timekeeping.c 56.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133 134 135 136 137 138
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236 237 238 239 240
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241

P
Peter Zijlstra 已提交
242 243 244 245 246
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

247 248 249
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
250
	ntpinterval = tmp;
251 252
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
253 254 255 256
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
257
	tk->cycle_interval = interval;
258 259

	/* Go back from cycles -> shifted ns */
260 261 262
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
263
		((u64) interval * clock->mult) >> clock->shift;
264

265 266 267 268
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
269
			tk->tkr_mono.xtime_nsec >>= -shift_change;
270
		else
271
			tk->tkr_mono.xtime_nsec <<= shift_change;
272
	}
P
Peter Zijlstra 已提交
273 274
	tk->tkr_raw.xtime_nsec = 0;

275
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
276
	tk->tkr_raw.shift = clock->shift;
277

278 279
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281 282 283 284 285 286

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
287
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
288
	tk->tkr_raw.mult = clock->mult;
289
	tk->ntp_err_mult = 0;
290
}
291

292
/* Timekeeper helper functions. */
293 294

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 296
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297
#else
298
static inline u32 arch_gettimeoffset(void) { return 0; }
299 300
#endif

301
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302
{
303
	cycle_t delta;
304
	s64 nsec;
305

306
	delta = timekeeping_get_delta(tkr);
307

308
	nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
309

310
	/* If arch requires, add in get_arch_timeoffset() */
311
	return nsec + arch_gettimeoffset();
312 313
}

314 315
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
316
 * @tkr: Timekeeping readout base from which we take the update
317 318 319 320
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
321
 * Employ the latch technique; see @raw_write_seqcount_latch.
322 323 324 325 326 327
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
328
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
329
{
330
	struct tk_read_base *base = tkf->base;
331 332

	/* Force readers off to base[1] */
333
	raw_write_seqcount_latch(&tkf->seq);
334 335

	/* Update base[0] */
336
	memcpy(base, tkr, sizeof(*base));
337 338

	/* Force readers back to base[0] */
339
	raw_write_seqcount_latch(&tkf->seq);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
377
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
378 379 380 381 382 383
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
384
		seq = raw_read_seqcount_latch(&tkf->seq);
385
		tkr = tkf->base + (seq & 0x01);
386
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
387
	} while (read_seqcount_retry(&tkf->seq, seq));
388 389 390

	return now;
}
391 392 393 394 395

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
396 397
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
398 399 400 401 402 403
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
425
	struct tk_read_base *tkr = &tk->tkr_mono;
426 427 428 429

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
430
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
431 432 433 434 435

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
436 437
}

438 439 440 441
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
442
	struct timespec xt, wm;
443

444
	xt = timespec64_to_timespec(tk_xtime(tk));
445
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
446 447
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
464 465 466
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
467
	tk->ntp_error += remainder << tk->ntp_error_shift;
468
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
469 470 471 472 473
}
#else
#define old_vsyscall_fixup(tk)
#endif

474 475
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

476
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
477
{
478
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
479 480 481 482 483 484 485
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
486
	struct timekeeper *tk = &tk_core.timekeeper;
487 488 489
	unsigned long flags;
	int ret;

490
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
491
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
492
	update_pvclock_gtod(tk, true);
493
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
494 495 496 497 498 499 500 501 502 503 504 505 506 507

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

508
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
509
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
510
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
511 512 513 514 515

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

516 517 518 519 520 521 522 523 524 525 526
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

527 528 529 530 531
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
532 533
	u64 seconds;
	u32 nsec;
534 535 536 537 538 539 540 541

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
542 543
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
544
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
545 546

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
547
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
548 549 550 551 552 553

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
554
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
555 556 557
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
558 559
}

560
/* must hold timekeeper_lock */
561
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
562
{
563
	if (action & TK_CLEAR_NTP) {
564
		tk->ntp_error = 0;
565 566
		ntp_clear();
	}
567

568
	tk_update_leap_state(tk);
569 570
	tk_update_ktime_data(tk);

571 572 573
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

574
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
575
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
576 577 578

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
579 580 581 582 583 584 585 586
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
587 588
}

589
/**
590
 * timekeeping_forward_now - update clock to the current time
591
 *
592 593 594
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
595
 */
596
static void timekeeping_forward_now(struct timekeeper *tk)
597
{
598
	struct clocksource *clock = tk->tkr_mono.clock;
599
	cycle_t cycle_now, delta;
600
	s64 nsec;
601

602 603 604
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
605
	tk->tkr_raw.cycle_last  = cycle_now;
606

607
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
608

609
	/* If arch requires, add in get_arch_timeoffset() */
610
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
611

612
	tk_normalize_xtime(tk);
613

P
Peter Zijlstra 已提交
614
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
615
	timespec64_add_ns(&tk->raw_time, nsec);
616 617 618
}

/**
619
 * __getnstimeofday64 - Returns the time of day in a timespec64.
620 621
 * @ts:		pointer to the timespec to be set
 *
622 623
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
624
 */
625
int __getnstimeofday64(struct timespec64 *ts)
626
{
627
	struct timekeeper *tk = &tk_core.timekeeper;
628
	unsigned long seq;
629
	s64 nsecs = 0;
630 631

	do {
632
		seq = read_seqcount_begin(&tk_core.seq);
633

634
		ts->tv_sec = tk->xtime_sec;
635
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
636

637
	} while (read_seqcount_retry(&tk_core.seq, seq));
638

639
	ts->tv_nsec = 0;
640
	timespec64_add_ns(ts, nsecs);
641 642 643 644 645 646 647 648 649

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
650
EXPORT_SYMBOL(__getnstimeofday64);
651 652

/**
653
 * getnstimeofday64 - Returns the time of day in a timespec64.
654
 * @ts:		pointer to the timespec64 to be set
655
 *
656
 * Returns the time of day in a timespec64 (WARN if suspended).
657
 */
658
void getnstimeofday64(struct timespec64 *ts)
659
{
660
	WARN_ON(__getnstimeofday64(ts));
661
}
662
EXPORT_SYMBOL(getnstimeofday64);
663

664 665
ktime_t ktime_get(void)
{
666
	struct timekeeper *tk = &tk_core.timekeeper;
667
	unsigned int seq;
668 669
	ktime_t base;
	s64 nsecs;
670 671 672 673

	WARN_ON(timekeeping_suspended);

	do {
674
		seq = read_seqcount_begin(&tk_core.seq);
675 676
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
677

678
	} while (read_seqcount_retry(&tk_core.seq, seq));
679

680
	return ktime_add_ns(base, nsecs);
681 682 683
}
EXPORT_SYMBOL_GPL(ktime_get);

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
718 719
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
720 721 722 723 724 725 726 727

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

748 749 750 751 752 753 754 755 756 757 758 759
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
760 761
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
762 763 764 765 766 767 768

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

769
/**
770
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
771 772 773 774
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
775
 * in normalized timespec64 format in the variable pointed to by @ts.
776
 */
777
void ktime_get_ts64(struct timespec64 *ts)
778
{
779
	struct timekeeper *tk = &tk_core.timekeeper;
780
	struct timespec64 tomono;
781
	s64 nsec;
782 783 784 785 786
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
787
		seq = read_seqcount_begin(&tk_core.seq);
788
		ts->tv_sec = tk->xtime_sec;
789
		nsec = timekeeping_get_ns(&tk->tkr_mono);
790
		tomono = tk->wall_to_monotonic;
791

792
	} while (read_seqcount_retry(&tk_core.seq, seq));
793

794 795 796
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
797
}
798
EXPORT_SYMBOL_GPL(ktime_get_ts64);
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

848 849 850 851 852 853 854 855 856 857 858 859 860
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}


861 862 863
#ifdef CONFIG_NTP_PPS

/**
864
 * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
865 866 867 868 869 870 871
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
872
void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
873
{
874
	struct timekeeper *tk = &tk_core.timekeeper;
875 876 877 878 879 880
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
881
		seq = read_seqcount_begin(&tk_core.seq);
882

883
		*ts_raw = tk->raw_time;
884
		ts_real->tv_sec = tk->xtime_sec;
885
		ts_real->tv_nsec = 0;
886

P
Peter Zijlstra 已提交
887
		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
888
		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
889

890
	} while (read_seqcount_retry(&tk_core.seq, seq));
891

892 893
	timespec64_add_ns(ts_raw, nsecs_raw);
	timespec64_add_ns(ts_real, nsecs_real);
894
}
895
EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
896 897 898

#endif /* CONFIG_NTP_PPS */

899 900 901 902
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
903
 * NOTE: Users should be converted to using getnstimeofday()
904 905 906
 */
void do_gettimeofday(struct timeval *tv)
{
907
	struct timespec64 now;
908

909
	getnstimeofday64(&now);
910 911 912 913
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
914

915
/**
916 917
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
918 919 920
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
921
int do_settimeofday64(const struct timespec64 *ts)
922
{
923
	struct timekeeper *tk = &tk_core.timekeeper;
924
	struct timespec64 ts_delta, xt;
925
	unsigned long flags;
926
	int ret = 0;
927

928
	if (!timespec64_valid_strict(ts))
929 930
		return -EINVAL;

931
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
932
	write_seqcount_begin(&tk_core.seq);
933

934
	timekeeping_forward_now(tk);
935

936
	xt = tk_xtime(tk);
937 938
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
939

940 941 942 943 944
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

945
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
946

947
	tk_set_xtime(tk, ts);
948
out:
949
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
950

951
	write_seqcount_end(&tk_core.seq);
952
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
953 954 955 956

	/* signal hrtimers about time change */
	clock_was_set();

957
	return ret;
958
}
959
EXPORT_SYMBOL(do_settimeofday64);
960

961 962 963 964 965 966 967 968
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
969
	struct timekeeper *tk = &tk_core.timekeeper;
970
	unsigned long flags;
971
	struct timespec64 ts64, tmp;
972
	int ret = 0;
973

974
	if (!timespec_inject_offset_valid(ts))
975 976
		return -EINVAL;

977 978
	ts64 = timespec_to_timespec64(*ts);

979
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
980
	write_seqcount_begin(&tk_core.seq);
981

982
	timekeeping_forward_now(tk);
983

984
	/* Make sure the proposed value is valid */
985
	tmp = timespec64_add(tk_xtime(tk),  ts64);
986 987
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
988 989 990
		ret = -EINVAL;
		goto error;
	}
991

992 993
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
994

995
error: /* even if we error out, we forwarded the time, so call update */
996
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
997

998
	write_seqcount_end(&tk_core.seq);
999
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1000 1001 1002 1003

	/* signal hrtimers about time change */
	clock_was_set();

1004
	return ret;
1005 1006 1007
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1008 1009 1010 1011 1012 1013 1014

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1015
	struct timekeeper *tk = &tk_core.timekeeper;
1016 1017 1018 1019
	unsigned int seq;
	s32 ret;

	do {
1020
		seq = read_seqcount_begin(&tk_core.seq);
1021
		ret = tk->tai_offset;
1022
	} while (read_seqcount_retry(&tk_core.seq, seq));
1023 1024 1025 1026 1027 1028 1029 1030

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1031
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1032 1033
{
	tk->tai_offset = tai_offset;
1034
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1035 1036 1037 1038 1039 1040 1041 1042
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1043
	struct timekeeper *tk = &tk_core.timekeeper;
1044 1045
	unsigned long flags;

1046
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1047
	write_seqcount_begin(&tk_core.seq);
1048
	__timekeeping_set_tai_offset(tk, tai_offset);
1049
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1050
	write_seqcount_end(&tk_core.seq);
1051
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1052
	clock_was_set();
1053 1054
}

1055 1056 1057 1058 1059
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1060
static int change_clocksource(void *data)
1061
{
1062
	struct timekeeper *tk = &tk_core.timekeeper;
1063
	struct clocksource *new, *old;
1064
	unsigned long flags;
1065

1066
	new = (struct clocksource *) data;
1067

1068
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1069
	write_seqcount_begin(&tk_core.seq);
1070

1071
	timekeeping_forward_now(tk);
1072 1073 1074 1075 1076 1077
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1078
			old = tk->tkr_mono.clock;
1079 1080 1081 1082 1083 1084 1085
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1086
	}
1087
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1088

1089
	write_seqcount_end(&tk_core.seq);
1090
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1091

1092 1093
	return 0;
}
1094

1095 1096 1097 1098 1099 1100 1101
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1102
int timekeeping_notify(struct clocksource *clock)
1103
{
1104
	struct timekeeper *tk = &tk_core.timekeeper;
1105

1106
	if (tk->tkr_mono.clock == clock)
1107
		return 0;
1108
	stop_machine(change_clocksource, clock, NULL);
1109
	tick_clock_notify();
1110
	return tk->tkr_mono.clock == clock ? 0 : -1;
1111
}
1112

1113
/**
1114 1115
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1116 1117 1118
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1119
void getrawmonotonic64(struct timespec64 *ts)
1120
{
1121
	struct timekeeper *tk = &tk_core.timekeeper;
1122
	struct timespec64 ts64;
1123 1124 1125 1126
	unsigned long seq;
	s64 nsecs;

	do {
1127
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1128
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1129
		ts64 = tk->raw_time;
1130

1131
	} while (read_seqcount_retry(&tk_core.seq, seq));
1132

1133
	timespec64_add_ns(&ts64, nsecs);
1134
	*ts = ts64;
1135
}
1136 1137
EXPORT_SYMBOL(getrawmonotonic64);

1138

1139
/**
1140
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1141
 */
1142
int timekeeping_valid_for_hres(void)
1143
{
1144
	struct timekeeper *tk = &tk_core.timekeeper;
1145 1146 1147 1148
	unsigned long seq;
	int ret;

	do {
1149
		seq = read_seqcount_begin(&tk_core.seq);
1150

1151
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1152

1153
	} while (read_seqcount_retry(&tk_core.seq, seq));
1154 1155 1156 1157

	return ret;
}

1158 1159 1160 1161 1162
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1163
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1164 1165
	unsigned long seq;
	u64 ret;
1166

J
John Stultz 已提交
1167
	do {
1168
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1169

1170
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1171

1172
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1173 1174

	return ret;
1175 1176
}

1177
/**
1178
 * read_persistent_clock -  Return time from the persistent clock.
1179 1180
 *
 * Weak dummy function for arches that do not yet support it.
1181 1182
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1183 1184 1185
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1186
void __weak read_persistent_clock(struct timespec *ts)
1187
{
1188 1189
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1190 1191
}

1192 1193 1194 1195 1196 1197 1198 1199
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1200
/**
X
Xunlei Pang 已提交
1201
 * read_boot_clock64 -  Return time of the system start.
1202 1203 1204
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1205
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1206 1207 1208
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1209
void __weak read_boot_clock64(struct timespec64 *ts)
1210 1211 1212 1213 1214
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1215 1216 1217 1218 1219 1220
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1221 1222 1223 1224 1225
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1226
	struct timekeeper *tk = &tk_core.timekeeper;
1227
	struct clocksource *clock;
1228
	unsigned long flags;
1229
	struct timespec64 now, boot, tmp;
1230

1231
	read_persistent_clock64(&now);
1232
	if (!timespec64_valid_strict(&now)) {
1233 1234 1235 1236
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1237
	} else if (now.tv_sec || now.tv_nsec)
1238
		persistent_clock_exists = true;
1239

1240
	read_boot_clock64(&boot);
1241
	if (!timespec64_valid_strict(&boot)) {
1242 1243 1244 1245 1246
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1247

1248
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1249
	write_seqcount_begin(&tk_core.seq);
1250 1251
	ntp_init();

1252
	clock = clocksource_default_clock();
1253 1254
	if (clock->enable)
		clock->enable(clock);
1255
	tk_setup_internals(tk, clock);
1256

1257 1258 1259
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1260
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1261
		boot = tk_xtime(tk);
1262

1263
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1264
	tk_set_wall_to_mono(tk, tmp);
1265

1266
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1267

1268
	write_seqcount_end(&tk_core.seq);
1269
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1270 1271
}

1272
/* time in seconds when suspend began for persistent clock */
1273
static struct timespec64 timekeeping_suspend_time;
1274

1275 1276 1277 1278 1279 1280 1281
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1282
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1283
					   struct timespec64 *delta)
1284
{
1285
	if (!timespec64_valid_strict(delta)) {
1286 1287 1288
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1289 1290
		return;
	}
1291
	tk_xtime_add(tk, delta);
1292
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1293
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1294
	tk_debug_account_sleep_time(delta);
1295 1296
}

1297
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1333
/**
1334 1335
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1336
 *
1337
 * This hook is for architectures that cannot support read_persistent_clock64
1338
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1339
 * and also don't have an effective nonstop clocksource.
1340 1341 1342 1343
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1344
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1345
{
1346
	struct timekeeper *tk = &tk_core.timekeeper;
1347
	unsigned long flags;
1348

1349
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1350
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1351

1352
	timekeeping_forward_now(tk);
1353

1354
	__timekeeping_inject_sleeptime(tk, delta);
1355

1356
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1357

1358
	write_seqcount_end(&tk_core.seq);
1359
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1360 1361 1362 1363

	/* signal hrtimers about time change */
	clock_was_set();
}
1364
#endif
1365

1366 1367 1368
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1369
void timekeeping_resume(void)
1370
{
1371
	struct timekeeper *tk = &tk_core.timekeeper;
1372
	struct clocksource *clock = tk->tkr_mono.clock;
1373
	unsigned long flags;
1374
	struct timespec64 ts_new, ts_delta;
1375
	cycle_t cycle_now, cycle_delta;
1376

1377
	sleeptime_injected = false;
1378
	read_persistent_clock64(&ts_new);
1379

1380
	clockevents_resume();
1381 1382
	clocksource_resume();

1383
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1384
	write_seqcount_begin(&tk_core.seq);
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1398
	cycle_now = tk->tkr_mono.read(clock);
1399
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1400
		cycle_now > tk->tkr_mono.cycle_last) {
1401 1402 1403 1404 1405
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1406 1407
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1422
		ts_delta = ns_to_timespec64(nsec);
1423
		sleeptime_injected = true;
1424 1425
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1426
		sleeptime_injected = true;
1427
	}
1428

1429
	if (sleeptime_injected)
1430 1431 1432
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1433
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1434 1435
	tk->tkr_raw.cycle_last  = cycle_now;

1436
	tk->ntp_error = 0;
1437
	timekeeping_suspended = 0;
1438
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1439
	write_seqcount_end(&tk_core.seq);
1440
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1441 1442 1443

	touch_softlockup_watchdog();

1444
	tick_resume();
1445
	hrtimers_resume();
1446 1447
}

1448
int timekeeping_suspend(void)
1449
{
1450
	struct timekeeper *tk = &tk_core.timekeeper;
1451
	unsigned long flags;
1452 1453
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1454

1455
	read_persistent_clock64(&timekeeping_suspend_time);
1456

1457 1458 1459 1460 1461 1462
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1463
		persistent_clock_exists = true;
1464

1465
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1466
	write_seqcount_begin(&tk_core.seq);
1467
	timekeeping_forward_now(tk);
1468
	timekeeping_suspended = 1;
1469

1470
	if (persistent_clock_exists) {
1471
		/*
1472 1473 1474 1475
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1476
		 */
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1490
	}
1491 1492

	timekeeping_update(tk, TK_MIRROR);
1493
	halt_fast_timekeeper(tk);
1494
	write_seqcount_end(&tk_core.seq);
1495
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1496

1497
	tick_suspend();
M
Magnus Damm 已提交
1498
	clocksource_suspend();
1499
	clockevents_suspend();
1500 1501 1502 1503 1504

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1505
static struct syscore_ops timekeeping_syscore_ops = {
1506 1507 1508 1509
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1510
static int __init timekeeping_init_ops(void)
1511
{
1512 1513
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1514
}
1515
device_initcall(timekeeping_init_ops);
1516 1517

/*
1518
 * Apply a multiplier adjustment to the timekeeper
1519
 */
1520 1521 1522 1523
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1524
{
1525 1526
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1527

1528 1529 1530 1531
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1532
	}
1533 1534 1535
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1536

1537 1538 1539
	/*
	 * So the following can be confusing.
	 *
1540
	 * To keep things simple, lets assume mult_adj == 1 for now.
1541
	 *
1542
	 * When mult_adj != 1, remember that the interval and offset values
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1586
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1587 1588 1589 1590 1591
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1592
	tk->tkr_mono.mult += mult_adj;
1593
	tk->xtime_interval += interval;
1594
	tk->tkr_mono.xtime_nsec -= offset;
1595
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1607 1608 1609
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1610 1611
	s64 tick_error;
	bool negative;
1612
	u32 adj_scale;
1613 1614 1615 1616 1617

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1618 1619
	tk->ntp_tick = ntp_tick_length();

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1642
	tick_error = abs(tick_error);
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1653
		tick_error >>= 1;
1654
	}
1655 1656

	/* scale the corrections */
1657
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1679 1680 1681
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1682 1683
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1684 1685
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1686
	}
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1702 1703 1704
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1705
		tk->ntp_error += neg << tk->ntp_error_shift;
1706
	}
1707 1708
}

1709 1710 1711
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1712
 * Helper function that accumulates the nsecs greater than a second
1713 1714 1715 1716
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1717
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1718
{
1719
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1720
	unsigned int clock_set = 0;
1721

1722
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1723 1724
		int leap;

1725
		tk->tkr_mono.xtime_nsec -= nsecps;
1726 1727 1728 1729
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1730
		if (unlikely(leap)) {
1731
			struct timespec64 ts;
1732 1733

			tk->xtime_sec += leap;
1734

1735 1736 1737
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1738
				timespec64_sub(tk->wall_to_monotonic, ts));
1739

1740 1741
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1742
			clock_set = TK_CLOCK_WAS_SET;
1743
		}
1744
	}
1745
	return clock_set;
1746 1747
}

1748 1749 1750 1751 1752 1753 1754 1755 1756
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1757
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1758 1759
						u32 shift,
						unsigned int *clock_set)
1760
{
T
Thomas Gleixner 已提交
1761
	cycle_t interval = tk->cycle_interval << shift;
1762
	u64 raw_nsecs;
1763

Z
Zhen Lei 已提交
1764
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1765
	if (offset < interval)
1766 1767 1768
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1769
	offset -= interval;
1770
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1771
	tk->tkr_raw.cycle_last  += interval;
1772

1773
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1774
	*clock_set |= accumulate_nsecs_to_secs(tk);
1775

1776
	/* Accumulate raw time */
1777
	raw_nsecs = (u64)tk->raw_interval << shift;
1778
	raw_nsecs += tk->raw_time.tv_nsec;
1779 1780 1781
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1782
		tk->raw_time.tv_sec += raw_secs;
1783
	}
1784
	tk->raw_time.tv_nsec = raw_nsecs;
1785 1786

	/* Accumulate error between NTP and clock interval */
1787
	tk->ntp_error += tk->ntp_tick << shift;
1788 1789
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1790 1791 1792 1793

	return offset;
}

1794 1795 1796 1797
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1798
void update_wall_time(void)
1799
{
1800
	struct timekeeper *real_tk = &tk_core.timekeeper;
1801
	struct timekeeper *tk = &shadow_timekeeper;
1802
	cycle_t offset;
1803
	int shift = 0, maxshift;
1804
	unsigned int clock_set = 0;
J
John Stultz 已提交
1805 1806
	unsigned long flags;

1807
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1808 1809 1810

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1811
		goto out;
1812

J
John Stultz 已提交
1813
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1814
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1815
#else
1816 1817
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1818 1819
#endif

1820
	/* Check if there's really nothing to do */
1821
	if (offset < real_tk->cycle_interval)
1822 1823
		goto out;

1824 1825 1826
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1827 1828 1829 1830
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1831
	 * that is smaller than the offset.  We then accumulate that
1832 1833
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1834
	 */
1835
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1836
	shift = max(0, shift);
1837
	/* Bound shift to one less than what overflows tick_length */
1838
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1839
	shift = min(shift, maxshift);
1840
	while (offset >= tk->cycle_interval) {
1841 1842
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1843
		if (offset < tk->cycle_interval<<shift)
1844
			shift--;
1845 1846 1847
	}

	/* correct the clock when NTP error is too big */
1848
	timekeeping_adjust(tk, offset);
1849

J
John Stultz 已提交
1850
	/*
1851 1852 1853 1854
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1855

J
John Stultz 已提交
1856 1857
	/*
	 * Finally, make sure that after the rounding
1858
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1859
	 */
1860
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1861

1862
	write_seqcount_begin(&tk_core.seq);
1863 1864 1865 1866 1867 1868 1869
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1870
	 * memcpy under the tk_core.seq against one before we start
1871 1872
	 * updating.
	 */
1873
	timekeeping_update(tk, clock_set);
1874
	memcpy(real_tk, tk, sizeof(*tk));
1875
	/* The memcpy must come last. Do not put anything here! */
1876
	write_seqcount_end(&tk_core.seq);
1877
out:
1878
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1879
	if (clock_set)
1880 1881
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1882
}
T
Tomas Janousek 已提交
1883 1884

/**
1885 1886
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1887
 *
1888
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1889 1890 1891 1892 1893 1894
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1895
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1896
{
1897
	struct timekeeper *tk = &tk_core.timekeeper;
1898 1899
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1900
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1901
}
1902
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1903

1904 1905
unsigned long get_seconds(void)
{
1906
	struct timekeeper *tk = &tk_core.timekeeper;
1907 1908

	return tk->xtime_sec;
1909 1910 1911
}
EXPORT_SYMBOL(get_seconds);

1912 1913
struct timespec __current_kernel_time(void)
{
1914
	struct timekeeper *tk = &tk_core.timekeeper;
1915

1916
	return timespec64_to_timespec(tk_xtime(tk));
1917
}
1918

1919
struct timespec64 current_kernel_time64(void)
1920
{
1921
	struct timekeeper *tk = &tk_core.timekeeper;
1922
	struct timespec64 now;
1923 1924 1925
	unsigned long seq;

	do {
1926
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1927

1928
		now = tk_xtime(tk);
1929
	} while (read_seqcount_retry(&tk_core.seq, seq));
1930

1931
	return now;
1932
}
1933
EXPORT_SYMBOL(current_kernel_time64);
1934

1935
struct timespec64 get_monotonic_coarse64(void)
1936
{
1937
	struct timekeeper *tk = &tk_core.timekeeper;
1938
	struct timespec64 now, mono;
1939 1940 1941
	unsigned long seq;

	do {
1942
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1943

1944 1945
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1946
	} while (read_seqcount_retry(&tk_core.seq, seq));
1947

1948
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1949
				now.tv_nsec + mono.tv_nsec);
1950

1951
	return now;
1952
}
1953 1954

/*
1955
 * Must hold jiffies_lock
1956 1957 1958 1959 1960 1961
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1962

1963
/**
1964
 * ktime_get_update_offsets_now - hrtimer helper
1965
 * @cwsseq:	pointer to check and store the clock was set sequence number
1966 1967
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1968
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1969
 *
1970 1971 1972 1973
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
1974
 * Called from hrtimer_interrupt() or retrigger_next_event()
1975
 */
1976 1977
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
1978
{
1979
	struct timekeeper *tk = &tk_core.timekeeper;
1980
	unsigned int seq;
1981 1982
	ktime_t base;
	u64 nsecs;
1983 1984

	do {
1985
		seq = read_seqcount_begin(&tk_core.seq);
1986

1987 1988
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1989 1990
		base = ktime_add_ns(base, nsecs);

1991 1992 1993 1994 1995 1996
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
1997 1998 1999 2000 2001

		/* Handle leapsecond insertion adjustments */
		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2002
	} while (read_seqcount_retry(&tk_core.seq, seq));
2003

2004
	return base;
2005 2006
}

2007 2008 2009 2010 2011
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2012
	struct timekeeper *tk = &tk_core.timekeeper;
2013
	unsigned long flags;
2014
	struct timespec64 ts;
2015
	s32 orig_tai, tai;
2016 2017 2018 2019 2020 2021 2022
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2034
	getnstimeofday64(&ts);
2035

2036
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2037
	write_seqcount_begin(&tk_core.seq);
2038

2039
	orig_tai = tai = tk->tai_offset;
2040
	ret = __do_adjtimex(txc, &ts, &tai);
2041

2042 2043
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2044
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2045
	}
2046 2047
	tk_update_leap_state(tk);

2048
	write_seqcount_end(&tk_core.seq);
2049 2050
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2051 2052 2053
	if (tai != orig_tai)
		clock_was_set();

2054 2055
	ntp_notify_cmos_timer();

2056 2057
	return ret;
}
2058 2059 2060 2061 2062

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2063
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2064
{
2065 2066 2067
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2068
	write_seqcount_begin(&tk_core.seq);
2069

2070
	__hardpps(phase_ts, raw_ts);
2071

2072
	write_seqcount_end(&tk_core.seq);
2073
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2074 2075 2076 2077
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2078 2079 2080 2081 2082 2083 2084 2085
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2086
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2087
	do_timer(ticks);
2088
	write_sequnlock(&jiffies_lock);
2089
	update_wall_time();
T
Torben Hohn 已提交
2090
}