timekeeping.c 24.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17 18 19 20 21
#include <linux/sysdev.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* The shift value of the current clocksource. */
	int	shift;
30 31 32 33 34

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
35 36
	/* shifted nano seconds left over when rounding cycle_interval */
	s64	xtime_remainder;
37 38 39 40 41 42 43 44
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
45 46 47
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
48 49
	/* NTP adjusted clock multiplier */
	u32	mult;
50 51
};

52
static struct timekeeper timekeeper;
53 54 55 56 57 58 59 60 61 62 63 64 65 66

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
67
	u64 tmp, ntpinterval;
68 69 70 71 72 73 74

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
75
	ntpinterval = tmp;
76 77
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
78 79 80 81 82 83 84 85
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
86
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87
	timekeeper.raw_interval =
88
		((u64) interval * clock->mult) >> clock->shift;
89 90

	timekeeper.xtime_nsec = 0;
91
	timekeeper.shift = clock->shift;
92 93

	timekeeper.ntp_error = 0;
94
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
95 96 97 98 99 100 101

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
102
}
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

138 139
/*
 * This read-write spinlock protects us from races in SMP while
140
 * playing with xtime.
141
 */
A
Adrian Bunk 已提交
142
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
143 144 145 146 147 148 149 150 151


/*
 * The current time
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
T
Tomas Janousek 已提交
152 153 154 155 156 157 158
 *
 * wall_to_monotonic is moved after resume from suspend for the monotonic
 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
 * to get the real boot based time offset.
 *
 * - wall_to_monotonic is no longer the boot time, getboottime must be
 * used instead.
159
 */
160 161
static struct timespec xtime __attribute__ ((aligned (16)));
static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162
static struct timespec total_sleep_time;
163

164 165 166
/*
 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
 */
167
static struct timespec raw_time;
168

169 170 171
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

172 173 174 175 176
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
	xtime.tv_sec += leapsecond;
	wall_to_monotonic.tv_sec -= leapsecond;
177 178
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
			timekeeper.mult);
179
}
180 181

/**
182
 * timekeeping_forward_now - update clock to the current time
183
 *
184 185 186
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
187
 */
188
static void timekeeping_forward_now(void)
189 190
{
	cycle_t cycle_now, cycle_delta;
191
	struct clocksource *clock;
192
	s64 nsec;
193

194
	clock = timekeeper.clock;
195
	cycle_now = clock->read(clock);
196
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197
	clock->cycle_last = cycle_now;
198

199 200
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
201 202 203 204

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

205
	timespec_add_ns(&xtime, nsec);
206

207
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208
	timespec_add_ns(&raw_time, nsec);
209 210 211
}

/**
212
 * getnstimeofday - Returns the time of day in a timespec
213 214
 * @ts:		pointer to the timespec to be set
 *
215
 * Returns the time of day in a timespec.
216
 */
217
void getnstimeofday(struct timespec *ts)
218 219 220 221
{
	unsigned long seq;
	s64 nsecs;

222 223
	WARN_ON(timekeeping_suspended);

224 225 226 227
	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
228
		nsecs = timekeeping_get_ns();
229

230 231 232
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

233 234 235 236 237 238 239
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

240 241 242 243 244 245 246 247 248 249 250
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251
		nsecs += timekeeping_get_ns();
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
282
		nsecs = timekeeping_get_ns();
283 284 285 286 287 288 289 290

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		u32 arch_offset;

		seq = read_seqbegin(&xtime_lock);

		*ts_raw = raw_time;
		*ts_real = xtime;

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

		/* If arch requires, add in gettimeoffset() */
		arch_offset = arch_gettimeoffset();
		nsecs_raw += arch_offset;
		nsecs_real += arch_offset;

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

334 335 336 337
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
338
 * NOTE: Users should be converted to using getnstimeofday()
339 340 341 342 343
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

344
	getnstimeofday(&now);
345 346 347 348 349 350 351 352 353 354 355 356 357
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
int do_settimeofday(struct timespec *tv)
{
358
	struct timespec ts_delta;
359 360 361 362 363 364 365
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

366
	timekeeping_forward_now();
367 368 369 370

	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
371

372
	xtime = *tv;
373

374
	timekeeper.ntp_error = 0;
375 376
	ntp_clear();

377 378
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
395
static int change_clocksource(void *data)
396
{
397
	struct clocksource *new, *old;
398

399
	new = (struct clocksource *) data;
400

401
	timekeeping_forward_now();
402 403 404 405 406 407 408 409
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
410

411 412 413 414 415 416 417 418 419 420
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
421
		return;
422
	stop_machine(change_clocksource, clock, NULL);
423 424
	tick_clock_notify();
}
425

426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
440

441 442 443 444 445 446 447 448 449 450 451 452 453
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
454
		nsecs = timekeeping_get_ns_raw();
455
		*ts = raw_time;
456 457 458 459 460 461 462 463

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


464
/**
465
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
466
 */
467
int timekeeping_valid_for_hres(void)
468 469 470 471 472 473 474
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

475
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
476 477 478 479 480 481

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

482 483 484 485 486 487 488 489 490 491 492
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 *
 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
 * ensure that the clocksource does not change!
 */
u64 timekeeping_max_deferment(void)
{
	return timekeeper.clock->max_idle_ns;
}

493
/**
494
 * read_persistent_clock -  Return time from the persistent clock.
495 496
 *
 * Weak dummy function for arches that do not yet support it.
497 498
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
499 500 501
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
502
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
503
{
504 505
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

523 524 525 526 527
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
528
	struct clocksource *clock;
529
	unsigned long flags;
530
	struct timespec now, boot;
531 532

	read_persistent_clock(&now);
533
	read_boot_clock(&boot);
534 535 536

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
537
	ntp_init();
538

539
	clock = clocksource_default_clock();
540 541
	if (clock->enable)
		clock->enable(clock);
542
	timekeeper_setup_internals(clock);
543

544 545
	xtime.tv_sec = now.tv_sec;
	xtime.tv_nsec = now.tv_nsec;
546 547
	raw_time.tv_sec = 0;
	raw_time.tv_nsec = 0;
548 549 550 551
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
		boot.tv_sec = xtime.tv_sec;
		boot.tv_nsec = xtime.tv_nsec;
	}
552
	set_normalized_timespec(&wall_to_monotonic,
553
				-boot.tv_sec, -boot.tv_nsec);
554 555
	total_sleep_time.tv_sec = 0;
	total_sleep_time.tv_nsec = 0;
556 557 558 559
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
560
static struct timespec timekeeping_suspend_time;
561 562 563 564 565 566 567 568 569 570 571 572

/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 * @dev:	unused
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
static int timekeeping_resume(struct sys_device *dev)
{
	unsigned long flags;
573 574 575
	struct timespec ts;

	read_persistent_clock(&ts);
576

577 578
	clocksource_resume();

579 580
	write_seqlock_irqsave(&xtime_lock, flags);

581 582
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
J
John Stultz 已提交
583
		xtime = timespec_add(xtime, ts);
584
		wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
J
John Stultz 已提交
585
		total_sleep_time = timespec_add(total_sleep_time, ts);
586 587
	}
	/* re-base the last cycle value */
588 589
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
	hres_timers_resume();

	return 0;
}

static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
{
	unsigned long flags;

607
	read_persistent_clock(&timekeeping_suspend_time);
608

609
	write_seqlock_irqsave(&xtime_lock, flags);
610
	timekeeping_forward_now();
611 612 613 614
	timekeeping_suspended = 1;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
615
	clocksource_suspend();
616 617 618 619 620 621

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
static struct sysdev_class timekeeping_sysclass = {
622
	.name		= "timekeeping",
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

static struct sys_device device_timer = {
	.id		= 0,
	.cls		= &timekeeping_sysclass,
};

static int __init timekeeping_init_device(void)
{
	int error = sysdev_class_register(&timekeeping_sysclass);
	if (!error)
		error = sysdev_register(&device_timer);
	return error;
}

device_initcall(timekeeping_init_device);

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
646
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
647 648 649 650 651 652 653 654 655 656 657 658
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
659
	 * here.  This is tuned so that an error of about 1 msec is adjusted
660 661
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
662
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
663 664 665 666 667 668 669 670
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
671
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
672
	tick_error -= timekeeper.xtime_interval >> 1;
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
697
static void timekeeping_adjust(s64 offset)
698
{
699
	s64 error, interval = timekeeper.cycle_interval;
700 701
	int adj;

702
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
703 704 705 706 707
	if (error > interval) {
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
708
			adj = timekeeping_bigadjust(error, &interval, &offset);
709 710 711 712 713 714 715
	} else if (error < -interval) {
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
716
			adj = timekeeping_bigadjust(error, &interval, &offset);
717 718 719
	} else
		return;

720
	timekeeper.mult += adj;
721 722 723
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
724
				timekeeper.ntp_error_shift;
725 726
}

L
Linus Torvalds 已提交
727

728 729 730 731 732 733 734 735 736 737 738 739
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
740
	u64 raw_nsecs;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
		xtime.tv_sec++;
		second_overflow();
	}

757 758 759
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
	raw_nsecs += raw_time.tv_nsec;
760 761 762 763
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
		raw_time.tv_sec += raw_secs;
764
	}
765
	raw_time.tv_nsec = raw_nsecs;
766 767 768

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
769 770
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
771 772 773 774 775
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
776

777 778 779 780 781
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
782
static void update_wall_time(void)
783
{
784
	struct clocksource *clock;
785
	cycle_t offset;
786
	int shift = 0, maxshift;
787 788 789 790 791

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

792
	clock = timekeeper.clock;
J
John Stultz 已提交
793 794

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
795
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
796 797
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
798
#endif
799
	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
800

801 802 803 804 805 806 807
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
808
	 */
809 810 811 812 813
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
814
	while (offset >= timekeeper.cycle_interval) {
815
		offset = logarithmic_accumulation(offset, shift);
816 817
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
818 819 820
	}

	/* correct the clock when NTP error is too big */
821
	timekeeping_adjust(offset);
822

823 824 825 826
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
827
	 * slightly speeding the clocksource up in timekeeping_adjust(),
828 829 830 831 832 833 834 835 836 837 838
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
839 840 841
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
842
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
843 844
	}

J
John Stultz 已提交
845 846 847

	/*
	 * Store full nanoseconds into xtime after rounding it up and
848 849
	 * add the remainder to the error difference.
	 */
850 851 852 853
	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
854

J
John Stultz 已提交
855 856 857 858 859 860 861 862 863
	/*
	 * Finally, make sure that after the rounding
	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
	 */
	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
		xtime.tv_nsec -= NSEC_PER_SEC;
		xtime.tv_sec++;
		second_overflow();
	}
L
Linus Torvalds 已提交
864

865
	/* check to see if there is a new clocksource to use */
866 867
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
868
}
T
Tomas Janousek 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
883 884 885 886
	struct timespec boottime = {
		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
	};
887 888

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
889
}
890
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
891 892 893 894 895 896 897

/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
J
John Stultz 已提交
898
	*ts = timespec_add(*ts, total_sleep_time);
T
Tomas Janousek 已提交
899
}
900
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
901

902 903
unsigned long get_seconds(void)
{
J
John Stultz 已提交
904
	return xtime.tv_sec;
905 906 907
}
EXPORT_SYMBOL(get_seconds);

908 909
struct timespec __current_kernel_time(void)
{
J
John Stultz 已提交
910
	return xtime;
911
}
912

913 914 915 916 917 918 919
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
920

J
John Stultz 已提交
921
		now = xtime;
922 923 924 925 926
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
927 928 929 930 931 932 933 934

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
935

J
John Stultz 已提交
936
		now = xtime;
937 938 939 940 941 942 943
		mono = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
944 945 946 947 948 949 950 951 952 953 954 955

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

/**
 * get_xtime_and_monotonic_offset() - get xtime and wall_to_monotonic
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
 */
void get_xtime_and_monotonic_offset(struct timespec *xtim, struct timespec *wtom)
{
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		*xtim = xtime;
		*wtom = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));
}