{
329
	struct timekeeper *tk = &timekeeper;
330 331 332 333 334 335
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
336
		seq = read_seqcount_begin(&timekeeper_seq);
337 338
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
339

340
	} while (read_seqcount_retry(&timekeeper_seq, seq));
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
359
	struct timekeeper *tk = &timekeeper;
360
	struct timespec tomono;
361
	s64 nsec;
362 363 364 365 366
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
367
		seq = read_seqcount_begin(&timekeeper_seq);
368
		ts->tv_sec = tk->xtime_sec;
369
		nsec = timekeeping_get_ns(tk);
370
		tomono = tk->wall_to_monotonic;
371

372
	} while (read_seqcount_retry(&timekeeper_seq, seq));
373

374 375 376
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec);
377 378 379
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

J
John Stultz 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

/**
 * timekeeping_clocktai - Returns the TAI time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void timekeeping_clocktai(struct timespec *ts)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long seq;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
396
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
397 398 399 400

		ts->tv_sec = tk->xtime_sec + tk->tai_offset;
		nsecs = timekeeping_get_ns(tk);

401
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
402 403 404 405 406 407 408 409

	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsecs);

}
EXPORT_SYMBOL(timekeeping_clocktai);


410 411 412 413 414 415 416 417 418 419 420 421 422 423
/**
 * ktime_get_clocktai - Returns the TAI time of day in a ktime
 *
 * Returns the time of day in a ktime.
 */
ktime_t ktime_get_clocktai(void)
{
	struct timespec ts;

	timekeeping_clocktai(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL(ktime_get_clocktai);

424 425 426 427 428 429 430 431 432 433 434 435 436
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
437
	struct timekeeper *tk = &timekeeper;
438 439 440 441 442 443
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
444
		seq = read_seqcount_begin(&timekeeper_seq);
445

446 447
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
448
		ts_real->tv_nsec = 0;
449

450 451
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
452

453
	} while (read_seqcount_retry(&timekeeper_seq, seq));
454 455 456 457 458 459 460 461

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

462 463 464 465
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
466
 * NOTE: Users should be converted to using getnstimeofday()
467 468 469 470 471
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

472
	getnstimeofday(&now);
473 474 475 476
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
477

478 479 480 481 482 483
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
484
int do_settimeofday(const struct timespec *tv)
485
{
486
	struct timekeeper *tk = &timekeeper;
487
	struct timespec ts_delta, xt;
488
	unsigned long flags;
489

490
	if (!timespec_valid_strict(tv))
491 492
		return -EINVAL;

493 494
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
495

496
	timekeeping_forward_now(tk);
497

498
	xt = tk_xtime(tk);
499 500 501
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

502
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
503

504
	tk_set_xtime(tk, tv);
505

506
	timekeeping_update(tk, true);
507

508 509
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
510 511 512 513 514 515 516 517

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

518 519 520 521 522 523 524 525
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
526
	struct timekeeper *tk = &timekeeper;
527
	unsigned long flags;
528 529
	struct timespec tmp;
	int ret = 0;
530 531 532 533

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

534 535
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
536

537
	timekeeping_forward_now(tk);
538

539 540
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
541
	if (!timespec_valid_strict(&tmp)) {
542 543 544
		ret = -EINVAL;
		goto error;
	}
545

546 547
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
548

549
error: /* even if we error out, we forwarded the time, so call update */
550
	timekeeping_update(tk, true);
551

552 553
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
554 555 556 557

	/* signal hrtimers about time change */
	clock_was_set();

558
	return ret;
559 560 561
}
EXPORT_SYMBOL(timekeeping_inject_offset);

562 563 564 565 566 567 568 569 570 571 572 573

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
	struct timekeeper *tk = &timekeeper;
	unsigned int seq;
	s32 ret;

	do {
574
		seq = read_seqcount_begin(&timekeeper_seq);
575
		ret = tk->tai_offset;
576
	} while (read_seqcount_retry(&timekeeper_seq, seq));
577 578 579 580 581 582 583 584 585 586 587

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
{
	tk->tai_offset = tai_offset;
588
	tk->offs_tai = ktime_sub(tk->offs_real, ktime_set(tai_offset, 0));
589 590 591 592 593 594 595 596 597 598 599
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;

600 601
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
602
	__timekeeping_set_tai_offset(tk, tai_offset);
603 604
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
605 606
}

607 608 609 610 611
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
612
static int change_clocksource(void *data)
613
{
614
	struct timekeeper *tk = &timekeeper;
615
	struct clocksource *new, *old;
616
	unsigned long flags;
617

618
	new = (struct clocksource *) data;
619

620 621
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
622

623
	timekeeping_forward_now(tk);
624
	if (!new->enable || new->enable(new) == 0) {
625 626
		old = tk->clock;
		tk_setup_internals(tk, new);
627 628 629
		if (old->disable)
			old->disable(old);
	}
630
	timekeeping_update(tk, true);
631

632 633
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
634

635 636
	return 0;
}
637

638 639 640 641 642 643 644 645 646
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
647 648 649
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
650
		return;
651
	stop_machine(change_clocksource, clock, NULL);
652 653
	tick_clock_notify();
}
654

655 656 657 658 659 660 661 662 663 664 665 666 667 668
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
669

670 671 672 673 674 675 676 677
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
678
	struct timekeeper *tk = &timekeeper;
679 680 681 682
	unsigned long seq;
	s64 nsecs;

	do {
683
		seq = read_seqcount_begin(&timekeeper_seq);
684 685
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
686

687
	} while (read_seqcount_retry(&timekeeper_seq, seq));
688 689 690 691 692

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

693
/**
694
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
695
 */
696
int timekeeping_valid_for_hres(void)
697
{
698
	struct timekeeper *tk = &timekeeper;
699 700 701 702
	unsigned long seq;
	int ret;

	do {
703
		seq = read_seqcount_begin(&timekeeper_seq);
704

705
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
706

707
	} while (read_seqcount_retry(&timekeeper_seq, seq));
708 709 710 711

	return ret;
}

712 713 714 715 716
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
717
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
718 719
	unsigned long seq;
	u64 ret;
720

J
John Stultz 已提交
721
	do {
722
		seq = read_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
723

724
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
725

726
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
727 728

	return ret;
729 730
}

731
/**
732
 * read_persistent_clock -  Return time from the persistent clock.
733 734
 *
 * Weak dummy function for arches that do not yet support it.
735 736
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
737 738 739
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
740
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
741
{
742 743
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
744 745
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

761 762 763 764 765
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
766
	struct timekeeper *tk = &timekeeper;
767
	struct clocksource *clock;
768
	unsigned long flags;
769
	struct timespec now, boot, tmp;
770 771

	read_persistent_clock(&now);
772

773
	if (!timespec_valid_strict(&now)) {
774 775 776 777
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
778 779
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
780

781
	read_boot_clock(&boot);
782
	if (!timespec_valid_strict(&boot)) {
783 784 785 786 787
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
788

R
Roman Zippel 已提交
789
	ntp_init();
790

791 792
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
793
	clock = clocksource_default_clock();
794 795
	if (clock->enable)
		clock->enable(clock);
796
	tk_setup_internals(tk, clock);
797

798 799 800
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
801
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
802
		boot = tk_xtime(tk);
803

804
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
805
	tk_set_wall_to_mono(tk, tmp);
806 807 808

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
809
	tk_set_sleep_time(tk, tmp);
810

811 812
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
813 814 815
}

/* time in seconds when suspend began */
816
static struct timespec timekeeping_suspend_time;
817

818 819 820 821 822 823 824
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
825 826
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
827
{
828
	if (!timespec_valid_strict(delta)) {
829
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
830 831 832
					"sleep delta value!\n");
		return;
	}
833
	tk_xtime_add(tk, delta);
834 835
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
836 837 838 839 840 841 842 843 844 845 846 847 848 849
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
850
	struct timekeeper *tk = &timekeeper;
851
	unsigned long flags;
852

853 854 855 856 857
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
858 859
		return;

860 861
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
J
John Stultz 已提交
862

863
	timekeeping_forward_now(tk);
864

865
	__timekeeping_inject_sleeptime(tk, delta);
866

867
	timekeeping_update(tk, true);
868

869 870
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
871 872 873 874 875

	/* signal hrtimers about time change */
	clock_was_set();
}

876 877 878 879 880 881 882
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
883
static void timekeeping_resume(void)
884
{
885
	struct timekeeper *tk = &timekeeper;
886
	struct clocksource *clock = tk->clock;
887
	unsigned long flags;
888 889 890
	struct timespec ts_new, ts_delta;
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
891

892
	read_persistent_clock(&ts_new);
893

894
	clockevents_resume();
895 896
	clocksource_resume();

897 898
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
899

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

		ts_delta = ns_to_timespec(nsec);
		suspendtime_found = true;
	} else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
		suspendtime_found = true;
940
	}
941 942 943 944 945 946

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
	clock->cycle_last = cycle_now;
947
	tk->ntp_error = 0;
948
	timekeeping_suspended = 0;
949
	timekeeping_update(tk, false);
950 951
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
952 953 954 955 956 957

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
958
	hrtimers_resume();
959 960
}

961
static int timekeeping_suspend(void)
962
{
963
	struct timekeeper *tk = &timekeeper;
964
	unsigned long flags;
965 966
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
967

968
	read_persistent_clock(&timekeeping_suspend_time);
969

970 971
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
972
	timekeeping_forward_now(tk);
973
	timekeeping_suspended = 1;
974 975 976 977 978 979 980

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
981
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
982 983 984 985 986 987 988 989 990 991 992 993
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
994 995
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
996 997

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
998
	clocksource_suspend();
999
	clockevents_suspend();
1000 1001 1002 1003 1004

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1005
static struct syscore_ops timekeeping_syscore_ops = {
1006 1007 1008 1009
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1010
static int __init timekeeping_init_ops(void)
1011
{
1012 1013
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1014 1015
}

1016
device_initcall(timekeeping_init_ops);
1017 1018 1019 1020 1021

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
1022 1023
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
1036
	 * here.  This is tuned so that an error of about 1 msec is adjusted
1037 1038
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
1039
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1040 1041 1042 1043 1044 1045 1046 1047
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
1048 1049
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1074
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1075
{
1076
	s64 error, interval = tk->cycle_interval;
1077 1078
	int adj;

1079
	/*
1080
	 * The point of this is to check if the error is greater than half
1081 1082 1083 1084 1085
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1086 1087
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1088
	 * larger than half an interval.
1089
	 *
1090
	 * Note: It does not "save" on aggravation when reading the code.
1091
	 */
1092
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1093
	if (error > interval) {
1094 1095
		/*
		 * We now divide error by 4(via shift), which checks if
1096
		 * the error is greater than twice the interval.
1097 1098 1099
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1100
		error >>= 2;
1101 1102 1103 1104 1105
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
1106
		 * The proper fix is to avoid rounding up by using
1107
		 * the high precision tk->xtime_nsec instead of
1108 1109 1110
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
1111 1112 1113
		if (likely(error <= interval))
			adj = 1;
		else
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1130

1131 1132
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1133 1134
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1135 1136
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1137
	}
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1187 1188 1189 1190
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1191

1192
out_adjust:
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1207 1208 1209 1210
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1211 1212
	}

1213 1214
}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1235 1236 1237 1238
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1239

1240 1241 1242 1243 1244
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

1245 1246
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1247 1248
			clock_was_set_delayed();
		}
1249 1250 1251
	}
}

1252 1253 1254 1255 1256 1257 1258 1259 1260
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1261 1262
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
						u32 shift)
1263
{
T
Thomas Gleixner 已提交
1264
	cycle_t interval = tk->cycle_interval << shift;
1265
	u64 raw_nsecs;
1266

1267
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1268
	if (offset < interval)
1269 1270 1271
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1272 1273
	offset -= interval;
	tk->clock->cycle_last += interval;
1274

1275 1276
	tk->xtime_nsec += tk->xtime_interval << shift;
	accumulate_nsecs_to_secs(tk);
1277

1278
	/* Accumulate raw time */
1279
	raw_nsecs = (u64)tk->raw_interval << shift;
1280
	raw_nsecs += tk->raw_time.tv_nsec;
1281 1282 1283
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1284
		tk->raw_time.tv_sec += raw_secs;
1285
	}
1286
	tk->raw_time.tv_nsec = raw_nsecs;
1287 1288

	/* Accumulate error between NTP and clock interval */
1289 1290 1291
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1292 1293 1294 1295

	return offset;
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;

}
#else
#define old_vsyscall_fixup(tk)
#endif



1323 1324 1325 1326
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1327
static void update_wall_time(void)
1328
{
1329
	struct clocksource *clock;
1330
	struct timekeeper *tk = &timekeeper;
1331
	cycle_t offset;
1332
	int shift = 0, maxshift;
J
John Stultz 已提交
1333 1334
	unsigned long flags;

1335 1336
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
	write_seqcount_begin(&timekeeper_seq);
1337 1338 1339

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1340
		goto out;
1341

1342
	clock = tk->clock;
J
John Stultz 已提交
1343 1344

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1345
	offset = tk->cycle_interval;
J
John Stultz 已提交
1346 1347
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1348 1349
#endif

1350 1351 1352 1353
	/* Check if there's really nothing to do */
	if (offset < tk->cycle_interval)
		goto out;

1354 1355 1356 1357
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1358
	 * that is smaller than the offset.  We then accumulate that
1359 1360
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1361
	 */
1362
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1363
	shift = max(0, shift);
1364
	/* Bound shift to one less than what overflows tick_length */
1365
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1366
	shift = min(shift, maxshift);
1367 1368 1369
	while (offset >= tk->cycle_interval) {
		offset = logarithmic_accumulation(tk, offset, shift);
		if (offset < tk->cycle_interval<<shift)
1370
			shift--;
1371 1372 1373
	}

	/* correct the clock when NTP error is too big */
1374
	timekeeping_adjust(tk, offset);
1375

J
John Stultz 已提交
1376
	/*
1377 1378 1379 1380
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1381

J
John Stultz 已提交
1382 1383
	/*
	 * Finally, make sure that after the rounding
1384
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1385
	 */
1386
	accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1387

1388
	timekeeping_update(tk, false);
J
John Stultz 已提交
1389 1390

out:
1391 1392
	write_seqcount_end(&timekeeper_seq);
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
J
John Stultz 已提交
1393

1394
}
T
Tomas Janousek 已提交
1395 1396 1397 1398 1399

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1400
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1401 1402 1403 1404 1405 1406 1407 1408
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1409
	struct timekeeper *tk = &timekeeper;
1410
	struct timespec boottime = {
1411 1412 1413 1414
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1415
	};
1416 1417

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1418
}
1419
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1420

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1432
	struct timekeeper *tk = &timekeeper;
1433
	struct timespec tomono, sleep;
1434
	s64 nsec;
1435 1436 1437 1438 1439
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1440
		seq = read_seqcount_begin(&timekeeper_seq);
1441
		ts->tv_sec = tk->xtime_sec;
1442
		nsec = timekeeping_get_ns(tk);
1443 1444
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1445

1446
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1447

1448 1449 1450
	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1471 1472 1473 1474 1475 1476
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1477 1478 1479
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1480
}
1481
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1482

1483 1484
unsigned long get_seconds(void)
{
1485 1486 1487
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1488 1489 1490
}
EXPORT_SYMBOL(get_seconds);

1491 1492
struct timespec __current_kernel_time(void)
{
1493 1494 1495
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1496
}
1497

1498 1499
struct timespec current_kernel_time(void)
{
1500
	struct timekeeper *tk = &timekeeper;
1501 1502 1503 1504
	struct timespec now;
	unsigned long seq;

	do {
1505
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1506

1507
		now = tk_xtime(tk);
1508
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1509 1510 1511 1512

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1513 1514 1515

struct timespec get_monotonic_coarse(void)
{
1516
	struct timekeeper *tk = &timekeeper;
1517 1518 1519 1520
	struct timespec now, mono;
	unsigned long seq;

	do {
1521
		seq = read_seqcount_begin(&timekeeper_seq);
L
Linus Torvalds 已提交
1522

1523 1524
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1525
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1526 1527 1528 1529 1530

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1531 1532

/*
1533
 * Must hold jiffies_lock
1534 1535 1536 1537 1538 1539 1540
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1541 1542

/**
1543 1544
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1545 1546
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1547
 * @sleep:	pointer to timespec to be set with time in suspend
1548
 */
1549 1550
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1551
{
1552
	struct timekeeper *tk = &timekeeper;
1553 1554 1555
	unsigned long seq;

	do {
1556
		seq = read_seqcount_begin(&timekeeper_seq);
1557 1558 1559
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
1560
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1561
}
T
Torben Hohn 已提交
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
1572 1573
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1574
{
1575
	struct timekeeper *tk = &timekeeper;
1576 1577 1578 1579 1580
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1581
		seq = read_seqcount_begin(&timekeeper_seq);
1582

1583 1584
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1585

1586 1587
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1588
		*offs_tai = tk->offs_tai;
1589
	} while (read_seqcount_retry(&timekeeper_seq, seq));
1590 1591 1592 1593 1594 1595 1596

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1597 1598 1599 1600 1601
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1602
	struct timekeeper *tk = &timekeeper;
1603 1604 1605 1606
	unsigned long seq;
	struct timespec wtom;

	do {
1607
		seq = read_seqcount_begin(&timekeeper_seq);
1608
		wtom = tk->wall_to_monotonic;
1609
	} while (read_seqcount_retry(&timekeeper_seq, seq));
J
John Stultz 已提交
1610

1611 1612
	return timespec_to_ktime(wtom);
}
1613 1614
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

T
Torben Hohn 已提交
1615 1616 1617 1618 1619 1620 1621 1622
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1623
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1624
	do_timer(ticks);
1625
	write_sequnlock(&jiffies_lock);
T
Torben Hohn 已提交
1626
}