timekeeping.c 49.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
/**
122
 * tk_setup_internals - Set up internals to use clocksource clock.
123
 *
124
 * @tk:		The target timekeeper to setup.
125 126 127 128 129 130 131
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
132
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 134
{
	cycle_t interval;
135
	u64 tmp, ntpinterval;
136
	struct clocksource *old_clock;
137

138 139 140 141 142
	old_clock = tk->tkr.clock;
	tk->tkr.clock = clock;
	tk->tkr.read = clock->read;
	tk->tkr.mask = clock->mask;
	tk->tkr.cycle_last = tk->tkr.read(clock);
143 144 145 146

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
147
	ntpinterval = tmp;
148 149
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
150 151 152 153
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
154
	tk->cycle_interval = interval;
155 156

	/* Go back from cycles -> shifted ns */
157 158 159
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
160
		((u64) interval * clock->mult) >> clock->shift;
161

162 163 164 165
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
166
			tk->tkr.xtime_nsec >>= -shift_change;
167
		else
168
			tk->tkr.xtime_nsec <<= shift_change;
169
	}
170
	tk->tkr.shift = clock->shift;
171

172 173
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175 176 177 178 179 180

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
181
	tk->tkr.mult = clock->mult;
182
	tk->ntp_err_mult = 0;
183
}
184

185
/* Timekeeper helper functions. */
186 187

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 189
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190
#else
191
static inline u32 arch_gettimeoffset(void) { return 0; }
192 193
#endif

194
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195
{
196
	cycle_t cycle_now, delta;
197
	s64 nsec;
198 199

	/* read clocksource: */
200
	cycle_now = tkr->read(tkr->clock);
201 202

	/* calculate the delta since the last update_wall_time: */
203
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204

205 206
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
207

208
	/* If arch requires, add in get_arch_timeoffset() */
209
	return nsec + arch_gettimeoffset();
210 211
}

212
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213
{
214
	struct clocksource *clock = tk->tkr.clock;
215
	cycle_t cycle_now, delta;
216
	s64 nsec;
217 218

	/* read clocksource: */
219
	cycle_now = tk->tkr.read(clock);
220 221

	/* calculate the delta since the last update_wall_time: */
222
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223

224
	/* convert delta to nanoseconds. */
225
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226

227
	/* If arch requires, add in get_arch_timeoffset() */
228
	return nsec + arch_gettimeoffset();
229 230
}

231 232
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233
 * @tkr: Timekeeping readout base from which we take the update
234 235 236 237 238 239 240 241 242 243 244
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
245
 * update(tkf->base[0], tkr);
246 247 248
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
249
 * update(tkf->base[1], tkr);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
270
static void update_fast_timekeeper(struct tk_read_base *tkr)
271 272 273 274 275 276 277
{
	struct tk_read_base *base = tk_fast_mono.base;

	/* Force readers off to base[1] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[0] */
278
	memcpy(base, tkr, sizeof(*base));
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

	/* Force readers back to base[0] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount(&tk_fast_mono.seq);
		tkr = tk_fast_mono.base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);

	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
	return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

335 336 337 338
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
339
	struct timespec xt, wm;
340

341
	xt = timespec64_to_timespec(tk_xtime(tk));
342 343
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
344
			    tk->tkr.cycle_last);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
361 362 363
	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
	tk->tkr.xtime_nsec -= remainder;
	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
364
	tk->ntp_error += remainder << tk->ntp_error_shift;
365
	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
366 367 368 369 370
}
#else
#define old_vsyscall_fixup(tk)
#endif

371 372
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

373
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
374
{
375
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
376 377 378 379 380 381 382
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
383
	struct timekeeper *tk = &tk_core.timekeeper;
384 385 386
	unsigned long flags;
	int ret;

387
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
388
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
389
	update_pvclock_gtod(tk, true);
390
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
391 392 393 394 395 396 397 398 399 400 401 402 403 404

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

405
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
406
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
407
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
408 409 410 411 412

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

413 414 415 416 417
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
418 419
	u64 seconds;
	u32 nsec;
420 421 422 423 424 425 426 427

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
428 429 430
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
	tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
431 432 433

	/* Update the monotonic raw base */
	tk->base_raw = timespec64_to_ktime(tk->raw_time);
434 435 436 437 438 439 440 441 442 443

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
	nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
444 445
}

446
/* must hold timekeeper_lock */
447
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
448
{
449
	if (action & TK_CLEAR_NTP) {
450
		tk->ntp_error = 0;
451 452
		ntp_clear();
	}
453

454 455
	tk_update_ktime_data(tk);

456 457 458
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

459
	if (action & TK_MIRROR)
460 461
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
462

463
	update_fast_timekeeper(&tk->tkr);
464 465
}

466
/**
467
 * timekeeping_forward_now - update clock to the current time
468
 *
469 470 471
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
472
 */
473
static void timekeeping_forward_now(struct timekeeper *tk)
474
{
475
	struct clocksource *clock = tk->tkr.clock;
476
	cycle_t cycle_now, delta;
477
	s64 nsec;
478

479 480 481
	cycle_now = tk->tkr.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
	tk->tkr.cycle_last = cycle_now;
482

483
	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
484

485
	/* If arch requires, add in get_arch_timeoffset() */
486
	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
487

488
	tk_normalize_xtime(tk);
489

490
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
491
	timespec64_add_ns(&tk->raw_time, nsec);
492 493 494
}

/**
495
 * __getnstimeofday64 - Returns the time of day in a timespec64.
496 497
 * @ts:		pointer to the timespec to be set
 *
498 499
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
500
 */
501
int __getnstimeofday64(struct timespec64 *ts)
502
{
503
	struct timekeeper *tk = &tk_core.timekeeper;
504
	unsigned long seq;
505
	s64 nsecs = 0;
506 507

	do {
508
		seq = read_seqcount_begin(&tk_core.seq);
509

510
		ts->tv_sec = tk->xtime_sec;
511
		nsecs = timekeeping_get_ns(&tk->tkr);
512

513
	} while (read_seqcount_retry(&tk_core.seq, seq));
514

515
	ts->tv_nsec = 0;
516
	timespec64_add_ns(ts, nsecs);
517 518 519 520 521 522 523 524 525

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
526
EXPORT_SYMBOL(__getnstimeofday64);
527 528

/**
529
 * getnstimeofday64 - Returns the time of day in a timespec64.
530
 * @ts:		pointer to the timespec64 to be set
531
 *
532
 * Returns the time of day in a timespec64 (WARN if suspended).
533
 */
534
void getnstimeofday64(struct timespec64 *ts)
535
{
536
	WARN_ON(__getnstimeofday64(ts));
537
}
538
EXPORT_SYMBOL(getnstimeofday64);
539

540 541
ktime_t ktime_get(void)
{
542
	struct timekeeper *tk = &tk_core.timekeeper;
543
	unsigned int seq;
544 545
	ktime_t base;
	s64 nsecs;
546 547 548 549

	WARN_ON(timekeeping_suspended);

	do {
550
		seq = read_seqcount_begin(&tk_core.seq);
551
		base = tk->tkr.base_mono;
552
		nsecs = timekeeping_get_ns(&tk->tkr);
553

554
	} while (read_seqcount_retry(&tk_core.seq, seq));
555

556
	return ktime_add_ns(base, nsecs);
557 558 559
}
EXPORT_SYMBOL_GPL(ktime_get);

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
577
		base = ktime_add(tk->tkr.base_mono, *offset);
578
		nsecs = timekeeping_get_ns(&tk->tkr);
579 580 581 582 583 584 585 586

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->base_raw;
		nsecs = timekeeping_get_ns_raw(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

628
/**
629
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
630 631 632 633
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
634
 * in normalized timespec64 format in the variable pointed to by @ts.
635
 */
636
void ktime_get_ts64(struct timespec64 *ts)
637
{
638
	struct timekeeper *tk = &tk_core.timekeeper;
639
	struct timespec64 tomono;
640
	s64 nsec;
641 642 643 644 645
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
646
		seq = read_seqcount_begin(&tk_core.seq);
647
		ts->tv_sec = tk->xtime_sec;
648
		nsec = timekeeping_get_ns(&tk->tkr);
649
		tomono = tk->wall_to_monotonic;
650

651
	} while (read_seqcount_retry(&tk_core.seq, seq));
652

653 654 655
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
656
}
657
EXPORT_SYMBOL_GPL(ktime_get_ts64);
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

707 708 709 710 711 712 713 714 715 716 717 718 719
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
720
	struct timekeeper *tk = &tk_core.timekeeper;
721 722 723 724 725 726
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
727
		seq = read_seqcount_begin(&tk_core.seq);
728

729
		*ts_raw = timespec64_to_timespec(tk->raw_time);
730
		ts_real->tv_sec = tk->xtime_sec;
731
		ts_real->tv_nsec = 0;
732

733
		nsecs_raw = timekeeping_get_ns_raw(tk);
734
		nsecs_real = timekeeping_get_ns(&tk->tkr);
735

736
	} while (read_seqcount_retry(&tk_core.seq, seq));
737 738 739 740 741 742 743 744

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

745 746 747 748
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
749
 * NOTE: Users should be converted to using getnstimeofday()
750 751 752
 */
void do_gettimeofday(struct timeval *tv)
{
753
	struct timespec64 now;
754

755
	getnstimeofday64(&now);
756 757 758 759
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
760

761
/**
762 763
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
764 765 766
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
767
int do_settimeofday64(const struct timespec64 *ts)
768
{
769
	struct timekeeper *tk = &tk_core.timekeeper;
770
	struct timespec64 ts_delta, xt;
771
	unsigned long flags;
772

773
	if (!timespec64_valid_strict(ts))
774 775
		return -EINVAL;

776
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
777
	write_seqcount_begin(&tk_core.seq);
778

779
	timekeeping_forward_now(tk);
780

781
	xt = tk_xtime(tk);
782 783
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
784

785
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
786

787
	tk_set_xtime(tk, ts);
788

789
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
790

791
	write_seqcount_end(&tk_core.seq);
792
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
793 794 795 796 797 798

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
799
EXPORT_SYMBOL(do_settimeofday64);
800

801 802 803 804 805 806 807 808
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
809
	struct timekeeper *tk = &tk_core.timekeeper;
810
	unsigned long flags;
811
	struct timespec64 ts64, tmp;
812
	int ret = 0;
813 814 815 816

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

817 818
	ts64 = timespec_to_timespec64(*ts);

819
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
820
	write_seqcount_begin(&tk_core.seq);
821

822
	timekeeping_forward_now(tk);
823

824
	/* Make sure the proposed value is valid */
825 826
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
827 828 829
		ret = -EINVAL;
		goto error;
	}
830

831 832
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
833

834
error: /* even if we error out, we forwarded the time, so call update */
835
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
836

837
	write_seqcount_end(&tk_core.seq);
838
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
839 840 841 842

	/* signal hrtimers about time change */
	clock_was_set();

843
	return ret;
844 845 846
}
EXPORT_SYMBOL(timekeeping_inject_offset);

847 848 849 850 851 852 853

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
854
	struct timekeeper *tk = &tk_core.timekeeper;
855 856 857 858
	unsigned int seq;
	s32 ret;

	do {
859
		seq = read_seqcount_begin(&tk_core.seq);
860
		ret = tk->tai_offset;
861
	} while (read_seqcount_retry(&tk_core.seq, seq));
862 863 864 865 866 867 868 869

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
870
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
871 872
{
	tk->tai_offset = tai_offset;
873
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
874 875 876 877 878 879 880 881
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
882
	struct timekeeper *tk = &tk_core.timekeeper;
883 884
	unsigned long flags;

885
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
886
	write_seqcount_begin(&tk_core.seq);
887
	__timekeeping_set_tai_offset(tk, tai_offset);
888
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
889
	write_seqcount_end(&tk_core.seq);
890
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
891
	clock_was_set();
892 893
}

894 895 896 897 898
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
899
static int change_clocksource(void *data)
900
{
901
	struct timekeeper *tk = &tk_core.timekeeper;
902
	struct clocksource *new, *old;
903
	unsigned long flags;
904

905
	new = (struct clocksource *) data;
906

907
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
908
	write_seqcount_begin(&tk_core.seq);
909

910
	timekeeping_forward_now(tk);
911 912 913 914 915 916
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
917
			old = tk->tkr.clock;
918 919 920 921 922 923 924
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
925
	}
926
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
927

928
	write_seqcount_end(&tk_core.seq);
929
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
930

931 932
	return 0;
}
933

934 935 936 937 938 939 940
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
941
int timekeeping_notify(struct clocksource *clock)
942
{
943
	struct timekeeper *tk = &tk_core.timekeeper;
944

945
	if (tk->tkr.clock == clock)
946
		return 0;
947
	stop_machine(change_clocksource, clock, NULL);
948
	tick_clock_notify();
949
	return tk->tkr.clock == clock ? 0 : -1;
950
}
951

952
/**
953 954
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
955 956 957
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
958
void getrawmonotonic64(struct timespec64 *ts)
959
{
960
	struct timekeeper *tk = &tk_core.timekeeper;
961
	struct timespec64 ts64;
962 963 964 965
	unsigned long seq;
	s64 nsecs;

	do {
966
		seq = read_seqcount_begin(&tk_core.seq);
967
		nsecs = timekeeping_get_ns_raw(tk);
968
		ts64 = tk->raw_time;
969

970
	} while (read_seqcount_retry(&tk_core.seq, seq));
971

972
	timespec64_add_ns(&ts64, nsecs);
973
	*ts = ts64;
974
}
975 976
EXPORT_SYMBOL(getrawmonotonic64);

977

978
/**
979
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
980
 */
981
int timekeeping_valid_for_hres(void)
982
{
983
	struct timekeeper *tk = &tk_core.timekeeper;
984 985 986 987
	unsigned long seq;
	int ret;

	do {
988
		seq = read_seqcount_begin(&tk_core.seq);
989

990
		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
991

992
	} while (read_seqcount_retry(&tk_core.seq, seq));
993 994 995 996

	return ret;
}

997 998 999 1000 1001
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1002
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1003 1004
	unsigned long seq;
	u64 ret;
1005

J
John Stultz 已提交
1006
	do {
1007
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1008

1009
		ret = tk->tkr.clock->max_idle_ns;
J
John Stultz 已提交
1010

1011
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1012 1013

	return ret;
1014 1015
}

1016
/**
1017
 * read_persistent_clock -  Return time from the persistent clock.
1018 1019
 *
 * Weak dummy function for arches that do not yet support it.
1020 1021
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1022 1023 1024
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1025
void __weak read_persistent_clock(struct timespec *ts)
1026
{
1027 1028
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1029 1030
}

1031 1032 1033 1034 1035 1036 1037 1038 1039
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1040
void __weak read_boot_clock(struct timespec *ts)
1041 1042 1043 1044 1045
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1046 1047 1048 1049 1050
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1051
	struct timekeeper *tk = &tk_core.timekeeper;
1052
	struct clocksource *clock;
1053
	unsigned long flags;
1054 1055
	struct timespec64 now, boot, tmp;
	struct timespec ts;
1056

1057 1058 1059
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1060 1061 1062 1063
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1064 1065
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1066

1067 1068 1069
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1070 1071 1072 1073 1074
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1075

1076
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1077
	write_seqcount_begin(&tk_core.seq);
1078 1079
	ntp_init();

1080
	clock = clocksource_default_clock();
1081 1082
	if (clock->enable)
		clock->enable(clock);
1083
	tk_setup_internals(tk, clock);
1084

1085 1086 1087
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1088
	tk->base_raw.tv64 = 0;
1089
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1090
		boot = tk_xtime(tk);
1091

1092
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1093
	tk_set_wall_to_mono(tk, tmp);
1094

1095
	timekeeping_update(tk, TK_MIRROR);
1096

1097
	write_seqcount_end(&tk_core.seq);
1098
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1099 1100 1101
}

/* time in seconds when suspend began */
1102
static struct timespec64 timekeeping_suspend_time;
1103

1104 1105 1106 1107 1108 1109 1110
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1111
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1112
					   struct timespec64 *delta)
1113
{
1114
	if (!timespec64_valid_strict(delta)) {
1115 1116 1117
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1118 1119
		return;
	}
1120
	tk_xtime_add(tk, delta);
1121
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1122
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1123
	tk_debug_account_sleep_time(delta);
1124 1125 1126
}

/**
1127 1128
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1129 1130 1131 1132 1133 1134 1135
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1136
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1137
{
1138
	struct timekeeper *tk = &tk_core.timekeeper;
1139
	unsigned long flags;
1140

1141 1142 1143 1144 1145
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1146 1147
		return;

1148
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1149
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1150

1151
	timekeeping_forward_now(tk);
1152

1153
	__timekeeping_inject_sleeptime(tk, delta);
1154

1155
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1156

1157
	write_seqcount_end(&tk_core.seq);
1158
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1159 1160 1161 1162 1163

	/* signal hrtimers about time change */
	clock_was_set();
}

1164 1165 1166 1167 1168 1169 1170
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1171
static void timekeeping_resume(void)
1172
{
1173
	struct timekeeper *tk = &tk_core.timekeeper;
1174
	struct clocksource *clock = tk->tkr.clock;
1175
	unsigned long flags;
1176 1177
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1178 1179
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1180

1181 1182
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1183

1184
	clockevents_resume();
1185 1186
	clocksource_resume();

1187
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1188
	write_seqcount_begin(&tk_core.seq);
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1202
	cycle_now = tk->tkr.read(clock);
1203
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1204
		cycle_now > tk->tkr.cycle_last) {
1205 1206 1207 1208 1209
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1210 1211
		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
						tk->tkr.mask);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1226
		ts_delta = ns_to_timespec64(nsec);
1227
		suspendtime_found = true;
1228 1229
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1230
		suspendtime_found = true;
1231
	}
1232 1233 1234 1235 1236

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1237
	tk->tkr.cycle_last = cycle_now;
1238
	tk->ntp_error = 0;
1239
	timekeeping_suspended = 0;
1240
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1241
	write_seqcount_end(&tk_core.seq);
1242
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1243 1244 1245 1246 1247 1248

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1249
	hrtimers_resume();
1250 1251
}

1252
static int timekeeping_suspend(void)
1253
{
1254
	struct timekeeper *tk = &tk_core.timekeeper;
1255
	unsigned long flags;
1256 1257 1258
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1259

1260 1261
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1262

1263 1264 1265 1266 1267 1268 1269 1270
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1271
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1272
	write_seqcount_begin(&tk_core.seq);
1273
	timekeeping_forward_now(tk);
1274
	timekeeping_suspended = 1;
1275 1276 1277 1278 1279 1280 1281

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1282 1283
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1284 1285 1286 1287 1288 1289 1290 1291 1292
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1293
			timespec64_add(timekeeping_suspend_time, delta_delta);
1294
	}
1295 1296

	timekeeping_update(tk, TK_MIRROR);
1297
	write_seqcount_end(&tk_core.seq);
1298
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1299 1300

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1301
	clocksource_suspend();
1302
	clockevents_suspend();
1303 1304 1305 1306 1307

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1308
static struct syscore_ops timekeeping_syscore_ops = {
1309 1310 1311 1312
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1313
static int __init timekeeping_init_ops(void)
1314
{
1315 1316
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1317
}
1318
device_initcall(timekeeping_init_ops);
1319 1320

/*
1321
 * Apply a multiplier adjustment to the timekeeper
1322
 */
1323 1324 1325 1326
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1327
{
1328 1329
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1330

1331 1332 1333 1334
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1335
	}
1336 1337 1338
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1339

1340 1341 1342
	/*
	 * So the following can be confusing.
	 *
1343
	 * To keep things simple, lets assume mult_adj == 1 for now.
1344
	 *
1345
	 * When mult_adj != 1, remember that the interval and offset values
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1389
	if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1390 1391 1392 1393 1394
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1395
	tk->tkr.mult += mult_adj;
1396
	tk->xtime_interval += interval;
1397
	tk->tkr.xtime_nsec -= offset;
1398
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1418 1419
	tk->ntp_tick = ntp_tick_length();

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

	if (unlikely(tk->tkr.clock->maxadj &&
1460 1461
		(abs(tk->tkr.mult - tk->tkr.clock->mult)
			> tk->tkr.clock->maxadj))) {
1462 1463 1464 1465 1466
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
			tk->tkr.clock->name, (long)tk->tkr.mult,
			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
	}
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1482 1483 1484
	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr.xtime_nsec;
		tk->tkr.xtime_nsec = 0;
1485
		tk->ntp_error += neg << tk->ntp_error_shift;
1486
	}
1487 1488
}

1489 1490 1491 1492 1493 1494 1495 1496
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1497
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1498
{
1499
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1500
	unsigned int clock_set = 0;
1501

1502
	while (tk->tkr.xtime_nsec >= nsecps) {
1503 1504
		int leap;

1505
		tk->tkr.xtime_nsec -= nsecps;
1506 1507 1508 1509
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1510
		if (unlikely(leap)) {
1511
			struct timespec64 ts;
1512 1513

			tk->xtime_sec += leap;
1514

1515 1516 1517
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1518
				timespec64_sub(tk->wall_to_monotonic, ts));
1519

1520 1521
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1522
			clock_set = TK_CLOCK_WAS_SET;
1523
		}
1524
	}
1525
	return clock_set;
1526 1527
}

1528 1529 1530 1531 1532 1533 1534 1535 1536
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1537
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1538 1539
						u32 shift,
						unsigned int *clock_set)
1540
{
T
Thomas Gleixner 已提交
1541
	cycle_t interval = tk->cycle_interval << shift;
1542
	u64 raw_nsecs;
1543

1544
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1545
	if (offset < interval)
1546 1547 1548
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1549
	offset -= interval;
1550
	tk->tkr.cycle_last += interval;
1551

1552
	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1553
	*clock_set |= accumulate_nsecs_to_secs(tk);
1554

1555
	/* Accumulate raw time */
1556
	raw_nsecs = (u64)tk->raw_interval << shift;
1557
	raw_nsecs += tk->raw_time.tv_nsec;
1558 1559 1560
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1561
		tk->raw_time.tv_sec += raw_secs;
1562
	}
1563
	tk->raw_time.tv_nsec = raw_nsecs;
1564 1565

	/* Accumulate error between NTP and clock interval */
1566
	tk->ntp_error += tk->ntp_tick << shift;
1567 1568
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1569 1570 1571 1572

	return offset;
}

1573 1574 1575 1576
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1577
void update_wall_time(void)
1578
{
1579
	struct timekeeper *real_tk = &tk_core.timekeeper;
1580
	struct timekeeper *tk = &shadow_timekeeper;
1581
	cycle_t offset;
1582
	int shift = 0, maxshift;
1583
	unsigned int clock_set = 0;
J
John Stultz 已提交
1584 1585
	unsigned long flags;

1586
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1587 1588 1589

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1590
		goto out;
1591

J
John Stultz 已提交
1592
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1593
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1594
#else
1595 1596
	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
				   tk->tkr.cycle_last, tk->tkr.mask);
1597 1598
#endif

1599
	/* Check if there's really nothing to do */
1600
	if (offset < real_tk->cycle_interval)
1601 1602
		goto out;

1603 1604 1605 1606
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1607
	 * that is smaller than the offset.  We then accumulate that
1608 1609
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1610
	 */
1611
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1612
	shift = max(0, shift);
1613
	/* Bound shift to one less than what overflows tick_length */
1614
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1615
	shift = min(shift, maxshift);
1616
	while (offset >= tk->cycle_interval) {
1617 1618
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1619
		if (offset < tk->cycle_interval<<shift)
1620
			shift--;
1621 1622 1623
	}

	/* correct the clock when NTP error is too big */
1624
	timekeeping_adjust(tk, offset);
1625

J
John Stultz 已提交
1626
	/*
1627 1628 1629 1630
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1631

J
John Stultz 已提交
1632 1633
	/*
	 * Finally, make sure that after the rounding
1634
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1635
	 */
1636
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1637

1638
	write_seqcount_begin(&tk_core.seq);
1639 1640 1641 1642 1643 1644 1645
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1646
	 * memcpy under the tk_core.seq against one before we start
1647 1648 1649
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1650
	timekeeping_update(real_tk, clock_set);
1651
	write_seqcount_end(&tk_core.seq);
1652
out:
1653
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1654
	if (clock_set)
1655 1656
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1657
}
T
Tomas Janousek 已提交
1658 1659

/**
1660 1661
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1662
 *
1663
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1664 1665 1666 1667 1668 1669
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1670
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1671
{
1672
	struct timekeeper *tk = &tk_core.timekeeper;
1673 1674
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1675
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1676
}
1677
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1678

1679 1680
unsigned long get_seconds(void)
{
1681
	struct timekeeper *tk = &tk_core.timekeeper;
1682 1683

	return tk->xtime_sec;
1684 1685 1686
}
EXPORT_SYMBOL(get_seconds);

1687 1688
struct timespec __current_kernel_time(void)
{
1689
	struct timekeeper *tk = &tk_core.timekeeper;
1690

1691
	return timespec64_to_timespec(tk_xtime(tk));
1692
}
1693

1694 1695
struct timespec current_kernel_time(void)
{
1696
	struct timekeeper *tk = &tk_core.timekeeper;
1697
	struct timespec64 now;
1698 1699 1700
	unsigned long seq;

	do {
1701
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1702

1703
		now = tk_xtime(tk);
1704
	} while (read_seqcount_retry(&tk_core.seq, seq));
1705

1706
	return timespec64_to_timespec(now);
1707 1708
}
EXPORT_SYMBOL(current_kernel_time);
1709

1710
struct timespec64 get_monotonic_coarse64(void)
1711
{
1712
	struct timekeeper *tk = &tk_core.timekeeper;
1713
	struct timespec64 now, mono;
1714 1715 1716
	unsigned long seq;

	do {
1717
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1718

1719 1720
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1721
	} while (read_seqcount_retry(&tk_core.seq, seq));
1722

1723
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1724
				now.tv_nsec + mono.tv_nsec);
1725

1726
	return now;
1727
}
1728 1729

/*
1730
 * Must hold jiffies_lock
1731 1732 1733 1734 1735 1736
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1737 1738

/**
1739 1740 1741 1742 1743 1744
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1745
 */
1746 1747
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1748
{
1749
	struct timekeeper *tk = &tk_core.timekeeper;
1750
	unsigned int seq;
1751 1752
	ktime_t base;
	u64 nsecs;
1753 1754

	do {
1755
		seq = read_seqcount_begin(&tk_core.seq);
1756

1757 1758
		base = tk->tkr.base_mono;
		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1759

1760 1761 1762
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1763
	} while (read_seqcount_retry(&tk_core.seq, seq));
1764

1765
	return ktime_add_ns(base, nsecs);
1766
}
T
Torben Hohn 已提交
1767

1768 1769
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1770
 * ktime_get_update_offsets_now - hrtimer helper
1771 1772
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1773
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1774 1775
 *
 * Returns current monotonic time and updates the offsets
1776
 * Called from hrtimer_interrupt() or retrigger_next_event()
1777
 */
1778
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1779
							ktime_t *offs_tai)
1780
{
1781
	struct timekeeper *tk = &tk_core.timekeeper;
1782
	unsigned int seq;
1783 1784
	ktime_t base;
	u64 nsecs;
1785 1786

	do {
1787
		seq = read_seqcount_begin(&tk_core.seq);
1788

1789
		base = tk->tkr.base_mono;
1790
		nsecs = timekeeping_get_ns(&tk->tkr);
1791

1792 1793
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1794
		*offs_tai = tk->offs_tai;
1795
	} while (read_seqcount_retry(&tk_core.seq, seq));
1796

1797
	return ktime_add_ns(base, nsecs);
1798 1799 1800
}
#endif

1801 1802 1803 1804 1805
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1806
	struct timekeeper *tk = &tk_core.timekeeper;
1807
	unsigned long flags;
1808
	struct timespec64 ts;
1809
	s32 orig_tai, tai;
1810 1811 1812 1813 1814 1815 1816
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1828
	getnstimeofday64(&ts);
1829

1830
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1831
	write_seqcount_begin(&tk_core.seq);
1832

1833
	orig_tai = tai = tk->tai_offset;
1834
	ret = __do_adjtimex(txc, &ts, &tai);
1835

1836 1837
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1838
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1839
	}
1840
	write_seqcount_end(&tk_core.seq);
1841 1842
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1843 1844 1845
	if (tai != orig_tai)
		clock_was_set();

1846 1847
	ntp_notify_cmos_timer();

1848 1849
	return ret;
}
1850 1851 1852 1853 1854 1855 1856

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1857 1858 1859
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1860
	write_seqcount_begin(&tk_core.seq);
1861

1862
	__hardpps(phase_ts, raw_ts);
1863

1864
	write_seqcount_end(&tk_core.seq);
1865
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1866 1867 1868 1869
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1870 1871 1872 1873 1874 1875 1876 1877
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1878
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1879
	do_timer(ticks);
1880
	write_sequnlock(&jiffies_lock);
1881
	update_wall_time();
T
Torben Hohn 已提交
1882
}