timekeeping.c 63.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/syscore_ops.h>
21 22 23 24
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
25
#include <linux/stop_machine.h>
26
#include <linux/pvclock_gtod.h>
27
#include <linux/compiler.h>
28

29
#include "tick-internal.h"
30
#include "ntp_internal.h"
31
#include "timekeeping_internal.h"
32

33 34
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
35
#define TK_CLOCK_WAS_SET	(1 << 2)
36

37 38 39 40 41 42 43 44 45
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

46
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47
static struct timekeeper shadow_timekeeper;
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
64
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
65

66 67 68
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
109
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
#ifdef CONFIG_DEBUG_TIMEKEEPING
122 123
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

124
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
125 126
{

127
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
128
	const char *name = tk->tkr_mono.clock->name;
129 130

	if (offset > max_cycles) {
131
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
132
				offset, name, max_cycles);
133
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
134 135
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
136
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
137 138 139 140
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
141

142 143
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
144 145 146
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
147
			tk->last_warning = jiffies;
148
		}
149
		tk->underflow_seen = 0;
150 151
	}

152 153
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
154 155 156
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
157
			tk->last_warning = jiffies;
158
		}
159
		tk->overflow_seen = 0;
160
	}
161
}
162

163
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
164
{
165
	struct timekeeper *tk = &tk_core.timekeeper;
166
	u64 now, last, mask, max, delta;
167
	unsigned int seq;
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
183

184
	delta = clocksource_delta(now, last, mask);
185

186 187 188 189
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
190
	if (unlikely((~delta & mask) < (mask >> 3))) {
191
		tk->underflow_seen = 1;
192
		delta = 0;
193
	}
194

195
	/* Cap delta value to the max_cycles values to avoid mult overflows */
196
	if (unlikely(delta > max)) {
197
		tk->overflow_seen = 1;
198
		delta = tkr->clock->max_cycles;
199
	}
200 201 202

	return delta;
}
203
#else
204
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
205 206
{
}
207
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
208
{
209
	u64 cycle_now, delta;
210 211 212 213 214 215 216 217 218

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
219 220
#endif

221
/**
222
 * tk_setup_internals - Set up internals to use clocksource clock.
223
 *
224
 * @tk:		The target timekeeper to setup.
225 226 227 228 229 230 231
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
232
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
233
{
234
	u64 interval;
235
	u64 tmp, ntpinterval;
236
	struct clocksource *old_clock;
237

238
	++tk->cs_was_changed_seq;
239 240 241 242 243
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
244

P
Peter Zijlstra 已提交
245 246 247 248 249
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

250 251 252
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
253
	ntpinterval = tmp;
254 255
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
256 257 258
	if (tmp == 0)
		tmp = 1;

259
	interval = (u64) tmp;
260
	tk->cycle_interval = interval;
261 262

	/* Go back from cycles -> shifted ns */
263
	tk->xtime_interval = interval * clock->mult;
264
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
265
	tk->raw_interval = (interval * clock->mult) >> clock->shift;
266

267 268 269 270
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
271
			tk->tkr_mono.xtime_nsec >>= -shift_change;
272
		else
273
			tk->tkr_mono.xtime_nsec <<= shift_change;
274
	}
P
Peter Zijlstra 已提交
275 276
	tk->tkr_raw.xtime_nsec = 0;

277
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
278
	tk->tkr_raw.shift = clock->shift;
279

280 281
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
282
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
283 284 285 286 287 288

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
289
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
290
	tk->tkr_raw.mult = clock->mult;
291
	tk->ntp_err_mult = 0;
292
}
293

294
/* Timekeeper helper functions. */
295 296

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
297 298
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
299
#else
300
static inline u32 arch_gettimeoffset(void) { return 0; }
301 302
#endif

303
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
304
{
305
	u64 nsec;
306 307 308 309 310 311 312 313

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

314
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
315
{
316
	u64 delta;
317

318
	delta = timekeeping_get_delta(tkr);
319 320
	return timekeeping_delta_to_ns(tkr, delta);
}
321

322
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
323
{
324
	u64 delta;
325

326 327 328
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
329 330
}

331 332
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
333
 * @tkr: Timekeeping readout base from which we take the update
334 335 336 337
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
338
 * Employ the latch technique; see @raw_write_seqcount_latch.
339 340 341 342 343 344
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
345
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
346
{
347
	struct tk_read_base *base = tkf->base;
348 349

	/* Force readers off to base[1] */
350
	raw_write_seqcount_latch(&tkf->seq);
351 352

	/* Update base[0] */
353
	memcpy(base, tkr, sizeof(*base));
354 355

	/* Force readers back to base[0] */
356
	raw_write_seqcount_latch(&tkf->seq);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
394
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
395 396 397 398 399 400
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
401
		seq = raw_read_seqcount_latch(&tkf->seq);
402
		tkr = tkf->base + (seq & 0x01);
403 404
		now = ktime_to_ns(tkr->base);

405 406 407 408 409
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tkr->read(tkr->clock),
					tkr->cycle_last,
					tkr->mask));
410
	} while (read_seqcount_retry(&tkf->seq, seq));
411 412 413

	return now;
}
414 415 416 417 418

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
419 420
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
421 422 423 424 425 426
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);

456
/* Suspend-time cycles value for halted fast timekeeper. */
457
static u64 cycles_at_suspend;
458

459
static u64 dummy_clock_read(struct clocksource *cs)
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
477
	struct tk_read_base *tkr = &tk->tkr_mono;
478 479 480 481

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
482
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
483 484 485 486 487

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
488 489
}

490 491 492 493
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
494
	struct timespec xt, wm;
495

496
	xt = timespec64_to_timespec(tk_xtime(tk));
497
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
498 499
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
516
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
517 518 519 520 521 522
	if (remainder != 0) {
		tk->tkr_mono.xtime_nsec -= remainder;
		tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
		tk->ntp_error += remainder << tk->ntp_error_shift;
		tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
	}
523 524 525 526 527
}
#else
#define old_vsyscall_fixup(tk)
#endif

528 529
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

530
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
531
{
532
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
533 534 535 536 537 538 539
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
540
	struct timekeeper *tk = &tk_core.timekeeper;
541 542 543
	unsigned long flags;
	int ret;

544
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
545
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
546
	update_pvclock_gtod(tk, true);
547
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
548 549 550 551 552 553 554 555 556 557 558 559 560 561

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

562
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
563
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
564
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
565 566 567 568 569

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

570 571 572 573 574 575
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
576
	if (tk->next_leap_ktime != KTIME_MAX)
577 578 579 580
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

581 582 583 584 585
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
586 587
	u64 seconds;
	u32 nsec;
588 589 590 591 592 593 594 595

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
596 597
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
598
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
599 600

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
601
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
602 603 604 605 606 607

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
608
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
609 610 611
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
612 613
}

614
/* must hold timekeeper_lock */
615
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
616
{
617
	if (action & TK_CLEAR_NTP) {
618
		tk->ntp_error = 0;
619 620
		ntp_clear();
	}
621

622
	tk_update_leap_state(tk);
623 624
	tk_update_ktime_data(tk);

625 626 627
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

628
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
629
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
630 631 632

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
633 634 635 636 637 638 639 640
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
641 642
}

643
/**
644
 * timekeeping_forward_now - update clock to the current time
645
 *
646 647 648
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
649
 */
650
static void timekeeping_forward_now(struct timekeeper *tk)
651
{
652
	struct clocksource *clock = tk->tkr_mono.clock;
653
	u64 cycle_now, delta;
654
	u64 nsec;
655

656 657 658
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
659
	tk->tkr_raw.cycle_last  = cycle_now;
660

661
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
662

663
	/* If arch requires, add in get_arch_timeoffset() */
664
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
665

666
	tk_normalize_xtime(tk);
667

P
Peter Zijlstra 已提交
668
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
669
	timespec64_add_ns(&tk->raw_time, nsec);
670 671 672
}

/**
673
 * __getnstimeofday64 - Returns the time of day in a timespec64.
674 675
 * @ts:		pointer to the timespec to be set
 *
676 677
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
678
 */
679
int __getnstimeofday64(struct timespec64 *ts)
680
{
681
	struct timekeeper *tk = &tk_core.timekeeper;
682
	unsigned long seq;
683
	u64 nsecs;
684 685

	do {
686
		seq = read_seqcount_begin(&tk_core.seq);
687

688
		ts->tv_sec = tk->xtime_sec;
689
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
690

691
	} while (read_seqcount_retry(&tk_core.seq, seq));
692

693
	ts->tv_nsec = 0;
694
	timespec64_add_ns(ts, nsecs);
695 696 697 698 699 700 701 702 703

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
704
EXPORT_SYMBOL(__getnstimeofday64);
705 706

/**
707
 * getnstimeofday64 - Returns the time of day in a timespec64.
708
 * @ts:		pointer to the timespec64 to be set
709
 *
710
 * Returns the time of day in a timespec64 (WARN if suspended).
711
 */
712
void getnstimeofday64(struct timespec64 *ts)
713
{
714
	WARN_ON(__getnstimeofday64(ts));
715
}
716
EXPORT_SYMBOL(getnstimeofday64);
717

718 719
ktime_t ktime_get(void)
{
720
	struct timekeeper *tk = &tk_core.timekeeper;
721
	unsigned int seq;
722
	ktime_t base;
723
	u64 nsecs;
724 725 726 727

	WARN_ON(timekeeping_suspended);

	do {
728
		seq = read_seqcount_begin(&tk_core.seq);
729 730
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
731

732
	} while (read_seqcount_retry(&tk_core.seq, seq));
733

734
	return ktime_add_ns(base, nsecs);
735 736 737
}
EXPORT_SYMBOL_GPL(ktime_get);

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

755 756 757 758 759 760 761 762 763 764 765
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
766
	u64 nsecs;
767 768 769 770 771

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
772 773
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
774 775 776 777 778 779 780 781

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

802 803 804 805 806 807 808 809
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
810
	u64 nsecs;
811 812 813

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
814 815
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
816 817 818 819 820 821 822

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

823
/**
824
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
825 826 827 828
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
829
 * in normalized timespec64 format in the variable pointed to by @ts.
830
 */
831
void ktime_get_ts64(struct timespec64 *ts)
832
{
833
	struct timekeeper *tk = &tk_core.timekeeper;
834
	struct timespec64 tomono;
835
	unsigned int seq;
836
	u64 nsec;
837 838 839 840

	WARN_ON(timekeeping_suspended);

	do {
841
		seq = read_seqcount_begin(&tk_core.seq);
842
		ts->tv_sec = tk->xtime_sec;
843
		nsec = timekeeping_get_ns(&tk->tkr_mono);
844
		tomono = tk->wall_to_monotonic;
845

846
	} while (read_seqcount_retry(&tk_core.seq, seq));
847

848 849 850
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
851
}
852
EXPORT_SYMBOL_GPL(ktime_get_ts64);
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

902 903 904 905 906 907 908 909 910 911 912 913
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

914 915 916 917 918 919 920 921 922 923
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
924 925
	u64 nsec_raw;
	u64 nsec_real;
926
	u64 now;
927

928 929
	WARN_ON_ONCE(timekeeping_suspended);

930 931 932 933
	do {
		seq = read_seqcount_begin(&tk_core.seq);

		now = tk->tkr_mono.read(tk->tkr_mono.clock);
934 935
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
936 937 938 939 940 941 942 943 944 945 946 947
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
948

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
985 986
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
	interp_forward = partial_history_cycles > total_history_cycles/2 ?
		true : false;
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1050
static bool cycle_between(u64 before, u64 test, u64 after)
1051 1052 1053 1054 1055 1056 1057 1058
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1059 1060
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1061
 * @get_time_fn:	Callback to get simultaneous device time and
1062
 *	system counter from the device driver
1063 1064 1065
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1066 1067 1068 1069 1070 1071 1072 1073 1074
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1075
				  struct system_time_snapshot *history_begin,
1076 1077 1078 1079
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1080
	u64 cycles, now, interval_start;
1081
	unsigned int clock_was_set_seq = 0;
1082
	ktime_t base_real, base_raw;
1083
	u64 nsec_real, nsec_raw;
1084
	u8 cs_was_changed_seq;
1085
	unsigned long seq;
1086
	bool do_interp;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
		now = tk->tkr_mono.read(tk->tkr_mono.clock);
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1135 1136 1137 1138 1139 1140

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1141
		u64 partial_history_cycles, total_history_cycles;
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1167 1168 1169 1170
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1171 1172 1173 1174
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1175
 * NOTE: Users should be converted to using getnstimeofday()
1176 1177 1178
 */
void do_gettimeofday(struct timeval *tv)
{
1179
	struct timespec64 now;
1180

1181
	getnstimeofday64(&now);
1182 1183 1184 1185
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1186

1187
/**
1188 1189
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1190 1191 1192
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1193
int do_settimeofday64(const struct timespec64 *ts)
1194
{
1195
	struct timekeeper *tk = &tk_core.timekeeper;
1196
	struct timespec64 ts_delta, xt;
1197
	unsigned long flags;
1198
	int ret = 0;
1199

1200
	if (!timespec64_valid_strict(ts))
1201 1202
		return -EINVAL;

1203
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1204
	write_seqcount_begin(&tk_core.seq);
1205

1206
	timekeeping_forward_now(tk);
1207

1208
	xt = tk_xtime(tk);
1209 1210
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1211

1212 1213 1214 1215 1216
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1217
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1218

1219
	tk_set_xtime(tk, ts);
1220
out:
1221
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1222

1223
	write_seqcount_end(&tk_core.seq);
1224
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1225 1226 1227 1228

	/* signal hrtimers about time change */
	clock_was_set();

1229
	return ret;
1230
}
1231
EXPORT_SYMBOL(do_settimeofday64);
1232

1233 1234 1235 1236 1237 1238 1239 1240
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
1241
	struct timekeeper *tk = &tk_core.timekeeper;
1242
	unsigned long flags;
1243
	struct timespec64 ts64, tmp;
1244
	int ret = 0;
1245

1246
	if (!timespec_inject_offset_valid(ts))
1247 1248
		return -EINVAL;

1249 1250
	ts64 = timespec_to_timespec64(*ts);

1251
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1252
	write_seqcount_begin(&tk_core.seq);
1253

1254
	timekeeping_forward_now(tk);
1255

1256
	/* Make sure the proposed value is valid */
1257
	tmp = timespec64_add(tk_xtime(tk),  ts64);
1258 1259
	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
	    !timespec64_valid_strict(&tmp)) {
1260 1261 1262
		ret = -EINVAL;
		goto error;
	}
1263

1264 1265
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1266

1267
error: /* even if we error out, we forwarded the time, so call update */
1268
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1269

1270
	write_seqcount_end(&tk_core.seq);
1271
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1272 1273 1274 1275

	/* signal hrtimers about time change */
	clock_was_set();

1276
	return ret;
1277 1278 1279
}
EXPORT_SYMBOL(timekeeping_inject_offset);

1280
/**
1281
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1282 1283
 *
 */
1284
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1285 1286
{
	tk->tai_offset = tai_offset;
1287
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1288 1289
}

1290 1291 1292 1293 1294
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1295
static int change_clocksource(void *data)
1296
{
1297
	struct timekeeper *tk = &tk_core.timekeeper;
1298
	struct clocksource *new, *old;
1299
	unsigned long flags;
1300

1301
	new = (struct clocksource *) data;
1302

1303
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1304
	write_seqcount_begin(&tk_core.seq);
1305

1306
	timekeeping_forward_now(tk);
1307 1308 1309 1310 1311 1312
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1313
			old = tk->tkr_mono.clock;
1314 1315 1316 1317 1318 1319 1320
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1321
	}
1322
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1323

1324
	write_seqcount_end(&tk_core.seq);
1325
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1326

1327 1328
	return 0;
}
1329

1330 1331 1332 1333 1334 1335 1336
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1337
int timekeeping_notify(struct clocksource *clock)
1338
{
1339
	struct timekeeper *tk = &tk_core.timekeeper;
1340

1341
	if (tk->tkr_mono.clock == clock)
1342
		return 0;
1343
	stop_machine(change_clocksource, clock, NULL);
1344
	tick_clock_notify();
1345
	return tk->tkr_mono.clock == clock ? 0 : -1;
1346
}
1347

1348
/**
1349 1350
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1351 1352 1353
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1354
void getrawmonotonic64(struct timespec64 *ts)
1355
{
1356
	struct timekeeper *tk = &tk_core.timekeeper;
1357
	struct timespec64 ts64;
1358
	unsigned long seq;
1359
	u64 nsecs;
1360 1361

	do {
1362
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1363
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1364
		ts64 = tk->raw_time;
1365

1366
	} while (read_seqcount_retry(&tk_core.seq, seq));
1367

1368
	timespec64_add_ns(&ts64, nsecs);
1369
	*ts = ts64;
1370
}
1371 1372
EXPORT_SYMBOL(getrawmonotonic64);

1373

1374
/**
1375
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1376
 */
1377
int timekeeping_valid_for_hres(void)
1378
{
1379
	struct timekeeper *tk = &tk_core.timekeeper;
1380 1381 1382 1383
	unsigned long seq;
	int ret;

	do {
1384
		seq = read_seqcount_begin(&tk_core.seq);
1385

1386
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1387

1388
	} while (read_seqcount_retry(&tk_core.seq, seq));
1389 1390 1391 1392

	return ret;
}

1393 1394 1395 1396 1397
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1398
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1399 1400
	unsigned long seq;
	u64 ret;
1401

J
John Stultz 已提交
1402
	do {
1403
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1404

1405
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1406

1407
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1408 1409

	return ret;
1410 1411
}

1412
/**
1413
 * read_persistent_clock -  Return time from the persistent clock.
1414 1415
 *
 * Weak dummy function for arches that do not yet support it.
1416 1417
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1418 1419 1420
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1421
void __weak read_persistent_clock(struct timespec *ts)
1422
{
1423 1424
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1425 1426
}

1427 1428 1429 1430 1431 1432 1433 1434
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1435
/**
X
Xunlei Pang 已提交
1436
 * read_boot_clock64 -  Return time of the system start.
1437 1438 1439
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1440
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1441 1442 1443
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1444
void __weak read_boot_clock64(struct timespec64 *ts)
1445 1446 1447 1448 1449
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1450 1451 1452 1453 1454 1455
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1456 1457 1458 1459 1460
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1461
	struct timekeeper *tk = &tk_core.timekeeper;
1462
	struct clocksource *clock;
1463
	unsigned long flags;
1464
	struct timespec64 now, boot, tmp;
1465

1466
	read_persistent_clock64(&now);
1467
	if (!timespec64_valid_strict(&now)) {
1468 1469 1470 1471
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1472
	} else if (now.tv_sec || now.tv_nsec)
1473
		persistent_clock_exists = true;
1474

1475
	read_boot_clock64(&boot);
1476
	if (!timespec64_valid_strict(&boot)) {
1477 1478 1479 1480 1481
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1482

1483
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1484
	write_seqcount_begin(&tk_core.seq);
1485 1486
	ntp_init();

1487
	clock = clocksource_default_clock();
1488 1489
	if (clock->enable)
		clock->enable(clock);
1490
	tk_setup_internals(tk, clock);
1491

1492 1493 1494
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1495
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1496
		boot = tk_xtime(tk);
1497

1498
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1499
	tk_set_wall_to_mono(tk, tmp);
1500

1501
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1502

1503
	write_seqcount_end(&tk_core.seq);
1504
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1505 1506
}

1507
/* time in seconds when suspend began for persistent clock */
1508
static struct timespec64 timekeeping_suspend_time;
1509

1510 1511 1512 1513 1514 1515 1516
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1517
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1518
					   struct timespec64 *delta)
1519
{
1520
	if (!timespec64_valid_strict(delta)) {
1521 1522 1523
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1524 1525
		return;
	}
1526
	tk_xtime_add(tk, delta);
1527
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1528
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1529
	tk_debug_account_sleep_time(delta);
1530 1531
}

1532
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1568
/**
1569 1570
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1571
 *
1572
 * This hook is for architectures that cannot support read_persistent_clock64
1573
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1574
 * and also don't have an effective nonstop clocksource.
1575 1576 1577 1578
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1579
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1580
{
1581
	struct timekeeper *tk = &tk_core.timekeeper;
1582
	unsigned long flags;
1583

1584
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1585
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1586

1587
	timekeeping_forward_now(tk);
1588

1589
	__timekeeping_inject_sleeptime(tk, delta);
1590

1591
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1592

1593
	write_seqcount_end(&tk_core.seq);
1594
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1595 1596 1597 1598

	/* signal hrtimers about time change */
	clock_was_set();
}
1599
#endif
1600

1601 1602 1603
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1604
void timekeeping_resume(void)
1605
{
1606
	struct timekeeper *tk = &tk_core.timekeeper;
1607
	struct clocksource *clock = tk->tkr_mono.clock;
1608
	unsigned long flags;
1609
	struct timespec64 ts_new, ts_delta;
1610
	u64 cycle_now;
1611

1612
	sleeptime_injected = false;
1613
	read_persistent_clock64(&ts_new);
1614

1615
	clockevents_resume();
1616 1617
	clocksource_resume();

1618
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1619
	write_seqcount_begin(&tk_core.seq);
1620

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1633
	cycle_now = tk->tkr_mono.read(clock);
1634
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1635
		cycle_now > tk->tkr_mono.cycle_last) {
1636
		u64 nsec, cyc_delta;
1637

1638 1639 1640
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1641
		ts_delta = ns_to_timespec64(nsec);
1642
		sleeptime_injected = true;
1643 1644
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1645
		sleeptime_injected = true;
1646
	}
1647

1648
	if (sleeptime_injected)
1649 1650 1651
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1652
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1653 1654
	tk->tkr_raw.cycle_last  = cycle_now;

1655
	tk->ntp_error = 0;
1656
	timekeeping_suspended = 0;
1657
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1658
	write_seqcount_end(&tk_core.seq);
1659
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1660 1661 1662

	touch_softlockup_watchdog();

1663
	tick_resume();
1664
	hrtimers_resume();
1665 1666
}

1667
int timekeeping_suspend(void)
1668
{
1669
	struct timekeeper *tk = &tk_core.timekeeper;
1670
	unsigned long flags;
1671 1672
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1673

1674
	read_persistent_clock64(&timekeeping_suspend_time);
1675

1676 1677 1678 1679 1680 1681
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1682
		persistent_clock_exists = true;
1683

1684
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1685
	write_seqcount_begin(&tk_core.seq);
1686
	timekeeping_forward_now(tk);
1687
	timekeeping_suspended = 1;
1688

1689
	if (persistent_clock_exists) {
1690
		/*
1691 1692 1693 1694
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1695
		 */
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1709
	}
1710 1711

	timekeeping_update(tk, TK_MIRROR);
1712
	halt_fast_timekeeper(tk);
1713
	write_seqcount_end(&tk_core.seq);
1714
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1715

1716
	tick_suspend();
M
Magnus Damm 已提交
1717
	clocksource_suspend();
1718
	clockevents_suspend();
1719 1720 1721 1722 1723

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1724
static struct syscore_ops timekeeping_syscore_ops = {
1725 1726 1727 1728
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1729
static int __init timekeeping_init_ops(void)
1730
{
1731 1732
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1733
}
1734
device_initcall(timekeeping_init_ops);
1735 1736

/*
1737
 * Apply a multiplier adjustment to the timekeeper
1738
 */
1739 1740 1741 1742
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1743
{
1744 1745
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1746

1747 1748 1749 1750
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1751
	}
1752 1753 1754
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1755

1756 1757 1758
	/*
	 * So the following can be confusing.
	 *
1759
	 * To keep things simple, lets assume mult_adj == 1 for now.
1760
	 *
1761
	 * When mult_adj != 1, remember that the interval and offset values
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1805
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1806 1807 1808 1809 1810
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1811
	tk->tkr_mono.mult += mult_adj;
1812
	tk->xtime_interval += interval;
1813
	tk->tkr_mono.xtime_nsec -= offset;
1814
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
1826 1827 1828
	u32 base = tk->tkr_mono.clock->mult;
	u32 max = tk->tkr_mono.clock->maxadj;
	u32 cur_adj = tk->tkr_mono.mult;
1829 1830
	s64 tick_error;
	bool negative;
1831
	u32 adj_scale;
1832 1833 1834 1835 1836

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1837 1838
	tk->ntp_tick = ntp_tick_length();

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	/* If any adjustment would pass the max, just return */
	if (negative && (cur_adj - 1) <= (base - max))
		return;
	if (!negative && (cur_adj + 1) >= (base + max))
		return;
	/*
	 * Sort out the magnitude of the correction, but
	 * avoid making so large a correction that we go
	 * over the max adjustment.
	 */
	adj_scale = 0;
A
Andrew Morton 已提交
1861
	tick_error = abs(tick_error);
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	while (tick_error > interval) {
		u32 adj = 1 << (adj_scale + 1);

		/* Check if adjustment gets us within 1 unit from the max */
		if (negative && (cur_adj - adj) <= (base - max))
			break;
		if (!negative && (cur_adj + adj) >= (base + max))
			break;

		adj_scale++;
1872
		tick_error >>= 1;
1873
	}
1874 1875

	/* scale the corrections */
1876
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1898 1899 1900
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1901 1902
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1903 1904
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1905
	}
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1921 1922 1923
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1924
		tk->ntp_error += neg << tk->ntp_error_shift;
1925
	}
1926 1927
}

1928 1929 1930
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1931
 * Helper function that accumulates the nsecs greater than a second
1932 1933 1934 1935
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1936
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1937
{
1938
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1939
	unsigned int clock_set = 0;
1940

1941
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1942 1943
		int leap;

1944
		tk->tkr_mono.xtime_nsec -= nsecps;
1945 1946 1947 1948
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1949
		if (unlikely(leap)) {
1950
			struct timespec64 ts;
1951 1952

			tk->xtime_sec += leap;
1953

1954 1955 1956
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1957
				timespec64_sub(tk->wall_to_monotonic, ts));
1958

1959 1960
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1961
			clock_set = TK_CLOCK_WAS_SET;
1962
		}
1963
	}
1964
	return clock_set;
1965 1966
}

1967 1968 1969 1970 1971 1972 1973 1974 1975
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1976 1977
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
1978
{
1979
	u64 interval = tk->cycle_interval << shift;
1980
	u64 raw_nsecs;
1981

Z
Zhen Lei 已提交
1982
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1983
	if (offset < interval)
1984 1985 1986
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1987
	offset -= interval;
1988
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1989
	tk->tkr_raw.cycle_last  += interval;
1990

1991
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1992
	*clock_set |= accumulate_nsecs_to_secs(tk);
1993

1994
	/* Accumulate raw time */
1995
	raw_nsecs = (u64)tk->raw_interval << shift;
1996
	raw_nsecs += tk->raw_time.tv_nsec;
1997 1998 1999
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2000
		tk->raw_time.tv_sec += raw_secs;
2001
	}
2002
	tk->raw_time.tv_nsec = raw_nsecs;
2003 2004

	/* Accumulate error between NTP and clock interval */
2005
	tk->ntp_error += tk->ntp_tick << shift;
2006 2007
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2008 2009 2010 2011

	return offset;
}

2012 2013 2014 2015
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2016
void update_wall_time(void)
2017
{
2018
	struct timekeeper *real_tk = &tk_core.timekeeper;
2019
	struct timekeeper *tk = &shadow_timekeeper;
2020
	u64 offset;
2021
	int shift = 0, maxshift;
2022
	unsigned int clock_set = 0;
J
John Stultz 已提交
2023 2024
	unsigned long flags;

2025
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2026 2027 2028

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2029
		goto out;
2030

J
John Stultz 已提交
2031
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2032
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2033
#else
2034 2035
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2036 2037
#endif

2038
	/* Check if there's really nothing to do */
2039
	if (offset < real_tk->cycle_interval)
2040 2041
		goto out;

2042 2043 2044
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

2045 2046 2047 2048
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2049
	 * that is smaller than the offset.  We then accumulate that
2050 2051
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2052
	 */
2053
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2054
	shift = max(0, shift);
2055
	/* Bound shift to one less than what overflows tick_length */
2056
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2057
	shift = min(shift, maxshift);
2058
	while (offset >= tk->cycle_interval) {
2059 2060
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2061
		if (offset < tk->cycle_interval<<shift)
2062
			shift--;
2063 2064 2065
	}

	/* correct the clock when NTP error is too big */
2066
	timekeeping_adjust(tk, offset);
2067

J
John Stultz 已提交
2068
	/*
2069 2070 2071 2072
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
2073

J
John Stultz 已提交
2074 2075
	/*
	 * Finally, make sure that after the rounding
2076
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2077
	 */
2078
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2079

2080
	write_seqcount_begin(&tk_core.seq);
2081 2082 2083 2084 2085 2086 2087
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2088
	 * memcpy under the tk_core.seq against one before we start
2089 2090
	 * updating.
	 */
2091
	timekeeping_update(tk, clock_set);
2092
	memcpy(real_tk, tk, sizeof(*tk));
2093
	/* The memcpy must come last. Do not put anything here! */
2094
	write_seqcount_end(&tk_core.seq);
2095
out:
2096
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2097
	if (clock_set)
2098 2099
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2100
}
T
Tomas Janousek 已提交
2101 2102

/**
2103 2104
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2105
 *
2106
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2107 2108 2109 2110 2111 2112
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2113
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2114
{
2115
	struct timekeeper *tk = &tk_core.timekeeper;
2116 2117
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

2118
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2119
}
2120
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2121

2122 2123
unsigned long get_seconds(void)
{
2124
	struct timekeeper *tk = &tk_core.timekeeper;
2125 2126

	return tk->xtime_sec;
2127 2128 2129
}
EXPORT_SYMBOL(get_seconds);

2130 2131
struct timespec __current_kernel_time(void)
{
2132
	struct timekeeper *tk = &tk_core.timekeeper;
2133

2134
	return timespec64_to_timespec(tk_xtime(tk));
2135
}
2136

2137
struct timespec64 current_kernel_time64(void)
2138
{
2139
	struct timekeeper *tk = &tk_core.timekeeper;
2140
	struct timespec64 now;
2141 2142 2143
	unsigned long seq;

	do {
2144
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2145

2146
		now = tk_xtime(tk);
2147
	} while (read_seqcount_retry(&tk_core.seq, seq));
2148

2149
	return now;
2150
}
2151
EXPORT_SYMBOL(current_kernel_time64);
2152

2153
struct timespec64 get_monotonic_coarse64(void)
2154
{
2155
	struct timekeeper *tk = &tk_core.timekeeper;
2156
	struct timespec64 now, mono;
2157 2158 2159
	unsigned long seq;

	do {
2160
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2161

2162 2163
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2164
	} while (read_seqcount_retry(&tk_core.seq, seq));
2165

2166
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2167
				now.tv_nsec + mono.tv_nsec);
2168

2169
	return now;
2170
}
2171
EXPORT_SYMBOL(get_monotonic_coarse64);
2172 2173

/*
2174
 * Must hold jiffies_lock
2175 2176 2177 2178 2179 2180
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2181

2182
/**
2183
 * ktime_get_update_offsets_now - hrtimer helper
2184
 * @cwsseq:	pointer to check and store the clock was set sequence number
2185 2186
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2187
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2188
 *
2189 2190 2191 2192
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2193
 * Called from hrtimer_interrupt() or retrigger_next_event()
2194
 */
2195 2196
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
2197
{
2198
	struct timekeeper *tk = &tk_core.timekeeper;
2199
	unsigned int seq;
2200 2201
	ktime_t base;
	u64 nsecs;
2202 2203

	do {
2204
		seq = read_seqcount_begin(&tk_core.seq);
2205

2206 2207
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2208 2209
		base = ktime_add_ns(base, nsecs);

2210 2211 2212 2213 2214 2215
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}
2216 2217

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2218
		if (unlikely(base >= tk->next_leap_ktime))
2219 2220
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2221
	} while (read_seqcount_retry(&tk_core.seq, seq));
2222

2223
	return base;
2224 2225
}

2226 2227 2228 2229 2230
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2231
	struct timekeeper *tk = &tk_core.timekeeper;
2232
	unsigned long flags;
2233
	struct timespec64 ts;
2234
	s32 orig_tai, tai;
2235 2236 2237 2238 2239 2240 2241
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2253
	getnstimeofday64(&ts);
2254

2255
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2256
	write_seqcount_begin(&tk_core.seq);
2257

2258
	orig_tai = tai = tk->tai_offset;
2259
	ret = __do_adjtimex(txc, &ts, &tai);
2260

2261 2262
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2263
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2264
	}
2265 2266
	tk_update_leap_state(tk);

2267
	write_seqcount_end(&tk_core.seq);
2268 2269
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2270 2271 2272
	if (tai != orig_tai)
		clock_was_set();

2273 2274
	ntp_notify_cmos_timer();

2275 2276
	return ret;
}
2277 2278 2279 2280 2281

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2282
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2283
{
2284 2285 2286
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2287
	write_seqcount_begin(&tk_core.seq);
2288

2289
	__hardpps(phase_ts, raw_ts);
2290

2291
	write_seqcount_end(&tk_core.seq);
2292
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2293 2294 2295 2296
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2297 2298 2299 2300 2301 2302 2303 2304
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2305
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2306
	do_timer(ticks);
2307
	write_sequnlock(&jiffies_lock);
2308
	update_wall_time();
T
Torben Hohn 已提交
2309
}