timekeeping.c 55.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

122 123 124
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

125 126
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
127 128

	if (offset > max_cycles) {
129
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130
				offset, name, max_cycles);
131
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 133 134 135 136 137 138
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
139

140 141
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
142 143 144
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
145
			tk->last_warning = jiffies;
146
		}
147
		tk->underflow_seen = 0;
148 149
	}

150 151
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
152 153 154
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
155
			tk->last_warning = jiffies;
156
		}
157
		tk->overflow_seen = 0;
158
	}
159
}
160 161 162

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
163
	struct timekeeper *tk = &tk_core.timekeeper;
164 165
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
181

182
	delta = clocksource_delta(now, last, mask);
183

184 185 186 187
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
188
	if (unlikely((~delta & mask) < (mask >> 3))) {
189
		tk->underflow_seen = 1;
190
		delta = 0;
191
	}
192

193
	/* Cap delta value to the max_cycles values to avoid mult overflows */
194
	if (unlikely(delta > max)) {
195
		tk->overflow_seen = 1;
196
		delta = tkr->clock->max_cycles;
197
	}
198 199 200

	return delta;
}
201 202 203 204
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
205 206 207 208 209 210 211 212 213 214 215 216
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
217 218
#endif

219
/**
220
 * tk_setup_internals - Set up internals to use clocksource clock.
221
 *
222
 * @tk:		The target timekeeper to setup.
223 224 225 226 227 228 229
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
230
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 232
{
	cycle_t interval;
233
	u64 tmp, ntpinterval;
234
	struct clocksource *old_clock;
235

236 237 238 239 240
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
241

P
Peter Zijlstra 已提交
242 243 244 245 246
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

247 248 249
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
250
	ntpinterval = tmp;
251 252
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
253 254 255 256
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
257
	tk->cycle_interval = interval;
258 259

	/* Go back from cycles -> shifted ns */
260 261 262
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
263
		((u64) interval * clock->mult) >> clock->shift;
264

265 266 267 268
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
269
			tk->tkr_mono.xtime_nsec >>= -shift_change;
270
		else
271
			tk->tkr_mono.xtime_nsec <<= shift_change;
272
	}
P
Peter Zijlstra 已提交
273 274
	tk->tkr_raw.xtime_nsec = 0;

275
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
276
	tk->tkr_raw.shift = clock->shift;
277

278 279
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281 282 283 284 285 286

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
287
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
288
	tk->tkr_raw.mult = clock->mult;
289
	tk->ntp_err_mult = 0;
290
}
291

292
/* Timekeeper helper functions. */
293 294

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 296
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297
#else
298
static inline u32 arch_gettimeoffset(void) { return 0; }
299 300
#endif

301
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
302
{
303
	cycle_t delta;
304
	s64 nsec;
305

306
	delta = timekeeping_get_delta(tkr);
307

308 309
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
310

311
	/* If arch requires, add in get_arch_timeoffset() */
312
	return nsec + arch_gettimeoffset();
313 314
}

315 316
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
317
 * @tkr: Timekeeping readout base from which we take the update
318 319 320 321 322 323 324 325 326 327 328
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
329
 * update(tkf->base[0], tkr);
330 331 332
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
333
 * update(tkf->base[1], tkr);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
354
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
355
{
356
	struct tk_read_base *base = tkf->base;
357 358

	/* Force readers off to base[1] */
359
	raw_write_seqcount_latch(&tkf->seq);
360 361

	/* Update base[0] */
362
	memcpy(base, tkr, sizeof(*base));
363 364

	/* Force readers back to base[0] */
365
	raw_write_seqcount_latch(&tkf->seq);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
403
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
404 405 406 407 408 409
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
410 411
		seq = raw_read_seqcount(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
412
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
413
	} while (read_seqcount_retry(&tkf->seq, seq));
414 415 416

	return now;
}
417 418 419 420 421

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
422 423
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
424 425 426 427 428 429
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
451
	struct tk_read_base *tkr = &tk->tkr_mono;
452 453 454 455

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
456
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
457 458 459 460 461

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
462 463
}

464 465 466 467
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
468
	struct timespec xt, wm;
469

470
	xt = timespec64_to_timespec(tk_xtime(tk));
471
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
472 473
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
490 491 492
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
493
	tk->ntp_error += remainder << tk->ntp_error_shift;
494
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
495 496 497 498 499
}
#else
#define old_vsyscall_fixup(tk)
#endif

500 501
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

502
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
503
{
504
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
505 506 507 508 509 510 511
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
512
	struct timekeeper *tk = &tk_core.timekeeper;
513 514 515
	unsigned long flags;
	int ret;

516
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
517
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
518
	update_pvclock_gtod(tk, true);
519
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
520 521 522 523 524 525 526 527 528 529 530 531 532 533

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

534
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
535
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
536
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
537 538 539 540 541

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

542 543 544 545 546
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
547 548
	u64 seconds;
	u32 nsec;
549 550 551 552 553 554 555 556

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
557 558
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
559
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
560 561

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
562
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
563 564 565 566 567 568

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
569
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
570 571 572
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
573 574
}

575
/* must hold timekeeper_lock */
576
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
577
{
578
	if (action & TK_CLEAR_NTP) {
579
		tk->ntp_error = 0;
580 581
		ntp_clear();
	}
582

583 584
	tk_update_ktime_data(tk);

585 586 587
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

588
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
589
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
590 591 592

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
593 594 595 596 597 598 599 600
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
601 602
}

603
/**
604
 * timekeeping_forward_now - update clock to the current time
605
 *
606 607 608
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
609
 */
610
static void timekeeping_forward_now(struct timekeeper *tk)
611
{
612
	struct clocksource *clock = tk->tkr_mono.clock;
613
	cycle_t cycle_now, delta;
614
	s64 nsec;
615

616 617 618
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
619
	tk->tkr_raw.cycle_last  = cycle_now;
620

621
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
622

623
	/* If arch requires, add in get_arch_timeoffset() */
624
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
625

626
	tk_normalize_xtime(tk);
627

P
Peter Zijlstra 已提交
628
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
629
	timespec64_add_ns(&tk->raw_time, nsec);
630 631 632
}

/**
633
 * __getnstimeofday64 - Returns the time of day in a timespec64.
634 635
 * @ts:		pointer to the timespec to be set
 *
636 637
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
638
 */
639
int __getnstimeofday64(struct timespec64 *ts)
640
{
641
	struct timekeeper *tk = &tk_core.timekeeper;
642
	unsigned long seq;
643
	s64 nsecs = 0;
644 645

	do {
646
		seq = read_seqcount_begin(&tk_core.seq);
647

648
		ts->tv_sec = tk->xtime_sec;
649
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
650

651
	} while (read_seqcount_retry(&tk_core.seq, seq));
652

653
	ts->tv_nsec = 0;
654
	timespec64_add_ns(ts, nsecs);
655 656 657 658 659 660 661 662 663

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
664
EXPORT_SYMBOL(__getnstimeofday64);
665 666

/**
667
 * getnstimeofday64 - Returns the time of day in a timespec64.
668
 * @ts:		pointer to the timespec64 to be set
669
 *
670
 * Returns the time of day in a timespec64 (WARN if suspended).
671
 */
672
void getnstimeofday64(struct timespec64 *ts)
673
{
674
	WARN_ON(__getnstimeofday64(ts));
675
}
676
EXPORT_SYMBOL(getnstimeofday64);
677

678 679
ktime_t ktime_get(void)
{
680
	struct timekeeper *tk = &tk_core.timekeeper;
681
	unsigned int seq;
682 683
	ktime_t base;
	s64 nsecs;
684 685 686 687

	WARN_ON(timekeeping_suspended);

	do {
688
		seq = read_seqcount_begin(&tk_core.seq);
689 690
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
691

692
	} while (read_seqcount_retry(&tk_core.seq, seq));
693

694
	return ktime_add_ns(base, nsecs);
695 696 697
}
EXPORT_SYMBOL_GPL(ktime_get);

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
732 733
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
734 735 736 737 738 739 740 741

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

762 763 764 765 766 767 768 769 770 771 772 773
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
774 775
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
776 777 778 779 780 781 782

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

783
/**
784
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
785 786 787 788
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
789
 * in normalized timespec64 format in the variable pointed to by @ts.
790
 */
791
void ktime_get_ts64(struct timespec64 *ts)
792
{
793
	struct timekeeper *tk = &tk_core.timekeeper;
794
	struct timespec64 tomono;
795
	s64 nsec;
796 797 798 799 800
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
801
		seq = read_seqcount_begin(&tk_core.seq);
802
		ts->tv_sec = tk->xtime_sec;
803
		nsec = timekeeping_get_ns(&tk->tkr_mono);
804
		tomono = tk->wall_to_monotonic;
805

806
	} while (read_seqcount_retry(&tk_core.seq, seq));
807

808 809 810
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
811
}
812
EXPORT_SYMBOL_GPL(ktime_get_ts64);
813

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

862 863 864 865 866 867 868 869 870 871 872 873 874
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
875
	struct timekeeper *tk = &tk_core.timekeeper;
876 877 878 879 880 881
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
882
		seq = read_seqcount_begin(&tk_core.seq);
883

884
		*ts_raw = timespec64_to_timespec(tk->raw_time);
885
		ts_real->tv_sec = tk->xtime_sec;
886
		ts_real->tv_nsec = 0;
887

P
Peter Zijlstra 已提交
888
		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
889
		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
890

891
	} while (read_seqcount_retry(&tk_core.seq, seq));
892 893 894 895 896 897 898 899

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

900 901 902 903
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
904
 * NOTE: Users should be converted to using getnstimeofday()
905 906 907
 */
void do_gettimeofday(struct timeval *tv)
{
908
	struct timespec64 now;
909

910
	getnstimeofday64(&now);
911 912 913 914
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
915

916
/**
917 918
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
919 920 921
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
922
int do_settimeofday64(const struct timespec64 *ts)
923
{
924
	struct timekeeper *tk = &tk_core.timekeeper;
925
	struct timespec64 ts_delta, xt;
926
	unsigned long flags;
927

928
	if (!timespec64_valid_strict(ts))
929 930
		return -EINVAL;

931
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
932
	write_seqcount_begin(&tk_core.seq);
933

934
	timekeeping_forward_now(tk);
935

936
	xt = tk_xtime(tk);
937 938
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
939

940
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
941

942
	tk_set_xtime(tk, ts);
943

944
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
945

946
	write_seqcount_end(&tk_core.seq);
947
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
948 949 950 951 952 953

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
954
EXPORT_SYMBOL(do_settimeofday64);
955

956 957 958 959 960 961 962 963
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
964
	struct timekeeper *tk = &tk_core.timekeeper;
965
	unsigned long flags;
966
	struct timespec64 ts64, tmp;
967
	int ret = 0;
968 969 970 971

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

972 973
	ts64 = timespec_to_timespec64(*ts);

974
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
975
	write_seqcount_begin(&tk_core.seq);
976

977
	timekeeping_forward_now(tk);
978

979
	/* Make sure the proposed value is valid */
980 981
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
982 983 984
		ret = -EINVAL;
		goto error;
	}
985

986 987
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
988

989
error: /* even if we error out, we forwarded the time, so call update */
990
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
991

992
	write_seqcount_end(&tk_core.seq);
993
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
994 995 996 997

	/* signal hrtimers about time change */
	clock_was_set();

998
	return ret;
999 1000 1001
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1002 1003 1004 1005 1006 1007 1008

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
1009
	struct timekeeper *tk = &tk_core.timekeeper;
1010 1011 1012 1013
	unsigned int seq;
	s32 ret;

	do {
1014
		seq = read_seqcount_begin(&tk_core.seq);
1015
		ret = tk->tai_offset;
1016
	} while (read_seqcount_retry(&tk_core.seq, seq));
1017 1018 1019 1020 1021 1022 1023 1024

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1025
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1026 1027
{
	tk->tai_offset = tai_offset;
1028
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1029 1030 1031 1032 1033 1034 1035 1036
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1037
	struct timekeeper *tk = &tk_core.timekeeper;
1038 1039
	unsigned long flags;

1040
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1041
	write_seqcount_begin(&tk_core.seq);
1042
	__timekeeping_set_tai_offset(tk, tai_offset);
1043
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1044
	write_seqcount_end(&tk_core.seq);
1045
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1046
	clock_was_set();
1047 1048
}

1049 1050 1051 1052 1053
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1054
static int change_clocksource(void *data)
1055
{
1056
	struct timekeeper *tk = &tk_core.timekeeper;
1057
	struct clocksource *new, *old;
1058
	unsigned long flags;
1059

1060
	new = (struct clocksource *) data;
1061

1062
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1063
	write_seqcount_begin(&tk_core.seq);
1064

1065
	timekeeping_forward_now(tk);
1066 1067 1068 1069 1070 1071
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1072
			old = tk->tkr_mono.clock;
1073 1074 1075 1076 1077 1078 1079
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1080
	}
1081
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1082

1083
	write_seqcount_end(&tk_core.seq);
1084
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1085

1086 1087
	return 0;
}
1088

1089 1090 1091 1092 1093 1094 1095
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1096
int timekeeping_notify(struct clocksource *clock)
1097
{
1098
	struct timekeeper *tk = &tk_core.timekeeper;
1099

1100
	if (tk->tkr_mono.clock == clock)
1101
		return 0;
1102
	stop_machine(change_clocksource, clock, NULL);
1103
	tick_clock_notify();
1104
	return tk->tkr_mono.clock == clock ? 0 : -1;
1105
}
1106

1107
/**
1108 1109
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1110 1111 1112
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1113
void getrawmonotonic64(struct timespec64 *ts)
1114
{
1115
	struct timekeeper *tk = &tk_core.timekeeper;
1116
	struct timespec64 ts64;
1117 1118 1119 1120
	unsigned long seq;
	s64 nsecs;

	do {
1121
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1122
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1123
		ts64 = tk->raw_time;
1124

1125
	} while (read_seqcount_retry(&tk_core.seq, seq));
1126

1127
	timespec64_add_ns(&ts64, nsecs);
1128
	*ts = ts64;
1129
}
1130 1131
EXPORT_SYMBOL(getrawmonotonic64);

1132

1133
/**
1134
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1135
 */
1136
int timekeeping_valid_for_hres(void)
1137
{
1138
	struct timekeeper *tk = &tk_core.timekeeper;
1139 1140 1141 1142
	unsigned long seq;
	int ret;

	do {
1143
		seq = read_seqcount_begin(&tk_core.seq);
1144

1145
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1146

1147
	} while (read_seqcount_retry(&tk_core.seq, seq));
1148 1149 1150 1151

	return ret;
}

1152 1153 1154 1155 1156
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1157
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1158 1159
	unsigned long seq;
	u64 ret;
1160

J
John Stultz 已提交
1161
	do {
1162
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1163

1164
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1165

1166
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1167 1168

	return ret;
1169 1170
}

1171
/**
1172
 * read_persistent_clock -  Return time from the persistent clock.
1173 1174
 *
 * Weak dummy function for arches that do not yet support it.
1175 1176
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1177 1178 1179
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1180
void __weak read_persistent_clock(struct timespec *ts)
1181
{
1182 1183
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1184 1185
}

1186 1187 1188 1189 1190 1191 1192 1193
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1194
/**
X
Xunlei Pang 已提交
1195
 * read_boot_clock64 -  Return time of the system start.
1196 1197 1198
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1199
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1200 1201 1202
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1203
void __weak read_boot_clock64(struct timespec64 *ts)
1204 1205 1206 1207 1208
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1209 1210 1211 1212 1213 1214
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1215 1216 1217 1218 1219
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1220
	struct timekeeper *tk = &tk_core.timekeeper;
1221
	struct clocksource *clock;
1222
	unsigned long flags;
1223
	struct timespec64 now, boot, tmp;
1224

1225
	read_persistent_clock64(&now);
1226
	if (!timespec64_valid_strict(&now)) {
1227 1228 1229 1230
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1231
	} else if (now.tv_sec || now.tv_nsec)
1232
		persistent_clock_exists = true;
1233

1234
	read_boot_clock64(&boot);
1235
	if (!timespec64_valid_strict(&boot)) {
1236 1237 1238 1239 1240
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1241

1242
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1243
	write_seqcount_begin(&tk_core.seq);
1244 1245
	ntp_init();

1246
	clock = clocksource_default_clock();
1247 1248
	if (clock->enable)
		clock->enable(clock);
1249
	tk_setup_internals(tk, clock);
1250

1251 1252 1253
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1254
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1255
		boot = tk_xtime(tk);
1256

1257
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1258
	tk_set_wall_to_mono(tk, tmp);
1259

1260
	timekeeping_update(tk, TK_MIRROR);
1261

1262
	write_seqcount_end(&tk_core.seq);
1263
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1264 1265
}

1266
/* time in seconds when suspend began for persistent clock */
1267
static struct timespec64 timekeeping_suspend_time;
1268

1269 1270 1271 1272 1273 1274 1275
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1276
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1277
					   struct timespec64 *delta)
1278
{
1279
	if (!timespec64_valid_strict(delta)) {
1280 1281 1282
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1283 1284
		return;
	}
1285
	tk_xtime_add(tk, delta);
1286
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1287
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1288
	tk_debug_account_sleep_time(delta);
1289 1290
}

1291
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1327
/**
1328 1329
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1330
 *
1331
 * This hook is for architectures that cannot support read_persistent_clock64
1332
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1333
 * and also don't have an effective nonstop clocksource.
1334 1335 1336 1337
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1338
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1339
{
1340
	struct timekeeper *tk = &tk_core.timekeeper;
1341
	unsigned long flags;
1342

1343
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1344
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1345

1346
	timekeeping_forward_now(tk);
1347

1348
	__timekeeping_inject_sleeptime(tk, delta);
1349

1350
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1351

1352
	write_seqcount_end(&tk_core.seq);
1353
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1354 1355 1356 1357

	/* signal hrtimers about time change */
	clock_was_set();
}
1358
#endif
1359

1360 1361 1362
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1363
void timekeeping_resume(void)
1364
{
1365
	struct timekeeper *tk = &tk_core.timekeeper;
1366
	struct clocksource *clock = tk->tkr_mono.clock;
1367
	unsigned long flags;
1368
	struct timespec64 ts_new, ts_delta;
1369
	cycle_t cycle_now, cycle_delta;
1370

1371
	sleeptime_injected = false;
1372
	read_persistent_clock64(&ts_new);
1373

1374
	clockevents_resume();
1375 1376
	clocksource_resume();

1377
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1378
	write_seqcount_begin(&tk_core.seq);
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1392
	cycle_now = tk->tkr_mono.read(clock);
1393
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1394
		cycle_now > tk->tkr_mono.cycle_last) {
1395 1396 1397 1398 1399
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1400 1401
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1416
		ts_delta = ns_to_timespec64(nsec);
1417
		sleeptime_injected = true;
1418 1419
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1420
		sleeptime_injected = true;
1421
	}
1422

1423
	if (sleeptime_injected)
1424 1425 1426
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1427
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1428 1429
	tk->tkr_raw.cycle_last  = cycle_now;

1430
	tk->ntp_error = 0;
1431
	timekeeping_suspended = 0;
1432
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1433
	write_seqcount_end(&tk_core.seq);
1434
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1435 1436 1437

	touch_softlockup_watchdog();

1438
	tick_resume();
1439
	hrtimers_resume();
1440 1441
}

1442
int timekeeping_suspend(void)
1443
{
1444
	struct timekeeper *tk = &tk_core.timekeeper;
1445
	unsigned long flags;
1446 1447
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1448

1449
	read_persistent_clock64(&timekeeping_suspend_time);
1450

1451 1452 1453 1454 1455 1456
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1457
		persistent_clock_exists = true;
1458

1459
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1460
	write_seqcount_begin(&tk_core.seq);
1461
	timekeeping_forward_now(tk);
1462
	timekeeping_suspended = 1;
1463

1464
	if (persistent_clock_exists) {
1465
		/*
1466 1467 1468 1469
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1470
		 */
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1484
	}
1485 1486

	timekeeping_update(tk, TK_MIRROR);
1487
	halt_fast_timekeeper(tk);
1488
	write_seqcount_end(&tk_core.seq);
1489
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1490

1491
	tick_suspend();
M
Magnus Damm 已提交
1492
	clocksource_suspend();
1493
	clockevents_suspend();
1494 1495 1496 1497 1498

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1499
static struct syscore_ops timekeeping_syscore_ops = {
1500 1501 1502 1503
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1504
static int __init timekeeping_init_ops(void)
1505
{
1506 1507
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1508
}
1509
device_initcall(timekeeping_init_ops);
1510 1511

/*
1512
 * Apply a multiplier adjustment to the timekeeper
1513
 */
1514 1515 1516 1517
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1518
{
1519 1520
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1521

1522 1523 1524 1525
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1526
	}
1527 1528 1529
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1530

1531 1532 1533
	/*
	 * So the following can be confusing.
	 *
1534
	 * To keep things simple, lets assume mult_adj == 1 for now.
1535
	 *
1536
	 * When mult_adj != 1, remember that the interval and offset values
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1580
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1581 1582 1583 1584 1585
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1586
	tk->tkr_mono.mult += mult_adj;
1587
	tk->xtime_interval += interval;
1588
	tk->tkr_mono.xtime_nsec -= offset;
1589
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1609 1610
	tk->ntp_tick = ntp_tick_length();

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1650 1651 1652
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1653 1654
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1655 1656
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1657
	}
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1673 1674 1675
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1676
		tk->ntp_error += neg << tk->ntp_error_shift;
1677
	}
1678 1679
}

1680 1681 1682 1683 1684 1685 1686 1687
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1688
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1689
{
1690
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1691
	unsigned int clock_set = 0;
1692

1693
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1694 1695
		int leap;

1696
		tk->tkr_mono.xtime_nsec -= nsecps;
1697 1698 1699 1700
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1701
		if (unlikely(leap)) {
1702
			struct timespec64 ts;
1703 1704

			tk->xtime_sec += leap;
1705

1706 1707 1708
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1709
				timespec64_sub(tk->wall_to_monotonic, ts));
1710

1711 1712
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1713
			clock_set = TK_CLOCK_WAS_SET;
1714
		}
1715
	}
1716
	return clock_set;
1717 1718
}

1719 1720 1721 1722 1723 1724 1725 1726 1727
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1728
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1729 1730
						u32 shift,
						unsigned int *clock_set)
1731
{
T
Thomas Gleixner 已提交
1732
	cycle_t interval = tk->cycle_interval << shift;
1733
	u64 raw_nsecs;
1734

1735
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1736
	if (offset < interval)
1737 1738 1739
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1740
	offset -= interval;
1741
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1742
	tk->tkr_raw.cycle_last  += interval;
1743

1744
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1745
	*clock_set |= accumulate_nsecs_to_secs(tk);
1746

1747
	/* Accumulate raw time */
1748
	raw_nsecs = (u64)tk->raw_interval << shift;
1749
	raw_nsecs += tk->raw_time.tv_nsec;
1750 1751 1752
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1753
		tk->raw_time.tv_sec += raw_secs;
1754
	}
1755
	tk->raw_time.tv_nsec = raw_nsecs;
1756 1757

	/* Accumulate error between NTP and clock interval */
1758
	tk->ntp_error += tk->ntp_tick << shift;
1759 1760
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1761 1762 1763 1764

	return offset;
}

1765 1766 1767 1768
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1769
void update_wall_time(void)
1770
{
1771
	struct timekeeper *real_tk = &tk_core.timekeeper;
1772
	struct timekeeper *tk = &shadow_timekeeper;
1773
	cycle_t offset;
1774
	int shift = 0, maxshift;
1775
	unsigned int clock_set = 0;
J
John Stultz 已提交
1776 1777
	unsigned long flags;

1778
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1779 1780 1781

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1782
		goto out;
1783

J
John Stultz 已提交
1784
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1785
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1786
#else
1787 1788
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1789 1790
#endif

1791
	/* Check if there's really nothing to do */
1792
	if (offset < real_tk->cycle_interval)
1793 1794
		goto out;

1795 1796 1797
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1798 1799 1800 1801
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1802
	 * that is smaller than the offset.  We then accumulate that
1803 1804
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1805
	 */
1806
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1807
	shift = max(0, shift);
1808
	/* Bound shift to one less than what overflows tick_length */
1809
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1810
	shift = min(shift, maxshift);
1811
	while (offset >= tk->cycle_interval) {
1812 1813
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1814
		if (offset < tk->cycle_interval<<shift)
1815
			shift--;
1816 1817 1818
	}

	/* correct the clock when NTP error is too big */
1819
	timekeeping_adjust(tk, offset);
1820

J
John Stultz 已提交
1821
	/*
1822 1823 1824 1825
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1826

J
John Stultz 已提交
1827 1828
	/*
	 * Finally, make sure that after the rounding
1829
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1830
	 */
1831
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1832

1833
	write_seqcount_begin(&tk_core.seq);
1834 1835 1836 1837 1838 1839 1840
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1841
	 * memcpy under the tk_core.seq against one before we start
1842 1843 1844
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1845
	timekeeping_update(real_tk, clock_set);
1846
	write_seqcount_end(&tk_core.seq);
1847
out:
1848
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1849
	if (clock_set)
1850 1851
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1852
}
T
Tomas Janousek 已提交
1853 1854

/**
1855 1856
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1857
 *
1858
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1859 1860 1861 1862 1863 1864
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1865
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1866
{
1867
	struct timekeeper *tk = &tk_core.timekeeper;
1868 1869
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1870
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1871
}
1872
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1873

1874 1875
unsigned long get_seconds(void)
{
1876
	struct timekeeper *tk = &tk_core.timekeeper;
1877 1878

	return tk->xtime_sec;
1879 1880 1881
}
EXPORT_SYMBOL(get_seconds);

1882 1883
struct timespec __current_kernel_time(void)
{
1884
	struct timekeeper *tk = &tk_core.timekeeper;
1885

1886
	return timespec64_to_timespec(tk_xtime(tk));
1887
}
1888

1889 1890
struct timespec current_kernel_time(void)
{
1891
	struct timekeeper *tk = &tk_core.timekeeper;
1892
	struct timespec64 now;
1893 1894 1895
	unsigned long seq;

	do {
1896
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1897

1898
		now = tk_xtime(tk);
1899
	} while (read_seqcount_retry(&tk_core.seq, seq));
1900

1901
	return timespec64_to_timespec(now);
1902 1903
}
EXPORT_SYMBOL(current_kernel_time);
1904

1905
struct timespec64 get_monotonic_coarse64(void)
1906
{
1907
	struct timekeeper *tk = &tk_core.timekeeper;
1908
	struct timespec64 now, mono;
1909 1910 1911
	unsigned long seq;

	do {
1912
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1913

1914 1915
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1916
	} while (read_seqcount_retry(&tk_core.seq, seq));
1917

1918
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1919
				now.tv_nsec + mono.tv_nsec);
1920

1921
	return now;
1922
}
1923 1924

/*
1925
 * Must hold jiffies_lock
1926 1927 1928 1929 1930 1931
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1932

1933
/**
1934
 * ktime_get_update_offsets_now - hrtimer helper
1935
 * @cwsseq:	pointer to check and store the clock was set sequence number
1936 1937
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1938
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1939
 *
1940 1941 1942 1943
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
1944
 * Called from hrtimer_interrupt() or retrigger_next_event()
1945
 */
1946 1947
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
1948
{
1949
	struct timekeeper *tk = &tk_core.timekeeper;
1950
	unsigned int seq;
1951 1952
	ktime_t base;
	u64 nsecs;
1953 1954

	do {
1955
		seq = read_seqcount_begin(&tk_core.seq);
1956

1957 1958
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1959 1960 1961 1962 1963 1964
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
1965
	} while (read_seqcount_retry(&tk_core.seq, seq));
1966

1967
	return ktime_add_ns(base, nsecs);
1968 1969
}

1970 1971 1972 1973 1974
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1975
	struct timekeeper *tk = &tk_core.timekeeper;
1976
	unsigned long flags;
1977
	struct timespec64 ts;
1978
	s32 orig_tai, tai;
1979 1980 1981 1982 1983 1984 1985
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1997
	getnstimeofday64(&ts);
1998

1999
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2000
	write_seqcount_begin(&tk_core.seq);
2001

2002
	orig_tai = tai = tk->tai_offset;
2003
	ret = __do_adjtimex(txc, &ts, &tai);
2004

2005 2006
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2007
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2008
	}
2009
	write_seqcount_end(&tk_core.seq);
2010 2011
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2012 2013 2014
	if (tai != orig_tai)
		clock_was_set();

2015 2016
	ntp_notify_cmos_timer();

2017 2018
	return ret;
}
2019 2020 2021 2022 2023 2024 2025

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
2026 2027 2028
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2029
	write_seqcount_begin(&tk_core.seq);
2030

2031
	__hardpps(phase_ts, raw_ts);
2032

2033
	write_seqcount_end(&tk_core.seq);
2034
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2035 2036 2037 2038
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2039 2040 2041 2042 2043 2044 2045 2046
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2047
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2048
	do_timer(ticks);
2049
	write_sequnlock(&jiffies_lock);
2050
	update_wall_time();
T
Torben Hohn 已提交
2051
}