timekeeping.c 54.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
#ifdef CONFIG_DEBUG_TIMEKEEPING
122 123 124 125 126 127 128 129 130 131 132 133 134 135
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
/*
 * These simple flag variables are managed
 * without locks, which is racy, but ok since
 * we don't really care about being super
 * precise about how many events were seen,
 * just that a problem was observed.
 */
static int timekeeping_underflow_seen;
static int timekeeping_overflow_seen;

/* last_warning is only modified under the timekeeping lock */
static long timekeeping_last_warning;

136 137 138
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

139 140
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
141 142

	if (offset > max_cycles) {
143
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
144
				offset, name, max_cycles);
145
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
146 147 148 149 150 151 152
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

	if (timekeeping_underflow_seen) {
		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
			timekeeping_last_warning = jiffies;
		}
		timekeeping_underflow_seen = 0;
	}

	if (timekeeping_overflow_seen) {
		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
			timekeeping_last_warning = jiffies;
		}
		timekeeping_overflow_seen = 0;
	}
173
}
174 175 176

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
177 178
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
194

195
	delta = clocksource_delta(now, last, mask);
196

197 198 199 200
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
201 202
	if (unlikely((~delta & mask) < (mask >> 3))) {
		timekeeping_underflow_seen = 1;
203
		delta = 0;
204
	}
205

206
	/* Cap delta value to the max_cycles values to avoid mult overflows */
207 208
	if (unlikely(delta > max)) {
		timekeeping_overflow_seen = 1;
209
		delta = tkr->clock->max_cycles;
210
	}
211 212 213

	return delta;
}
214 215 216 217
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
218 219 220 221 222 223 224 225 226 227 228 229
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
230 231
#endif

232
/**
233
 * tk_setup_internals - Set up internals to use clocksource clock.
234
 *
235
 * @tk:		The target timekeeper to setup.
236 237 238 239 240 241 242
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
243
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
244 245
{
	cycle_t interval;
246
	u64 tmp, ntpinterval;
247
	struct clocksource *old_clock;
248

249 250 251 252 253
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
254

P
Peter Zijlstra 已提交
255 256 257 258 259
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

260 261 262
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
263
	ntpinterval = tmp;
264 265
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
266 267 268 269
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
270
	tk->cycle_interval = interval;
271 272

	/* Go back from cycles -> shifted ns */
273 274 275
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
276
		((u64) interval * clock->mult) >> clock->shift;
277

278 279 280 281
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
282
			tk->tkr_mono.xtime_nsec >>= -shift_change;
283
		else
284
			tk->tkr_mono.xtime_nsec <<= shift_change;
285
	}
P
Peter Zijlstra 已提交
286 287
	tk->tkr_raw.xtime_nsec = 0;

288
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
289
	tk->tkr_raw.shift = clock->shift;
290

291 292
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
293
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
294 295 296 297 298 299

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
300
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
301
	tk->tkr_raw.mult = clock->mult;
302
	tk->ntp_err_mult = 0;
303
}
304

305
/* Timekeeper helper functions. */
306 307

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
308 309
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
310
#else
311
static inline u32 arch_gettimeoffset(void) { return 0; }
312 313
#endif

314
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
315
{
316
	cycle_t delta;
317
	s64 nsec;
318

319
	delta = timekeeping_get_delta(tkr);
320

321 322
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
323

324
	/* If arch requires, add in get_arch_timeoffset() */
325
	return nsec + arch_gettimeoffset();
326 327
}

328 329
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
330
 * @tkr: Timekeeping readout base from which we take the update
331 332 333 334 335 336 337 338 339 340 341
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
342
 * update(tkf->base[0], tkr);
343 344 345
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
346
 * update(tkf->base[1], tkr);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
367
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
368
{
369
	struct tk_read_base *base = tkf->base;
370 371

	/* Force readers off to base[1] */
372
	raw_write_seqcount_latch(&tkf->seq);
373 374

	/* Update base[0] */
375
	memcpy(base, tkr, sizeof(*base));
376 377

	/* Force readers back to base[0] */
378
	raw_write_seqcount_latch(&tkf->seq);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
416
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
417 418 419 420 421 422
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
423 424
		seq = raw_read_seqcount(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
425
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
426
	} while (read_seqcount_retry(&tkf->seq, seq));
427 428 429

	return now;
}
430 431 432 433 434

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
435 436
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
458
	struct tk_read_base *tkr = &tk->tkr_mono;
459 460 461 462

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
463
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
464 465
}

466 467 468 469
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
470
	struct timespec xt, wm;
471

472
	xt = timespec64_to_timespec(tk_xtime(tk));
473
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
474 475
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
492 493 494
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
495
	tk->ntp_error += remainder << tk->ntp_error_shift;
496
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
497 498 499 500 501
}
#else
#define old_vsyscall_fixup(tk)
#endif

502 503
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

504
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
505
{
506
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
507 508 509 510 511 512 513
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
514
	struct timekeeper *tk = &tk_core.timekeeper;
515 516 517
	unsigned long flags;
	int ret;

518
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
519
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
520
	update_pvclock_gtod(tk, true);
521
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
522 523 524 525 526 527 528 529 530 531 532 533 534 535

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

536
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
537
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
538
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
539 540 541 542 543

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

544 545 546 547 548
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
549 550
	u64 seconds;
	u32 nsec;
551 552 553 554 555 556 557 558

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
559 560
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
561
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
562 563

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
564
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
565 566 567 568 569 570

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
571
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
572 573 574
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
575 576
}

577
/* must hold timekeeper_lock */
578
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
579
{
580
	if (action & TK_CLEAR_NTP) {
581
		tk->ntp_error = 0;
582 583
		ntp_clear();
	}
584

585 586
	tk_update_ktime_data(tk);

587 588 589
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

590
	if (action & TK_MIRROR)
591 592
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
593

594
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
595 596
}

597
/**
598
 * timekeeping_forward_now - update clock to the current time
599
 *
600 601 602
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
603
 */
604
static void timekeeping_forward_now(struct timekeeper *tk)
605
{
606
	struct clocksource *clock = tk->tkr_mono.clock;
607
	cycle_t cycle_now, delta;
608
	s64 nsec;
609

610 611 612
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
613
	tk->tkr_raw.cycle_last  = cycle_now;
614

615
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
616

617
	/* If arch requires, add in get_arch_timeoffset() */
618
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
619

620
	tk_normalize_xtime(tk);
621

P
Peter Zijlstra 已提交
622
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
623
	timespec64_add_ns(&tk->raw_time, nsec);
624 625 626
}

/**
627
 * __getnstimeofday64 - Returns the time of day in a timespec64.
628 629
 * @ts:		pointer to the timespec to be set
 *
630 631
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
632
 */
633
int __getnstimeofday64(struct timespec64 *ts)
634
{
635
	struct timekeeper *tk = &tk_core.timekeeper;
636
	unsigned long seq;
637
	s64 nsecs = 0;
638 639

	do {
640
		seq = read_seqcount_begin(&tk_core.seq);
641

642
		ts->tv_sec = tk->xtime_sec;
643
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
644

645
	} while (read_seqcount_retry(&tk_core.seq, seq));
646

647
	ts->tv_nsec = 0;
648
	timespec64_add_ns(ts, nsecs);
649 650 651 652 653 654 655 656 657

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
658
EXPORT_SYMBOL(__getnstimeofday64);
659 660

/**
661
 * getnstimeofday64 - Returns the time of day in a timespec64.
662
 * @ts:		pointer to the timespec64 to be set
663
 *
664
 * Returns the time of day in a timespec64 (WARN if suspended).
665
 */
666
void getnstimeofday64(struct timespec64 *ts)
667
{
668
	WARN_ON(__getnstimeofday64(ts));
669
}
670
EXPORT_SYMBOL(getnstimeofday64);
671

672 673
ktime_t ktime_get(void)
{
674
	struct timekeeper *tk = &tk_core.timekeeper;
675
	unsigned int seq;
676 677
	ktime_t base;
	s64 nsecs;
678 679 680 681

	WARN_ON(timekeeping_suspended);

	do {
682
		seq = read_seqcount_begin(&tk_core.seq);
683 684
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
685

686
	} while (read_seqcount_retry(&tk_core.seq, seq));
687

688
	return ktime_add_ns(base, nsecs);
689 690 691
}
EXPORT_SYMBOL_GPL(ktime_get);

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
709 710
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
711 712 713 714 715 716 717 718

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

739 740 741 742 743 744 745 746 747 748 749 750
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
751 752
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
753 754 755 756 757 758 759

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

760
/**
761
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
762 763 764 765
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
766
 * in normalized timespec64 format in the variable pointed to by @ts.
767
 */
768
void ktime_get_ts64(struct timespec64 *ts)
769
{
770
	struct timekeeper *tk = &tk_core.timekeeper;
771
	struct timespec64 tomono;
772
	s64 nsec;
773 774 775 776 777
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
778
		seq = read_seqcount_begin(&tk_core.seq);
779
		ts->tv_sec = tk->xtime_sec;
780
		nsec = timekeeping_get_ns(&tk->tkr_mono);
781
		tomono = tk->wall_to_monotonic;
782

783
	} while (read_seqcount_retry(&tk_core.seq, seq));
784

785 786 787
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
788
}
789
EXPORT_SYMBOL_GPL(ktime_get_ts64);
790

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

839 840 841 842 843 844 845 846 847 848 849 850 851
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
852
	struct timekeeper *tk = &tk_core.timekeeper;
853 854 855 856 857 858
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
859
		seq = read_seqcount_begin(&tk_core.seq);
860

861
		*ts_raw = timespec64_to_timespec(tk->raw_time);
862
		ts_real->tv_sec = tk->xtime_sec;
863
		ts_real->tv_nsec = 0;
864

P
Peter Zijlstra 已提交
865
		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
866
		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
867

868
	} while (read_seqcount_retry(&tk_core.seq, seq));
869 870 871 872 873 874 875 876

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

877 878 879 880
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
881
 * NOTE: Users should be converted to using getnstimeofday()
882 883 884
 */
void do_gettimeofday(struct timeval *tv)
{
885
	struct timespec64 now;
886

887
	getnstimeofday64(&now);
888 889 890 891
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
892

893
/**
894 895
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
896 897 898
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
899
int do_settimeofday64(const struct timespec64 *ts)
900
{
901
	struct timekeeper *tk = &tk_core.timekeeper;
902
	struct timespec64 ts_delta, xt;
903
	unsigned long flags;
904

905
	if (!timespec64_valid_strict(ts))
906 907
		return -EINVAL;

908
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
909
	write_seqcount_begin(&tk_core.seq);
910

911
	timekeeping_forward_now(tk);
912

913
	xt = tk_xtime(tk);
914 915
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
916

917
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
918

919
	tk_set_xtime(tk, ts);
920

921
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
922

923
	write_seqcount_end(&tk_core.seq);
924
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
925 926 927 928 929 930

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
931
EXPORT_SYMBOL(do_settimeofday64);
932

933 934 935 936 937 938 939 940
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
941
	struct timekeeper *tk = &tk_core.timekeeper;
942
	unsigned long flags;
943
	struct timespec64 ts64, tmp;
944
	int ret = 0;
945 946 947 948

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

949 950
	ts64 = timespec_to_timespec64(*ts);

951
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
952
	write_seqcount_begin(&tk_core.seq);
953

954
	timekeeping_forward_now(tk);
955

956
	/* Make sure the proposed value is valid */
957 958
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
959 960 961
		ret = -EINVAL;
		goto error;
	}
962

963 964
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
965

966
error: /* even if we error out, we forwarded the time, so call update */
967
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
968

969
	write_seqcount_end(&tk_core.seq);
970
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
971 972 973 974

	/* signal hrtimers about time change */
	clock_was_set();

975
	return ret;
976 977 978
}
EXPORT_SYMBOL(timekeeping_inject_offset);

979 980 981 982 983 984 985

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
986
	struct timekeeper *tk = &tk_core.timekeeper;
987 988 989 990
	unsigned int seq;
	s32 ret;

	do {
991
		seq = read_seqcount_begin(&tk_core.seq);
992
		ret = tk->tai_offset;
993
	} while (read_seqcount_retry(&tk_core.seq, seq));
994 995 996 997 998 999 1000 1001

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1002
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1003 1004
{
	tk->tai_offset = tai_offset;
1005
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1006 1007 1008 1009 1010 1011 1012 1013
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1014
	struct timekeeper *tk = &tk_core.timekeeper;
1015 1016
	unsigned long flags;

1017
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1018
	write_seqcount_begin(&tk_core.seq);
1019
	__timekeeping_set_tai_offset(tk, tai_offset);
1020
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1021
	write_seqcount_end(&tk_core.seq);
1022
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1023
	clock_was_set();
1024 1025
}

1026 1027 1028 1029 1030
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1031
static int change_clocksource(void *data)
1032
{
1033
	struct timekeeper *tk = &tk_core.timekeeper;
1034
	struct clocksource *new, *old;
1035
	unsigned long flags;
1036

1037
	new = (struct clocksource *) data;
1038

1039
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1040
	write_seqcount_begin(&tk_core.seq);
1041

1042
	timekeeping_forward_now(tk);
1043 1044 1045 1046 1047 1048
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1049
			old = tk->tkr_mono.clock;
1050 1051 1052 1053 1054 1055 1056
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1057
	}
1058
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1059

1060
	write_seqcount_end(&tk_core.seq);
1061
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1062

1063 1064
	return 0;
}
1065

1066 1067 1068 1069 1070 1071 1072
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1073
int timekeeping_notify(struct clocksource *clock)
1074
{
1075
	struct timekeeper *tk = &tk_core.timekeeper;
1076

1077
	if (tk->tkr_mono.clock == clock)
1078
		return 0;
1079
	stop_machine(change_clocksource, clock, NULL);
1080
	tick_clock_notify();
1081
	return tk->tkr_mono.clock == clock ? 0 : -1;
1082
}
1083

1084
/**
1085 1086
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1087 1088 1089
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1090
void getrawmonotonic64(struct timespec64 *ts)
1091
{
1092
	struct timekeeper *tk = &tk_core.timekeeper;
1093
	struct timespec64 ts64;
1094 1095 1096 1097
	unsigned long seq;
	s64 nsecs;

	do {
1098
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1099
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1100
		ts64 = tk->raw_time;
1101

1102
	} while (read_seqcount_retry(&tk_core.seq, seq));
1103

1104
	timespec64_add_ns(&ts64, nsecs);
1105
	*ts = ts64;
1106
}
1107 1108
EXPORT_SYMBOL(getrawmonotonic64);

1109

1110
/**
1111
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1112
 */
1113
int timekeeping_valid_for_hres(void)
1114
{
1115
	struct timekeeper *tk = &tk_core.timekeeper;
1116 1117 1118 1119
	unsigned long seq;
	int ret;

	do {
1120
		seq = read_seqcount_begin(&tk_core.seq);
1121

1122
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1123

1124
	} while (read_seqcount_retry(&tk_core.seq, seq));
1125 1126 1127 1128

	return ret;
}

1129 1130 1131 1132 1133
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1134
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1135 1136
	unsigned long seq;
	u64 ret;
1137

J
John Stultz 已提交
1138
	do {
1139
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1140

1141
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1142

1143
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1144 1145

	return ret;
1146 1147
}

1148
/**
1149
 * read_persistent_clock -  Return time from the persistent clock.
1150 1151
 *
 * Weak dummy function for arches that do not yet support it.
1152 1153
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1154 1155 1156
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1157
void __weak read_persistent_clock(struct timespec *ts)
1158
{
1159 1160
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1161 1162
}

1163 1164 1165 1166 1167 1168 1169 1170 1171
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1172
void __weak read_boot_clock(struct timespec *ts)
1173 1174 1175 1176 1177
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1178 1179 1180 1181 1182
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1183
	struct timekeeper *tk = &tk_core.timekeeper;
1184
	struct clocksource *clock;
1185
	unsigned long flags;
1186 1187
	struct timespec64 now, boot, tmp;
	struct timespec ts;
1188

1189 1190 1191
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1192 1193 1194 1195
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1196 1197
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1198

1199 1200 1201
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1202 1203 1204 1205 1206
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1207

1208
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1209
	write_seqcount_begin(&tk_core.seq);
1210 1211
	ntp_init();

1212
	clock = clocksource_default_clock();
1213 1214
	if (clock->enable)
		clock->enable(clock);
1215
	tk_setup_internals(tk, clock);
1216

1217 1218 1219
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1220
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1221
		boot = tk_xtime(tk);
1222

1223
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1224
	tk_set_wall_to_mono(tk, tmp);
1225

1226
	timekeeping_update(tk, TK_MIRROR);
1227

1228
	write_seqcount_end(&tk_core.seq);
1229
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1230 1231 1232
}

/* time in seconds when suspend began */
1233
static struct timespec64 timekeeping_suspend_time;
1234

1235 1236 1237 1238 1239 1240 1241
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1242
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1243
					   struct timespec64 *delta)
1244
{
1245
	if (!timespec64_valid_strict(delta)) {
1246 1247 1248
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1249 1250
		return;
	}
1251
	tk_xtime_add(tk, delta);
1252
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1253
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1254
	tk_debug_account_sleep_time(delta);
1255 1256 1257
}

/**
1258 1259
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1260 1261 1262 1263 1264 1265 1266
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1267
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1268
{
1269
	struct timekeeper *tk = &tk_core.timekeeper;
1270
	unsigned long flags;
1271

1272 1273 1274 1275 1276
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1277 1278
		return;

1279
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1280
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1281

1282
	timekeeping_forward_now(tk);
1283

1284
	__timekeeping_inject_sleeptime(tk, delta);
1285

1286
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1287

1288
	write_seqcount_end(&tk_core.seq);
1289
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1290 1291 1292 1293 1294

	/* signal hrtimers about time change */
	clock_was_set();
}

1295 1296 1297 1298 1299 1300 1301
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1302
void timekeeping_resume(void)
1303
{
1304
	struct timekeeper *tk = &tk_core.timekeeper;
1305
	struct clocksource *clock = tk->tkr_mono.clock;
1306
	unsigned long flags;
1307 1308
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1309 1310
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1311

1312 1313
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1314

1315
	clockevents_resume();
1316 1317
	clocksource_resume();

1318
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1319
	write_seqcount_begin(&tk_core.seq);
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1333
	cycle_now = tk->tkr_mono.read(clock);
1334
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1335
		cycle_now > tk->tkr_mono.cycle_last) {
1336 1337 1338 1339 1340
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1341 1342
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1357
		ts_delta = ns_to_timespec64(nsec);
1358
		suspendtime_found = true;
1359 1360
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1361
		suspendtime_found = true;
1362
	}
1363 1364 1365 1366 1367

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1368
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1369 1370
	tk->tkr_raw.cycle_last  = cycle_now;

1371
	tk->ntp_error = 0;
1372
	timekeeping_suspended = 0;
1373
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1374
	write_seqcount_end(&tk_core.seq);
1375
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1376 1377 1378 1379 1380 1381

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1382
	hrtimers_resume();
1383 1384
}

1385
int timekeeping_suspend(void)
1386
{
1387
	struct timekeeper *tk = &tk_core.timekeeper;
1388
	unsigned long flags;
1389 1390 1391
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1392

1393 1394
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1395

1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1404
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1405
	write_seqcount_begin(&tk_core.seq);
1406
	timekeeping_forward_now(tk);
1407
	timekeeping_suspended = 1;
1408 1409 1410 1411 1412 1413 1414

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1415 1416
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1417 1418 1419 1420 1421 1422 1423 1424 1425
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1426
			timespec64_add(timekeeping_suspend_time, delta_delta);
1427
	}
1428 1429

	timekeeping_update(tk, TK_MIRROR);
1430
	halt_fast_timekeeper(tk);
1431
	write_seqcount_end(&tk_core.seq);
1432
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1433 1434

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1435
	clocksource_suspend();
1436
	clockevents_suspend();
1437 1438 1439 1440 1441

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1442
static struct syscore_ops timekeeping_syscore_ops = {
1443 1444 1445 1446
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1447
static int __init timekeeping_init_ops(void)
1448
{
1449 1450
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1451
}
1452
device_initcall(timekeeping_init_ops);
1453 1454

/*
1455
 * Apply a multiplier adjustment to the timekeeper
1456
 */
1457 1458 1459 1460
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1461
{
1462 1463
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1464

1465 1466 1467 1468
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1469
	}
1470 1471 1472
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1473

1474 1475 1476
	/*
	 * So the following can be confusing.
	 *
1477
	 * To keep things simple, lets assume mult_adj == 1 for now.
1478
	 *
1479
	 * When mult_adj != 1, remember that the interval and offset values
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1523
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1524 1525 1526 1527 1528
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1529
	tk->tkr_mono.mult += mult_adj;
1530
	tk->xtime_interval += interval;
1531
	tk->tkr_mono.xtime_nsec -= offset;
1532
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1552 1553
	tk->ntp_tick = ntp_tick_length();

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1593 1594 1595
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1596 1597
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1598 1599
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1600
	}
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1616 1617 1618
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1619
		tk->ntp_error += neg << tk->ntp_error_shift;
1620
	}
1621 1622
}

1623 1624 1625 1626 1627 1628 1629 1630
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1631
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1632
{
1633
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1634
	unsigned int clock_set = 0;
1635

1636
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1637 1638
		int leap;

1639
		tk->tkr_mono.xtime_nsec -= nsecps;
1640 1641 1642 1643
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1644
		if (unlikely(leap)) {
1645
			struct timespec64 ts;
1646 1647

			tk->xtime_sec += leap;
1648

1649 1650 1651
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1652
				timespec64_sub(tk->wall_to_monotonic, ts));
1653

1654 1655
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1656
			clock_set = TK_CLOCK_WAS_SET;
1657
		}
1658
	}
1659
	return clock_set;
1660 1661
}

1662 1663 1664 1665 1666 1667 1668 1669 1670
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1671
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1672 1673
						u32 shift,
						unsigned int *clock_set)
1674
{
T
Thomas Gleixner 已提交
1675
	cycle_t interval = tk->cycle_interval << shift;
1676
	u64 raw_nsecs;
1677

1678
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1679
	if (offset < interval)
1680 1681 1682
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1683
	offset -= interval;
1684
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1685
	tk->tkr_raw.cycle_last  += interval;
1686

1687
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1688
	*clock_set |= accumulate_nsecs_to_secs(tk);
1689

1690
	/* Accumulate raw time */
1691
	raw_nsecs = (u64)tk->raw_interval << shift;
1692
	raw_nsecs += tk->raw_time.tv_nsec;
1693 1694 1695
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1696
		tk->raw_time.tv_sec += raw_secs;
1697
	}
1698
	tk->raw_time.tv_nsec = raw_nsecs;
1699 1700

	/* Accumulate error between NTP and clock interval */
1701
	tk->ntp_error += tk->ntp_tick << shift;
1702 1703
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1704 1705 1706 1707

	return offset;
}

1708 1709 1710 1711
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1712
void update_wall_time(void)
1713
{
1714
	struct timekeeper *real_tk = &tk_core.timekeeper;
1715
	struct timekeeper *tk = &shadow_timekeeper;
1716
	cycle_t offset;
1717
	int shift = 0, maxshift;
1718
	unsigned int clock_set = 0;
J
John Stultz 已提交
1719 1720
	unsigned long flags;

1721
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1722 1723 1724

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1725
		goto out;
1726

J
John Stultz 已提交
1727
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1728
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1729
#else
1730 1731
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1732 1733
#endif

1734
	/* Check if there's really nothing to do */
1735
	if (offset < real_tk->cycle_interval)
1736 1737
		goto out;

1738 1739 1740
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1741 1742 1743 1744
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1745
	 * that is smaller than the offset.  We then accumulate that
1746 1747
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1748
	 */
1749
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1750
	shift = max(0, shift);
1751
	/* Bound shift to one less than what overflows tick_length */
1752
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1753
	shift = min(shift, maxshift);
1754
	while (offset >= tk->cycle_interval) {
1755 1756
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1757
		if (offset < tk->cycle_interval<<shift)
1758
			shift--;
1759 1760 1761
	}

	/* correct the clock when NTP error is too big */
1762
	timekeeping_adjust(tk, offset);
1763

J
John Stultz 已提交
1764
	/*
1765 1766 1767 1768
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1769

J
John Stultz 已提交
1770 1771
	/*
	 * Finally, make sure that after the rounding
1772
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1773
	 */
1774
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1775

1776
	write_seqcount_begin(&tk_core.seq);
1777 1778 1779 1780 1781 1782 1783
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1784
	 * memcpy under the tk_core.seq against one before we start
1785 1786 1787
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1788
	timekeeping_update(real_tk, clock_set);
1789
	write_seqcount_end(&tk_core.seq);
1790
out:
1791
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1792
	if (clock_set)
1793 1794
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1795
}
T
Tomas Janousek 已提交
1796 1797

/**
1798 1799
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1800
 *
1801
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1802 1803 1804 1805 1806 1807
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1808
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1809
{
1810
	struct timekeeper *tk = &tk_core.timekeeper;
1811 1812
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1813
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1814
}
1815
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1816

1817 1818
unsigned long get_seconds(void)
{
1819
	struct timekeeper *tk = &tk_core.timekeeper;
1820 1821

	return tk->xtime_sec;
1822 1823 1824
}
EXPORT_SYMBOL(get_seconds);

1825 1826
struct timespec __current_kernel_time(void)
{
1827
	struct timekeeper *tk = &tk_core.timekeeper;
1828

1829
	return timespec64_to_timespec(tk_xtime(tk));
1830
}
1831

1832 1833
struct timespec current_kernel_time(void)
{
1834
	struct timekeeper *tk = &tk_core.timekeeper;
1835
	struct timespec64 now;
1836 1837 1838
	unsigned long seq;

	do {
1839
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1840

1841
		now = tk_xtime(tk);
1842
	} while (read_seqcount_retry(&tk_core.seq, seq));
1843

1844
	return timespec64_to_timespec(now);
1845 1846
}
EXPORT_SYMBOL(current_kernel_time);
1847

1848
struct timespec64 get_monotonic_coarse64(void)
1849
{
1850
	struct timekeeper *tk = &tk_core.timekeeper;
1851
	struct timespec64 now, mono;
1852 1853 1854
	unsigned long seq;

	do {
1855
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1856

1857 1858
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1859
	} while (read_seqcount_retry(&tk_core.seq, seq));
1860

1861
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1862
				now.tv_nsec + mono.tv_nsec);
1863

1864
	return now;
1865
}
1866 1867

/*
1868
 * Must hold jiffies_lock
1869 1870 1871 1872 1873 1874
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1875 1876

/**
1877 1878 1879 1880 1881 1882
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1883
 */
1884 1885
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1886
{
1887
	struct timekeeper *tk = &tk_core.timekeeper;
1888
	unsigned int seq;
1889 1890
	ktime_t base;
	u64 nsecs;
1891 1892

	do {
1893
		seq = read_seqcount_begin(&tk_core.seq);
1894

1895 1896
		base = tk->tkr_mono.base;
		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1897

1898 1899 1900
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1901
	} while (read_seqcount_retry(&tk_core.seq, seq));
1902

1903
	return ktime_add_ns(base, nsecs);
1904
}
T
Torben Hohn 已提交
1905

1906 1907
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1908
 * ktime_get_update_offsets_now - hrtimer helper
1909 1910
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1911
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1912 1913
 *
 * Returns current monotonic time and updates the offsets
1914
 * Called from hrtimer_interrupt() or retrigger_next_event()
1915
 */
1916
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1917
							ktime_t *offs_tai)
1918
{
1919
	struct timekeeper *tk = &tk_core.timekeeper;
1920
	unsigned int seq;
1921 1922
	ktime_t base;
	u64 nsecs;
1923 1924

	do {
1925
		seq = read_seqcount_begin(&tk_core.seq);
1926

1927 1928
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1929

1930 1931
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1932
		*offs_tai = tk->offs_tai;
1933
	} while (read_seqcount_retry(&tk_core.seq, seq));
1934

1935
	return ktime_add_ns(base, nsecs);
1936 1937 1938
}
#endif

1939 1940 1941 1942 1943
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1944
	struct timekeeper *tk = &tk_core.timekeeper;
1945
	unsigned long flags;
1946
	struct timespec64 ts;
1947
	s32 orig_tai, tai;
1948 1949 1950 1951 1952 1953 1954
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1966
	getnstimeofday64(&ts);
1967

1968
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1969
	write_seqcount_begin(&tk_core.seq);
1970

1971
	orig_tai = tai = tk->tai_offset;
1972
	ret = __do_adjtimex(txc, &ts, &tai);
1973

1974 1975
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1976
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1977
	}
1978
	write_seqcount_end(&tk_core.seq);
1979 1980
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1981 1982 1983
	if (tai != orig_tai)
		clock_was_set();

1984 1985
	ntp_notify_cmos_timer();

1986 1987
	return ret;
}
1988 1989 1990 1991 1992 1993 1994

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1995 1996 1997
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1998
	write_seqcount_begin(&tk_core.seq);
1999

2000
	__hardpps(phase_ts, raw_ts);
2001

2002
	write_seqcount_end(&tk_core.seq);
2003
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2004 2005 2006 2007
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2008 2009 2010 2011 2012 2013 2014 2015
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2016
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2017
	do_timer(ticks);
2018
	write_sequnlock(&jiffies_lock);
2019
	update_wall_time();
T
Torben Hohn 已提交
2020
}