timekeeping.c 36.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
27
	struct clocksource	*clock;
28
	/* NTP adjusted clock multiplier */
29
	u32			mult;
30
	/* The shift value of the current clocksource. */
31
	u32			shift;
32
	/* Number of clock cycles in one NTP interval. */
33
	cycle_t			cycle_interval;
34
	/* Number of clock shifted nano seconds in one NTP interval. */
35
	u64			xtime_interval;
36
	/* shifted nano seconds left over when rounding cycle_interval */
37
	s64			xtime_remainder;
38
	/* Raw nano seconds accumulated per NTP interval. */
39
	u32			raw_interval;
40

41 42 43
	/* Current CLOCK_REALTIME time in seconds */
	u64			xtime_sec;
	/* Clock shifted nano seconds */
44
	u64			xtime_nsec;
45

46 47
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
48
	s64			ntp_error;
49 50
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
51
	u32			ntp_error_shift;
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66
	/*
	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
	 * at zero at system boot time, so wall_to_monotonic will be negative,
	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
	 * the usual normalization.
	 *
	 * wall_to_monotonic is moved after resume from suspend for the
	 * monotonic time not to jump. We need to add total_sleep_time to
	 * wall_to_monotonic to get the real boot based time offset.
	 *
	 * - wall_to_monotonic is no longer the boot time, getboottime must be
	 * used instead.
	 */
67
	struct timespec		wall_to_monotonic;
68
	/* time spent in suspend */
69
	struct timespec		total_sleep_time;
70
	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71
	struct timespec		raw_time;
72
	/* Offset clock monotonic -> clock realtime */
73
	ktime_t			offs_real;
74
	/* Offset clock monotonic -> clock boottime */
75
	ktime_t			offs_boot;
J
John Stultz 已提交
76
	/* Seqlock for all timekeeper values */
77
	seqlock_t		lock;
78 79
};

80
static struct timekeeper timekeeper;
81

82 83 84 85 86 87 88 89 90
/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime.
 */
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);

/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static struct timespec tk_xtime(struct timekeeper *tk)
{
	struct timespec ts;

	ts.tv_sec = tk->xtime_sec;
	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
	return ts;
}
107

108 109 110 111 112 113 114 115 116 117 118
static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
	tk->xtime_nsec = ts->tv_nsec << tk->shift;
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
	tk->xtime_nsec += ts->tv_nsec << tk->shift;
}
119

120 121 122 123 124 125 126 127 128 129 130 131 132
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
133
	u64 tmp, ntpinterval;
134
	struct clocksource *old_clock;
135

136
	old_clock = timekeeper.clock;
137 138 139 140 141 142
	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
143
	ntpinterval = tmp;
144 145
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
146 147 148 149 150 151 152 153
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
154
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
155
	timekeeper.raw_interval =
156
		((u64) interval * clock->mult) >> clock->shift;
157

158 159 160 161 162 163 164 165
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
			timekeeper.xtime_nsec >>= -shift_change;
		else
			timekeeper.xtime_nsec <<= shift_change;
	}
166
	timekeeper.shift = clock->shift;
167 168

	timekeeper.ntp_error = 0;
169
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
170 171 172 173 174 175 176

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
177
}
178

179 180 181 182 183
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
184
	s64 nsec;
185 186 187 188 189 190 191 192

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

193 194
	nsec = cycle_delta * timekeeper.mult + timekeeper.xtime_nsec;
	return nsec >> timekeeper.shift;
195 196 197 198 199 200 201 202 203 204 205 206 207 208
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

209
	/* return delta convert to nanoseconds. */
210 211 212
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

213 214 215 216 217 218 219 220
static void update_rt_offset(void)
{
	struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic;

	set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
	timekeeper.offs_real = timespec_to_ktime(tmp);
}

221 222 223
/* must hold write on timekeeper.lock */
static void timekeeping_update(bool clearntp)
{
224 225
	struct timespec xt;

226 227 228 229
	if (clearntp) {
		timekeeper.ntp_error = 0;
		ntp_clear();
	}
230
	update_rt_offset();
231 232
	xt = tk_xtime(&timekeeper);
	update_vsyscall(&xt, &timekeeper.wall_to_monotonic,
233 234 235 236
			 timekeeper.clock, timekeeper.mult);
}


237
/**
238
 * timekeeping_forward_now - update clock to the current time
239
 *
240 241 242
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
243
 */
244
static void timekeeping_forward_now(void)
245 246
{
	cycle_t cycle_now, cycle_delta;
247
	struct clocksource *clock;
248
	s64 nsec;
249

250
	clock = timekeeper.clock;
251
	cycle_now = clock->read(clock);
252
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
253
	clock->cycle_last = cycle_now;
254

255
	timekeeper.xtime_nsec += cycle_delta * timekeeper.mult;
256 257

	/* If arch requires, add in gettimeoffset() */
258
	timekeeper.xtime_nsec += arch_gettimeoffset() << timekeeper.shift;
259

260
	tk_normalize_xtime(&timekeeper);
261

262
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
263
	timespec_add_ns(&timekeeper.raw_time, nsec);
264 265 266
}

/**
267
 * getnstimeofday - Returns the time of day in a timespec
268 269
 * @ts:		pointer to the timespec to be set
 *
270
 * Returns the time of day in a timespec.
271
 */
272
void getnstimeofday(struct timespec *ts)
273 274
{
	unsigned long seq;
275
	s64 nsecs = 0;
276

277 278
	WARN_ON(timekeeping_suspended);

279
	do {
J
John Stultz 已提交
280
		seq = read_seqbegin(&timekeeper.lock);
281

282 283
		ts->tv_sec = timekeeper.xtime_sec;
		ts->tv_nsec = timekeeping_get_ns();
284

285 286 287
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

J
John Stultz 已提交
288
	} while (read_seqretry(&timekeeper.lock, seq));
289 290 291 292 293

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getnstimeofday);

294 295 296 297 298 299 300 301
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
302
		seq = read_seqbegin(&timekeeper.lock);
303
		secs = timekeeper.xtime_sec +
304
				timekeeper.wall_to_monotonic.tv_sec;
305
		nsecs = timekeeping_get_ns() +
306
				timekeeper.wall_to_monotonic.tv_nsec;
307 308
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();
309

J
John Stultz 已提交
310
	} while (read_seqretry(&timekeeper.lock, seq));
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
335
		seq = read_seqbegin(&timekeeper.lock);
336 337
		ts->tv_sec = timekeeper.xtime_sec;
		ts->tv_nsec = timekeeping_get_ns();
338
		tomono = timekeeper.wall_to_monotonic;
339
		/* If arch requires, add in gettimeoffset() */
340
		ts->tv_nsec += arch_gettimeoffset();
341

J
John Stultz 已提交
342
	} while (read_seqretry(&timekeeper.lock, seq));
343 344

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
345
				ts->tv_nsec + tomono.tv_nsec);
346 347 348
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		u32 arch_offset;

J
John Stultz 已提交
370
		seq = read_seqbegin(&timekeeper.lock);
371

372
		*ts_raw = timekeeper.raw_time;
373 374
		ts_real->tv_sec = timekeeper.xtime_sec;
		ts_real->tv_nsec = 0;
375 376 377 378 379 380 381 382 383

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

		/* If arch requires, add in gettimeoffset() */
		arch_offset = arch_gettimeoffset();
		nsecs_raw += arch_offset;
		nsecs_real += arch_offset;

J
John Stultz 已提交
384
	} while (read_seqretry(&timekeeper.lock, seq));
385 386 387 388 389 390 391 392

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

393 394 395 396
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
397
 * NOTE: Users should be converted to using getnstimeofday()
398 399 400 401 402
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

403
	getnstimeofday(&now);
404 405 406 407
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
408

409 410 411 412 413 414
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
415
int do_settimeofday(const struct timespec *tv)
416
{
417
	struct timespec ts_delta, xt;
418
	unsigned long flags;
419 420 421 422

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

423
	write_seqlock_irqsave(&timekeeper.lock, flags);
424

425
	timekeeping_forward_now();
426

427 428 429 430
	xt = tk_xtime(&timekeeper);
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

431 432
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
433

434 435
	tk_set_xtime(&timekeeper, tv);

436
	timekeeping_update(true);
437

438
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
439 440 441 442 443 444 445 446

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

447 448 449 450 451 452 453 454 455

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
456
	unsigned long flags;
457 458 459 460

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

461
	write_seqlock_irqsave(&timekeeper.lock, flags);
462 463 464

	timekeeping_forward_now();

465 466

	tk_xtime_add(&timekeeper, ts);
467 468
	timekeeper.wall_to_monotonic =
				timespec_sub(timekeeper.wall_to_monotonic, *ts);
469

470
	timekeeping_update(true);
471

472
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
473 474 475 476 477 478 479 480

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

481 482 483 484 485
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
486
static int change_clocksource(void *data)
487
{
488
	struct clocksource *new, *old;
489
	unsigned long flags;
490

491
	new = (struct clocksource *) data;
492

493 494
	write_seqlock_irqsave(&timekeeper.lock, flags);

495
	timekeeping_forward_now();
496 497 498 499 500 501
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
502 503 504 505
	timekeeping_update(true);

	write_sequnlock_irqrestore(&timekeeper.lock, flags);

506 507
	return 0;
}
508

509 510 511 512 513 514 515 516 517 518
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
519
		return;
520
	stop_machine(change_clocksource, clock, NULL);
521 522
	tick_clock_notify();
}
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
538

539 540 541 542 543 544 545 546 547 548 549 550
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
J
John Stultz 已提交
551
		seq = read_seqbegin(&timekeeper.lock);
552
		nsecs = timekeeping_get_ns_raw();
553
		*ts = timekeeper.raw_time;
554

J
John Stultz 已提交
555
	} while (read_seqretry(&timekeeper.lock, seq));
556 557 558 559 560 561

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


562
/**
563
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
564
 */
565
int timekeeping_valid_for_hres(void)
566 567 568 569 570
{
	unsigned long seq;
	int ret;

	do {
J
John Stultz 已提交
571
		seq = read_seqbegin(&timekeeper.lock);
572

573
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
574

J
John Stultz 已提交
575
	} while (read_seqretry(&timekeeper.lock, seq));
576 577 578 579

	return ret;
}

580 581 582 583 584
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
J
John Stultz 已提交
585 586
	unsigned long seq;
	u64 ret;
587

J
John Stultz 已提交
588 589 590 591 592 593 594 595
	do {
		seq = read_seqbegin(&timekeeper.lock);

		ret = timekeeper.clock->max_idle_ns;

	} while (read_seqretry(&timekeeper.lock, seq));

	return ret;
596 597
}

598
/**
599
 * read_persistent_clock -  Return time from the persistent clock.
600 601
 *
 * Weak dummy function for arches that do not yet support it.
602 603
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
604 605 606
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
607
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
608
{
609 610
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
611 612
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

628 629 630 631 632
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
633
	struct clocksource *clock;
634
	unsigned long flags;
635
	struct timespec now, boot;
636 637

	read_persistent_clock(&now);
638
	read_boot_clock(&boot);
639

J
John Stultz 已提交
640
	seqlock_init(&timekeeper.lock);
641

R
Roman Zippel 已提交
642
	ntp_init();
643

J
John Stultz 已提交
644
	write_seqlock_irqsave(&timekeeper.lock, flags);
645
	clock = clocksource_default_clock();
646 647
	if (clock->enable)
		clock->enable(clock);
648
	timekeeper_setup_internals(clock);
649

650
	tk_set_xtime(&timekeeper, &now);
651 652
	timekeeper.raw_time.tv_sec = 0;
	timekeeper.raw_time.tv_nsec = 0;
653 654 655
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
		boot = tk_xtime(&timekeeper);

656
	set_normalized_timespec(&timekeeper.wall_to_monotonic,
657
				-boot.tv_sec, -boot.tv_nsec);
658
	update_rt_offset();
659 660
	timekeeper.total_sleep_time.tv_sec = 0;
	timekeeper.total_sleep_time.tv_nsec = 0;
J
John Stultz 已提交
661
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
662 663 664
}

/* time in seconds when suspend began */
665
static struct timespec timekeeping_suspend_time;
666

667 668 669 670 671 672
static void update_sleep_time(struct timespec t)
{
	timekeeper.total_sleep_time = t;
	timekeeper.offs_boot = timespec_to_ktime(t);
}

673 674 675 676 677 678 679 680 681
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timespec *delta)
{
682
	if (!timespec_valid(delta)) {
683
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
684 685 686 687
					"sleep delta value!\n");
		return;
	}

688
	tk_xtime_add(&timekeeper, delta);
689 690
	timekeeper.wall_to_monotonic =
			timespec_sub(timekeeper.wall_to_monotonic, *delta);
691
	update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta));
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
}


/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
707
	unsigned long flags;
708 709 710 711 712 713 714
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

715
	write_seqlock_irqsave(&timekeeper.lock, flags);
J
John Stultz 已提交
716

717 718 719 720
	timekeeping_forward_now();

	__timekeeping_inject_sleeptime(delta);

721
	timekeeping_update(true);
722

723
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
724 725 726 727 728 729

	/* signal hrtimers about time change */
	clock_was_set();
}


730 731 732 733 734 735 736
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
737
static void timekeeping_resume(void)
738
{
739
	unsigned long flags;
740 741 742
	struct timespec ts;

	read_persistent_clock(&ts);
743

744 745
	clocksource_resume();

746
	write_seqlock_irqsave(&timekeeper.lock, flags);
747

748 749
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
750
		__timekeeping_inject_sleeptime(&ts);
751 752
	}
	/* re-base the last cycle value */
753 754
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
755
	timekeeping_suspended = 0;
756
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
757 758 759 760 761 762

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
763
	hrtimers_resume();
764 765
}

766
static int timekeeping_suspend(void)
767
{
768
	unsigned long flags;
769 770
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
771

772
	read_persistent_clock(&timekeeping_suspend_time);
773

774
	write_seqlock_irqsave(&timekeeper.lock, flags);
775
	timekeeping_forward_now();
776
	timekeeping_suspended = 1;
777 778 779 780 781 782 783

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
784
	delta = timespec_sub(tk_xtime(&timekeeper), timekeeping_suspend_time);
785 786 787 788 789 790 791 792 793 794 795 796
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
797
	write_sequnlock_irqrestore(&timekeeper.lock, flags);
798 799

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
800
	clocksource_suspend();
801 802 803 804 805

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
806
static struct syscore_ops timekeeping_syscore_ops = {
807 808 809 810
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

811
static int __init timekeeping_init_ops(void)
812
{
813 814
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
815 816
}

817
device_initcall(timekeeping_init_ops);
818 819 820 821 822

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
823
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
824 825 826 827 828 829 830 831 832 833 834 835
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
836
	 * here.  This is tuned so that an error of about 1 msec is adjusted
837 838
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
839
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
840 841 842 843 844 845 846 847
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
848
	tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
849
	tick_error -= timekeeper.xtime_interval >> 1;
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
874
static void timekeeping_adjust(s64 offset)
875
{
876
	s64 error, interval = timekeeper.cycle_interval;
877 878
	int adj;

879
	/*
880
	 * The point of this is to check if the error is greater than half
881 882 883 884 885
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
886 887
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
888
	 * larger than half an interval.
889
	 *
890
	 * Note: It does not "save" on aggravation when reading the code.
891
	 */
892
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
893
	if (error > interval) {
894 895
		/*
		 * We now divide error by 4(via shift), which checks if
896
		 * the error is greater than twice the interval.
897 898 899
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
900
		error >>= 2;
901 902 903 904 905
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
906
		 * The proper fix is to avoid rounding up by using
907 908 909 910
		 * the high precision timekeeper.xtime_nsec instead of
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
911 912 913
		if (likely(error <= interval))
			adj = 1;
		else
914
			adj = timekeeping_bigadjust(error, &interval, &offset);
915
	} else if (error < -interval) {
916
		/* See comment above, this is just switched for the negative */
917 918 919 920 921 922
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
923
			adj = timekeeping_bigadjust(error, &interval, &offset);
924
	} else /* No adjustment needed */
925 926
		return;

927 928 929 930 931
	if (unlikely(timekeeper.clock->maxadj &&
			(timekeeper.mult + adj >
			timekeeper.clock->mult + timekeeper.clock->maxadj))) {
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
932 933 934
			timekeeper.clock->name, (long)timekeeper.mult + adj,
			(long)timekeeper.clock->mult +
				timekeeper.clock->maxadj);
935
	}
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
985
	timekeeper.mult += adj;
986 987 988
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
989
				timekeeper.ntp_error_shift;
990 991
}

L
Linus Torvalds 已提交
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
		tk->xtime_sec += leap;
		tk->wall_to_monotonic.tv_sec -= leap;
		if (leap)
			clock_was_set_delayed();

	}
}


1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1031
static cycle_t logarithmic_accumulation(cycle_t offset, u32 shift)
1032
{
1033
	u64 raw_nsecs;
1034

1035
	/* If the offset is smaller than a shifted interval, do nothing */
1036 1037 1038 1039 1040 1041 1042 1043
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
1044 1045

	accumulate_nsecs_to_secs(&timekeeper);
1046

1047 1048
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
1049
	raw_nsecs += timekeeper.raw_time.tv_nsec;
1050 1051 1052
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1053
		timekeeper.raw_time.tv_sec += raw_secs;
1054
	}
1055
	timekeeper.raw_time.tv_nsec = raw_nsecs;
1056 1057

	/* Accumulate error between NTP and clock interval */
1058
	timekeeper.ntp_error += ntp_tick_length() << shift;
1059 1060
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
1061 1062 1063 1064 1065
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
1066

1067 1068 1069 1070
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1071
static void update_wall_time(void)
1072
{
1073
	struct clocksource *clock;
1074
	cycle_t offset;
1075
	int shift = 0, maxshift;
J
John Stultz 已提交
1076
	unsigned long flags;
1077
	s64 remainder;
J
John Stultz 已提交
1078 1079

	write_seqlock_irqsave(&timekeeper.lock, flags);
1080 1081 1082

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1083
		goto out;
1084

1085
	clock = timekeeper.clock;
J
John Stultz 已提交
1086 1087

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1088
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
1089 1090
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1091 1092
#endif

1093 1094 1095 1096
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1097
	 * that is smaller than the offset.  We then accumulate that
1098 1099
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1100
	 */
1101 1102
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
1103
	/* Bound shift to one less than what overflows tick_length */
1104
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1105
	shift = min(shift, maxshift);
1106
	while (offset >= timekeeper.cycle_interval) {
1107
		offset = logarithmic_accumulation(offset, shift);
1108 1109
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
1110 1111 1112
	}

	/* correct the clock when NTP error is too big */
1113
	timekeeping_adjust(offset);
1114

1115 1116 1117 1118
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
1119
	 * slightly speeding the clocksource up in timekeeping_adjust(),
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1131 1132 1133
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
1134
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1135 1136
	}

J
John Stultz 已提交
1137
	/*
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), this can be killed.
	*/
	remainder = timekeeper.xtime_nsec & ((1 << timekeeper.shift) - 1);
	timekeeper.xtime_nsec -= remainder;
	timekeeper.xtime_nsec += 1 << timekeeper.shift;
	timekeeper.ntp_error += remainder << timekeeper.ntp_error_shift;
1150

J
John Stultz 已提交
1151 1152
	/*
	 * Finally, make sure that after the rounding
1153
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1154
	 */
1155
	accumulate_nsecs_to_secs(&timekeeper);
L
Linus Torvalds 已提交
1156

1157
	timekeeping_update(false);
J
John Stultz 已提交
1158 1159 1160 1161

out:
	write_sequnlock_irqrestore(&timekeeper.lock, flags);

1162
}
T
Tomas Janousek 已提交
1163 1164 1165 1166 1167

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1168
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1169 1170 1171 1172 1173 1174 1175 1176
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1177
	struct timespec boottime = {
1178
		.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1179
				timekeeper.total_sleep_time.tv_sec,
1180
		.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1181
				timekeeper.total_sleep_time.tv_nsec
1182
	};
1183 1184

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1185
}
1186
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
	struct timespec tomono, sleep;
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
J
John Stultz 已提交
1206
		seq = read_seqbegin(&timekeeper.lock);
1207 1208
		ts->tv_sec = timekeeper.xtime_sec;
		ts->tv_nsec = timekeeping_get_ns();
1209
		tomono = timekeeper.wall_to_monotonic;
1210
		sleep = timekeeper.total_sleep_time;
1211

J
John Stultz 已提交
1212
	} while (read_seqretry(&timekeeper.lock, seq));
1213 1214

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1215
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1236 1237 1238 1239 1240 1241
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1242
	*ts = timespec_add(*ts, timekeeper.total_sleep_time);
T
Tomas Janousek 已提交
1243
}
1244
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1245

1246 1247
unsigned long get_seconds(void)
{
1248
	return timekeeper.xtime_sec;
1249 1250 1251
}
EXPORT_SYMBOL(get_seconds);

1252 1253
struct timespec __current_kernel_time(void)
{
1254
	return tk_xtime(&timekeeper);
1255
}
1256

1257 1258 1259 1260 1261 1262
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
J
John Stultz 已提交
1263
		seq = read_seqbegin(&timekeeper.lock);
L
Linus Torvalds 已提交
1264

1265
		now = tk_xtime(&timekeeper);
J
John Stultz 已提交
1266
	} while (read_seqretry(&timekeeper.lock, seq));
1267 1268 1269 1270

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1271 1272 1273 1274 1275 1276 1277

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
J
John Stultz 已提交
1278
		seq = read_seqbegin(&timekeeper.lock);
L
Linus Torvalds 已提交
1279

1280
		now = tk_xtime(&timekeeper);
1281
		mono = timekeeper.wall_to_monotonic;
J
John Stultz 已提交
1282
	} while (read_seqretry(&timekeeper.lock, seq));
1283 1284 1285 1286 1287

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1300 1301

/**
1302 1303
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1304 1305
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1306
 * @sleep:	pointer to timespec to be set with time in suspend
1307
 */
1308 1309
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1310 1311 1312 1313
{
	unsigned long seq;

	do {
J
John Stultz 已提交
1314
		seq = read_seqbegin(&timekeeper.lock);
1315
		*xtim = tk_xtime(&timekeeper);
1316
		*wtom = timekeeper.wall_to_monotonic;
1317
		*sleep = timekeeper.total_sleep_time;
J
John Stultz 已提交
1318
	} while (read_seqretry(&timekeeper.lock, seq));
1319
}
T
Torben Hohn 已提交
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
{
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
		seq = read_seqbegin(&timekeeper.lock);

1339 1340
		secs = timekeeper.xtime_sec;
		nsecs = timekeeping_get_ns();
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

		*offs_real = timekeeper.offs_real;
		*offs_boot = timekeeper.offs_boot;
	} while (read_seqretry(&timekeeper.lock, seq));

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1354 1355 1356 1357 1358 1359 1360 1361 1362
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
	unsigned long seq;
	struct timespec wtom;

	do {
J
John Stultz 已提交
1363
		seq = read_seqbegin(&timekeeper.lock);
1364
		wtom = timekeeper.wall_to_monotonic;
J
John Stultz 已提交
1365 1366
	} while (read_seqretry(&timekeeper.lock, seq));

1367 1368
	return timespec_to_ktime(wtom);
}
1369 1370
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1371

T
Torben Hohn 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}