timekeeping.c 56.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133 134 135 136 137 138
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236 237 238 239 240
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241

P
Peter Zijlstra 已提交
242 243 244 245 246
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

247 248 249
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
250
	ntpinterval = tmp;
251 252
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
253 254 255 256
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
257
	tk->cycle_interval = interval;
258 259

	/* Go back from cycles -> shifted ns */
260 261 262
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
263
		((u64) interval * clock->mult) >> clock->shift;
264

265 266 267 268
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
269
			tk->tkr_mono.xtime_nsec >>= -shift_change;
270
		else
271
			tk->tkr_mono.xtime_nsec <<= shift_change;
272
	}
P
Peter Zijlstra 已提交
273 274
	tk->tkr_raw.xtime_nsec = 0;

275
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
276
	tk->tkr_raw.shift = clock->shift;
277

278 279
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281 282 283 284 285 286

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
287
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
288
	tk->tkr_raw.mult = clock->mult;
289
	tk->ntp_err_mult = 0;
290
}
291

292
/* Timekeeper helper functions. */
293 294

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 296
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297
#else
298
static inline u32 arch_gettimeoffset(void) { return 0; }
299 300
#endif

301 302 303 304 305 306 307 308 309 310 311 312
static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
					  cycle_t delta)
{
	s64 nsec;

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

313
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
314
{
315
	cycle_t delta;
316

317
	delta = timekeeping_get_delta(tkr);
318 319
	return timekeeping_delta_to_ns(tkr, delta);
}
320

321 322 323 324
static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
					    cycle_t cycles)
{
	cycle_t delta;
325

326 327 328
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
329 330
}

331 332
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333
 * @tkr: Timekeeping readout base from which we take the update
334 335 336 337
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
338
 * Employ the latch technique; see @raw_write_seqcount_latch.
339 340 341 342 343 344
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
345
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
346
{
347
	struct tk_read_base *base = tkf->base;
348 349

	/* Force readers off to base[1] */
350
	raw_write_seqcount_latch(&tkf->seq);
351 352

	/* Update base[0] */
353
	memcpy(base, tkr, sizeof(*base));
354 355

	/* Force readers back to base[0] */
356
	raw_write_seqcount_latch(&tkf->seq);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
394
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
395 396 397 398 399 400
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
401
		seq = raw_read_seqcount_latch(&tkf->seq);
402
		tkr = tkf->base + (seq & 0x01);
403
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
404
	} while (read_seqcount_retry(&tkf->seq, seq));
405 406 407

	return now;
}
408 409 410 411 412

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
413 414
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
415 416 417 418 419 420
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
442
	struct tk_read_base *tkr = &tk->tkr_mono;
443 444 445 446

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
447
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
448 449 450 451 452

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
453 454
}

455 456 457 458
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
459
	struct timespec xt, wm;
460

461
	xt = timespec64_to_timespec(tk_xtime(tk));
462
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
463 464
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
481 482 483
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
484
	tk->ntp_error += remainder << tk->ntp_error_shift;
485
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
486 487 488 489 490
}
#else
#define old_vsyscall_fixup(tk)
#endif

491 492
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

493
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
494
{
495
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
496 497 498 499 500 501 502
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
503
	struct timekeeper *tk = &tk_core.timekeeper;
504 505 506
	unsigned long flags;
	int ret;

507
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
508
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
509
	update_pvclock_gtod(tk, true);
510
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
511 512 513 514 515 516 517 518 519 520 521 522 523 524

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

525
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
526
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
527
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
528 529 530 531 532

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

533 534 535 536 537 538 539 540 541 542 543
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

544 545 546 547 548
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
549 550
	u64 seconds;
	u32 nsec;
551 552 553 554 555 556 557 558

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
559 560
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
561
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
562 563

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
564
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
565 566 567 568 569 570

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
571
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
572 573 574
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
575 576
}

577
/* must hold timekeeper_lock */
578
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
579
{
580
	if (action & TK_CLEAR_NTP) {
581
		tk->ntp_error = 0;
582 583
		ntp_clear();
	}
584

585
	tk_update_leap_state(tk);
586 587
	tk_update_ktime_data(tk);

588 589 590
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

591
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
592
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
593 594 595

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
596 597 598 599 600 601 602 603
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
604 605
}

606
/**
607
 * timekeeping_forward_now - update clock to the current time
608
 *
609 610 611
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
612
 */
613
static void timekeeping_forward_now(struct timekeeper *tk)
614
{
615
	struct clocksource *clock = tk->tkr_mono.clock;
616
	cycle_t cycle_now, delta;
617
	s64 nsec;
618

619 620 621
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
622
	tk->tkr_raw.cycle_last  = cycle_now;
623

624
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
625

626
	/* If arch requires, add in get_arch_timeoffset() */
627
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
628

629
	tk_normalize_xtime(tk);
630

P
Peter Zijlstra 已提交
631
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
632
	timespec64_add_ns(&tk->raw_time, nsec);
633 634 635
}

/**
636
 * __getnstimeofday64 - Returns the time of day in a timespec64.
637 638
 * @ts:		pointer to the timespec to be set
 *
639 640
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
641
 */
642
int __getnstimeofday64(struct timespec64 *ts)
643
{
644
	struct timekeeper *tk = &tk_core.timekeeper;
645
	unsigned long seq;
646
	s64 nsecs = 0;
647 648

	do {
649
		seq = read_seqcount_begin(&tk_core.seq);
650

651
		ts->tv_sec = tk->xtime_sec;
652
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
653

654
	} while (read_seqcount_retry(&tk_core.seq, seq));
655

656
	ts->tv_nsec = 0;
657
	timespec64_add_ns(ts, nsecs);
658 659 660 661 662 663 664 665 666

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
667
EXPORT_SYMBOL(__getnstimeofday64);
668 669

/**
670
 * getnstimeofday64 - Returns the time of day in a timespec64.
671
 * @ts:		pointer to the timespec64 to be set
672
 *
673
 * Returns the time of day in a timespec64 (WARN if suspended).
674
 */
675
void getnstimeofday64(struct timespec64 *ts)
676
{
677
	WARN_ON(__getnstimeofday64(ts));
678
}
679
EXPORT_SYMBOL(getnstimeofday64);
680

681 682
ktime_t ktime_get(void)
{
683
	struct timekeeper *tk = &tk_core.timekeeper;
684
	unsigned int seq;
685 686
	ktime_t base;
	s64 nsecs;
687 688 689 690

	WARN_ON(timekeeping_suspended);

	do {
691
		seq = read_seqcount_begin(&tk_core.seq);
692 693
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
694

695
	} while (read_seqcount_retry(&tk_core.seq, seq));
696

697
	return ktime_add_ns(base, nsecs);
698 699 700
}
EXPORT_SYMBOL_GPL(ktime_get);

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
735 736
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
737 738 739 740 741 742 743 744

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

765 766 767 768 769 770 771 772 773 774 775 776
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
777 778
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
779 780 781 782 783 784 785

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

786
/**
787
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
788 789 790 791
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
792
 * in normalized timespec64 format in the variable pointed to by @ts.
793
 */
794
void ktime_get_ts64(struct timespec64 *ts)
795
{
796
	struct timekeeper *tk = &tk_core.timekeeper;
797
	struct timespec64 tomono;
798
	s64 nsec;
799 800 801 802 803
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
804
		seq = read_seqcount_begin(&tk_core.seq);
805
		ts->tv_sec = tk->xtime_sec;
806
		nsec = timekeeping_get_ns(&tk->tkr_mono);
807
		tomono = tk->wall_to_monotonic;
808

809
	} while (read_seqcount_retry(&tk_core.seq, seq));
810

811 812 813
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
814
}
815
EXPORT_SYMBOL_GPL(ktime_get_ts64);
816

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

865 866 867 868 869 870 871 872 873 874 875 876 877
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}


878 879 880
#ifdef CONFIG_NTP_PPS

/**
881
 * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
882 883 884 885 886 887 888
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
889
void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
890
{
891
	struct timekeeper *tk = &tk_core.timekeeper;
892 893 894 895 896 897
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
898
		seq = read_seqcount_begin(&tk_core.seq);
899

900
		*ts_raw = tk->raw_time;
901
		ts_real->tv_sec = tk->xtime_sec;
902
		ts_real->tv_nsec = 0;
903

P
Peter Zijlstra 已提交
904
		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
905
		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
906

907
	} while (read_seqcount_retry(&tk_core.seq, seq));
908

909 910
	timespec64_add_ns(ts_raw, nsecs_raw);
	timespec64_add_ns(ts_real, nsecs_real);
911
}
912
EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
913 914 915

#endif /* CONFIG_NTP_PPS */

916 917 918 919
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
920
 * NOTE: Users should be converted to using getnstimeofday()
921 922 923
 */
void do_gettimeofday(struct timeval *tv)
{
924
	struct timespec64 now;
925

926
	getnstimeofday64(&now);
927 928 929 930
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
931

932
/**
933 934
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
935 936 937
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
938
int do_settimeofday64(const struct timespec64 *ts)
939
{
940
	struct timekeeper *tk = &tk_core.timekeeper;
941
	struct timespec64 ts_delta, xt;
942
	unsigned long flags;
943
	int ret = 0;
944

945
	if (!timespec64_valid_strict(ts))
946 947
		return -EINVAL;

948
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
949
	write_seqcount_begin(&tk_core.seq);
950

951
	timekeeping_forward_now(tk);
952

953
	xt = tk_xtime(tk);
954 955
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
956

957 958 959 960 961
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

962
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
963

964
	tk_set_xtime(tk, ts);
965
out:
966
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
967

968
	write_seqcount_end(&tk_core.seq);
969
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
970 971 972 973

	/* signal hrtimers about time change */
	clock_was_set();

974
	return ret;
975
}
976
EXPORT_SYMBOL(do_settimeofday64);
977

978 979 980 981 982 983 984 985
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
986
	struct timekeeper *tk = &tk_core.timekeeper;
987
	unsigned long flags;
988
	struct timespec64 ts64, tmp;
989
	int ret = 0;
990

991
	if (!timespec_inject_offset_valid(ts))
992 993
		return -EINVAL;

994 995
	ts64 = timespec_to_timespec64(*ts);

996
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
997
	write_seqcount_begin(&tk_core.seq);
998

999
	timekeeping_forward_now(tk);
1000

1001
	/* Make sure the proposed value is valid */
1002
	tmp = timespec64_add(tk_xtime(tk),  ts64);
1003 1004
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
1005 1006 1007
		ret = -EINVAL;
		goto error;
	}
1008

1009 1010
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1011

1012
error: /* even if we error out, we forwarded the time, so call update */
1013
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1014

1015
	write_seqcount_end(&tk_core.seq);
1016
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1017 1018 1019 1020

	/* signal hrtimers about time change */
	clock_was_set();

1021
	return ret;
1022 1023 1024
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1025 1026 1027 1028 1029 1030 1031

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1032
	struct timekeeper *tk = &tk_core.timekeeper;
1033 1034 1035 1036
	unsigned int seq;
	s32 ret;

	do {
1037
		seq = read_seqcount_begin(&tk_core.seq);
1038
		ret = tk->tai_offset;
1039
	} while (read_seqcount_retry(&tk_core.seq, seq));
1040 1041 1042 1043 1044 1045 1046 1047

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1048
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1049 1050
{
	tk->tai_offset = tai_offset;
1051
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1052 1053 1054 1055 1056 1057 1058 1059
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1060
	struct timekeeper *tk = &tk_core.timekeeper;
1061 1062
	unsigned long flags;

1063
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1064
	write_seqcount_begin(&tk_core.seq);
1065
	__timekeeping_set_tai_offset(tk, tai_offset);
1066
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1067
	write_seqcount_end(&tk_core.seq);
1068
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1069
	clock_was_set();
1070 1071
}

1072 1073 1074 1075 1076
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1077
static int change_clocksource(void *data)
1078
{
1079
	struct timekeeper *tk = &tk_core.timekeeper;
1080
	struct clocksource *new, *old;
1081
	unsigned long flags;
1082

1083
	new = (struct clocksource *) data;
1084

1085
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1086
	write_seqcount_begin(&tk_core.seq);
1087

1088
	timekeeping_forward_now(tk);
1089 1090 1091 1092 1093 1094
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1095
			old = tk->tkr_mono.clock;
1096 1097 1098 1099 1100 1101 1102
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1103
	}
1104
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1105

1106
	write_seqcount_end(&tk_core.seq);
1107
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1108

1109 1110
	return 0;
}
1111

1112 1113 1114 1115 1116 1117 1118
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1119
int timekeeping_notify(struct clocksource *clock)
1120
{
1121
	struct timekeeper *tk = &tk_core.timekeeper;
1122

1123
	if (tk->tkr_mono.clock == clock)
1124
		return 0;
1125
	stop_machine(change_clocksource, clock, NULL);
1126
	tick_clock_notify();
1127
	return tk->tkr_mono.clock == clock ? 0 : -1;
1128
}
1129

1130
/**
1131 1132
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1133 1134 1135
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1136
void getrawmonotonic64(struct timespec64 *ts)
1137
{
1138
	struct timekeeper *tk = &tk_core.timekeeper;
1139
	struct timespec64 ts64;
1140 1141 1142 1143
	unsigned long seq;
	s64 nsecs;

	do {
1144
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1145
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1146
		ts64 = tk->raw_time;
1147

1148
	} while (read_seqcount_retry(&tk_core.seq, seq));
1149

1150
	timespec64_add_ns(&ts64, nsecs);
1151
	*ts = ts64;
1152
}
1153 1154
EXPORT_SYMBOL(getrawmonotonic64);

1155

1156
/**
1157
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1158
 */
1159
int timekeeping_valid_for_hres(void)
1160
{
1161
	struct timekeeper *tk = &tk_core.timekeeper;
1162 1163 1164 1165
	unsigned long seq;
	int ret;

	do {
1166
		seq = read_seqcount_begin(&tk_core.seq);
1167

1168
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1169

1170
	} while (read_seqcount_retry(&tk_core.seq, seq));
1171 1172 1173 1174

	return ret;
}

1175 1176 1177 1178 1179
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1180
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1181 1182
	unsigned long seq;
	u64 ret;
1183

J
John Stultz 已提交
1184
	do {
1185
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1186

1187
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1188

1189
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1190 1191

	return ret;
1192 1193
}

1194
/**
1195
 * read_persistent_clock -  Return time from the persistent clock.
1196 1197
 *
 * Weak dummy function for arches that do not yet support it.
1198 1199
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1200 1201 1202
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1203
void __weak read_persistent_clock(struct timespec *ts)
1204
{
1205 1206
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1217
/**
X
Xunlei Pang 已提交
1218
 * read_boot_clock64 -  Return time of the system start.
1219 1220 1221
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1222
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1223 1224 1225
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1226
void __weak read_boot_clock64(struct timespec64 *ts)
1227 1228 1229 1230 1231
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1232 1233 1234 1235 1236 1237
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1238 1239 1240 1241 1242
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1243
	struct timekeeper *tk = &tk_core.timekeeper;
1244
	struct clocksource *clock;
1245
	unsigned long flags;
1246
	struct timespec64 now, boot, tmp;
1247

1248
	read_persistent_clock64(&now);
1249
	if (!timespec64_valid_strict(&now)) {
1250 1251 1252 1253
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1254
	} else if (now.tv_sec || now.tv_nsec)
1255
		persistent_clock_exists = true;
1256

1257
	read_boot_clock64(&boot);
1258
	if (!timespec64_valid_strict(&boot)) {
1259 1260 1261 1262 1263
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1264

1265
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1266
	write_seqcount_begin(&tk_core.seq);
1267 1268
	ntp_init();

1269
	clock = clocksource_default_clock();
1270 1271
	if (clock->enable)
		clock->enable(clock);
1272
	tk_setup_internals(tk, clock);
1273

1274 1275 1276
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1277
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1278
		boot = tk_xtime(tk);
1279

1280
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1281
	tk_set_wall_to_mono(tk, tmp);
1282

1283
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1284

1285
	write_seqcount_end(&tk_core.seq);
1286
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1287 1288
}

1289
/* time in seconds when suspend began for persistent clock */
1290
static struct timespec64 timekeeping_suspend_time;
1291

1292 1293 1294 1295 1296 1297 1298
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1299
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1300
					   struct timespec64 *delta)
1301
{
1302
	if (!timespec64_valid_strict(delta)) {
1303 1304 1305
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1306 1307
		return;
	}
1308
	tk_xtime_add(tk, delta);
1309
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1310
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1311
	tk_debug_account_sleep_time(delta);
1312 1313
}

1314
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1350
/**
1351 1352
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1353
 *
1354
 * This hook is for architectures that cannot support read_persistent_clock64
1355
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1356
 * and also don't have an effective nonstop clocksource.
1357 1358 1359 1360
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1361
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1362
{
1363
	struct timekeeper *tk = &tk_core.timekeeper;
1364
	unsigned long flags;
1365

1366
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1367
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1368

1369
	timekeeping_forward_now(tk);
1370

1371
	__timekeeping_inject_sleeptime(tk, delta);
1372

1373
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1374

1375
	write_seqcount_end(&tk_core.seq);
1376
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1377 1378 1379 1380

	/* signal hrtimers about time change */
	clock_was_set();
}
1381
#endif
1382

1383 1384 1385
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1386
void timekeeping_resume(void)
1387
{
1388
	struct timekeeper *tk = &tk_core.timekeeper;
1389
	struct clocksource *clock = tk->tkr_mono.clock;
1390
	unsigned long flags;
1391
	struct timespec64 ts_new, ts_delta;
1392
	cycle_t cycle_now, cycle_delta;
1393

1394
	sleeptime_injected = false;
1395
	read_persistent_clock64(&ts_new);
1396

1397
	clockevents_resume();
1398 1399
	clocksource_resume();

1400
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1401
	write_seqcount_begin(&tk_core.seq);
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1415
	cycle_now = tk->tkr_mono.read(clock);
1416
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1417
		cycle_now > tk->tkr_mono.cycle_last) {
1418 1419 1420 1421 1422
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1423 1424
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1439
		ts_delta = ns_to_timespec64(nsec);
1440
		sleeptime_injected = true;
1441 1442
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1443
		sleeptime_injected = true;
1444
	}
1445

1446
	if (sleeptime_injected)
1447 1448 1449
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1450
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1451 1452
	tk->tkr_raw.cycle_last  = cycle_now;

1453
	tk->ntp_error = 0;
1454
	timekeeping_suspended = 0;
1455
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1456
	write_seqcount_end(&tk_core.seq);
1457
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1458 1459 1460

	touch_softlockup_watchdog();

1461
	tick_resume();
1462
	hrtimers_resume();
1463 1464
}

1465
int timekeeping_suspend(void)
1466
{
1467
	struct timekeeper *tk = &tk_core.timekeeper;
1468
	unsigned long flags;
1469 1470
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1471

1472
	read_persistent_clock64(&timekeeping_suspend_time);
1473

1474 1475 1476 1477 1478 1479
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1480
		persistent_clock_exists = true;
1481

1482
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1483
	write_seqcount_begin(&tk_core.seq);
1484
	timekeeping_forward_now(tk);
1485
	timekeeping_suspended = 1;
1486

1487
	if (persistent_clock_exists) {
1488
		/*
1489 1490 1491 1492
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1493
		 */
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1507
	}
1508 1509

	timekeeping_update(tk, TK_MIRROR);
1510
	halt_fast_timekeeper(tk);
1511
	write_seqcount_end(&tk_core.seq);
1512
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1513

1514
	tick_suspend();
M
Magnus Damm 已提交
1515
	clocksource_suspend();
1516
	clockevents_suspend();
1517 1518 1519 1520 1521

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1522
static struct syscore_ops timekeeping_syscore_ops = {
1523 1524 1525 1526
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1527
static int __init timekeeping_init_ops(void)
1528
{
1529 1530
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1531
}
1532
device_initcall(timekeeping_init_ops);
1533 1534

/*
1535
 * Apply a multiplier adjustment to the timekeeper
1536
 */
1537 1538 1539 1540
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1541
{
1542 1543
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1544

1545 1546 1547 1548
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1549
	}
1550 1551 1552
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1553

1554 1555 1556
	/*
	 * So the following can be confusing.
	 *
1557
	 * To keep things simple, lets assume mult_adj == 1 for now.
1558
	 *
1559
	 * When mult_adj != 1, remember that the interval and offset values
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1603
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1604 1605 1606 1607 1608
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1609
	tk->tkr_mono.mult += mult_adj;
1610
	tk->xtime_interval += interval;
1611
	tk->tkr_mono.xtime_nsec -= offset;
1612
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1624 1625 1626
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1627 1628
	s64 tick_error;
	bool negative;
1629
	u32 adj_scale;
1630 1631 1632 1633 1634

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1635 1636
	tk->ntp_tick = ntp_tick_length();

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1659
	tick_error = abs(tick_error);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1670
		tick_error >>= 1;
1671
	}
1672 1673

	/* scale the corrections */
1674
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1696 1697 1698
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1699 1700
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1701 1702
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1703
	}
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1719 1720 1721
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1722
		tk->ntp_error += neg << tk->ntp_error_shift;
1723
	}
1724 1725
}

1726 1727 1728
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1729
 * Helper function that accumulates the nsecs greater than a second
1730 1731 1732 1733
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1734
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1735
{
1736
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1737
	unsigned int clock_set = 0;
1738

1739
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1740 1741
		int leap;

1742
		tk->tkr_mono.xtime_nsec -= nsecps;
1743 1744 1745 1746
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1747
		if (unlikely(leap)) {
1748
			struct timespec64 ts;
1749 1750

			tk->xtime_sec += leap;
1751

1752 1753 1754
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1755
				timespec64_sub(tk->wall_to_monotonic, ts));
1756

1757 1758
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1759
			clock_set = TK_CLOCK_WAS_SET;
1760
		}
1761
	}
1762
	return clock_set;
1763 1764
}

1765 1766 1767 1768 1769 1770 1771 1772 1773
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1774
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1775 1776
						u32 shift,
						unsigned int *clock_set)
1777
{
T
Thomas Gleixner 已提交
1778
	cycle_t interval = tk->cycle_interval << shift;
1779
	u64 raw_nsecs;
1780

Z
Zhen Lei 已提交
1781
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1782
	if (offset < interval)
1783 1784 1785
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1786
	offset -= interval;
1787
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1788
	tk->tkr_raw.cycle_last  += interval;
1789

1790
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1791
	*clock_set |= accumulate_nsecs_to_secs(tk);
1792

1793
	/* Accumulate raw time */
1794
	raw_nsecs = (u64)tk->raw_interval << shift;
1795
	raw_nsecs += tk->raw_time.tv_nsec;
1796 1797 1798
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1799
		tk->raw_time.tv_sec += raw_secs;
1800
	}
1801
	tk->raw_time.tv_nsec = raw_nsecs;
1802 1803

	/* Accumulate error between NTP and clock interval */
1804
	tk->ntp_error += tk->ntp_tick << shift;
1805 1806
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1807 1808 1809 1810

	return offset;
}

1811 1812 1813 1814
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1815
void update_wall_time(void)
1816
{
1817
	struct timekeeper *real_tk = &tk_core.timekeeper;
1818
	struct timekeeper *tk = &shadow_timekeeper;
1819
	cycle_t offset;
1820
	int shift = 0, maxshift;
1821
	unsigned int clock_set = 0;
J
John Stultz 已提交
1822 1823
	unsigned long flags;

1824
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1825 1826 1827

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1828
		goto out;
1829

J
John Stultz 已提交
1830
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1831
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1832
#else
1833 1834
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1835 1836
#endif

1837
	/* Check if there's really nothing to do */
1838
	if (offset < real_tk->cycle_interval)
1839 1840
		goto out;

1841 1842 1843
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1844 1845 1846 1847
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1848
	 * that is smaller than the offset.  We then accumulate that
1849 1850
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1851
	 */
1852
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1853
	shift = max(0, shift);
1854
	/* Bound shift to one less than what overflows tick_length */
1855
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1856
	shift = min(shift, maxshift);
1857
	while (offset >= tk->cycle_interval) {
1858 1859
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1860
		if (offset < tk->cycle_interval<<shift)
1861
			shift--;
1862 1863 1864
	}

	/* correct the clock when NTP error is too big */
1865
	timekeeping_adjust(tk, offset);
1866

J
John Stultz 已提交
1867
	/*
1868 1869 1870 1871
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1872

J
John Stultz 已提交
1873 1874
	/*
	 * Finally, make sure that after the rounding
1875
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1876
	 */
1877
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1878

1879
	write_seqcount_begin(&tk_core.seq);
1880 1881 1882 1883 1884 1885 1886
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1887
	 * memcpy under the tk_core.seq against one before we start
1888 1889
	 * updating.
	 */
1890
	timekeeping_update(tk, clock_set);
1891
	memcpy(real_tk, tk, sizeof(*tk));
1892
	/* The memcpy must come last. Do not put anything here! */
1893
	write_seqcount_end(&tk_core.seq);
1894
out:
1895
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1896
	if (clock_set)
1897 1898
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1899
}
T
Tomas Janousek 已提交
1900 1901

/**
1902 1903
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1904
 *
1905
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1906 1907 1908 1909 1910 1911
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1912
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1913
{
1914
	struct timekeeper *tk = &tk_core.timekeeper;
1915 1916
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1917
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1918
}
1919
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1920

1921 1922
unsigned long get_seconds(void)
{
1923
	struct timekeeper *tk = &tk_core.timekeeper;
1924 1925

	return tk->xtime_sec;
1926 1927 1928
}
EXPORT_SYMBOL(get_seconds);

1929 1930
struct timespec __current_kernel_time(void)
{
1931
	struct timekeeper *tk = &tk_core.timekeeper;
1932

1933
	return timespec64_to_timespec(tk_xtime(tk));
1934
}
1935

1936
struct timespec64 current_kernel_time64(void)
1937
{
1938
	struct timekeeper *tk = &tk_core.timekeeper;
1939
	struct timespec64 now;
1940 1941 1942
	unsigned long seq;

	do {
1943
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1944

1945
		now = tk_xtime(tk);
1946
	} while (read_seqcount_retry(&tk_core.seq, seq));
1947

1948
	return now;
1949
}
1950
EXPORT_SYMBOL(current_kernel_time64);
1951

1952
struct timespec64 get_monotonic_coarse64(void)
1953
{
1954
	struct timekeeper *tk = &tk_core.timekeeper;
1955
	struct timespec64 now, mono;
1956 1957 1958
	unsigned long seq;

	do {
1959
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1960

1961 1962
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1963
	} while (read_seqcount_retry(&tk_core.seq, seq));
1964

1965
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1966
				now.tv_nsec + mono.tv_nsec);
1967

1968
	return now;
1969
}
1970 1971

/*
1972
 * Must hold jiffies_lock
1973 1974 1975 1976 1977 1978
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1979

1980
/**
1981
 * ktime_get_update_offsets_now - hrtimer helper
1982
 * @cwsseq:	pointer to check and store the clock was set sequence number
1983 1984
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1985
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1986
 *
1987 1988 1989 1990
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
1991
 * Called from hrtimer_interrupt() or retrigger_next_event()
1992
 */
1993 1994
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
1995
{
1996
	struct timekeeper *tk = &tk_core.timekeeper;
1997
	unsigned int seq;
1998 1999
	ktime_t base;
	u64 nsecs;
2000 2001

	do {
2002
		seq = read_seqcount_begin(&tk_core.seq);
2003

2004 2005
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2006 2007
		base = ktime_add_ns(base, nsecs);

2008 2009 2010 2011 2012 2013
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2014 2015 2016 2017 2018

		/* Handle leapsecond insertion adjustments */
		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2019
	} while (read_seqcount_retry(&tk_core.seq, seq));
2020

2021
	return base;
2022 2023
}

2024 2025 2026 2027 2028
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2029
	struct timekeeper *tk = &tk_core.timekeeper;
2030
	unsigned long flags;
2031
	struct timespec64 ts;
2032
	s32 orig_tai, tai;
2033 2034 2035 2036 2037 2038 2039
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2051
	getnstimeofday64(&ts);
2052

2053
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2054
	write_seqcount_begin(&tk_core.seq);
2055

2056
	orig_tai = tai = tk->tai_offset;
2057
	ret = __do_adjtimex(txc, &ts, &tai);
2058

2059 2060
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2061
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2062
	}
2063 2064
	tk_update_leap_state(tk);

2065
	write_seqcount_end(&tk_core.seq);
2066 2067
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2068 2069 2070
	if (tai != orig_tai)
		clock_was_set();

2071 2072
	ntp_notify_cmos_timer();

2073 2074
	return ret;
}
2075 2076 2077 2078 2079

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2080
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2081
{
2082 2083 2084
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2085
	write_seqcount_begin(&tk_core.seq);
2086

2087
	__hardpps(phase_ts, raw_ts);
2088

2089
	write_seqcount_end(&tk_core.seq);
2090
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2091 2092 2093 2094
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2095 2096 2097 2098 2099 2100 2101 2102
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2103
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2104
	do_timer(ticks);
2105
	write_sequnlock(&jiffies_lock);
2106
	update_wall_time();
T
Torben Hohn 已提交
2107
}