timekeeping.c 55.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;
P
Peter Zijlstra 已提交
62
static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63

64 65 66
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

67 68
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
69 70
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 72 73 74
		tk->xtime_sec++;
	}
}

75 76 77 78 79
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
80
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 82 83
	return ts;
}

84
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 86
{
	tk->xtime_sec = ts->tv_sec;
87
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 89
}

90
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 92
{
	tk->xtime_sec += ts->tv_sec;
93
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94
	tk_normalize_xtime(tk);
95
}
96

97
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98
{
99
	struct timespec64 tmp;
100 101 102 103 104

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
105
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106
					-tk->wall_to_monotonic.tv_nsec);
107
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
108
	tk->wall_to_monotonic = wtm;
109 110
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
111
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 113
}

114
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115
{
116
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 118
}

119
#ifdef CONFIG_DEBUG_TIMEKEEPING
120 121 122 123 124 125 126 127 128 129 130 131 132 133
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
/*
 * These simple flag variables are managed
 * without locks, which is racy, but ok since
 * we don't really care about being super
 * precise about how many events were seen,
 * just that a problem was observed.
 */
static int timekeeping_underflow_seen;
static int timekeeping_overflow_seen;

/* last_warning is only modified under the timekeeping lock */
static long timekeeping_last_warning;

134 135 136
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

137 138
	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
	const char *name = tk->tkr_mono.clock->name;
139 140

	if (offset > max_cycles) {
141
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
142
				offset, name, max_cycles);
143
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
144 145 146 147 148 149 150
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

	if (timekeeping_underflow_seen) {
		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
			timekeeping_last_warning = jiffies;
		}
		timekeeping_underflow_seen = 0;
	}

	if (timekeeping_overflow_seen) {
		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
			timekeeping_last_warning = jiffies;
		}
		timekeeping_overflow_seen = 0;
	}
171
}
172 173 174

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
175 176
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
192

193
	delta = clocksource_delta(now, last, mask);
194

195 196 197 198
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
199 200
	if (unlikely((~delta & mask) < (mask >> 3))) {
		timekeeping_underflow_seen = 1;
201
		delta = 0;
202
	}
203

204
	/* Cap delta value to the max_cycles values to avoid mult overflows */
205 206
	if (unlikely(delta > max)) {
		timekeeping_overflow_seen = 1;
207
		delta = tkr->clock->max_cycles;
208
	}
209 210 211

	return delta;
}
212 213 214 215
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
216 217 218 219 220 221 222 223 224 225 226 227
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
228 229
#endif

230
/**
231
 * tk_setup_internals - Set up internals to use clocksource clock.
232
 *
233
 * @tk:		The target timekeeper to setup.
234 235 236 237 238 239 240
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
241
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
242 243
{
	cycle_t interval;
244
	u64 tmp, ntpinterval;
245
	struct clocksource *old_clock;
246

247 248 249 250 251
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.read = clock->read;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
252

P
Peter Zijlstra 已提交
253 254 255 256 257
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.read = clock->read;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

258 259 260
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
261
	ntpinterval = tmp;
262 263
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
264 265 266 267
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
268
	tk->cycle_interval = interval;
269 270

	/* Go back from cycles -> shifted ns */
271 272 273
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
274
		((u64) interval * clock->mult) >> clock->shift;
275

276 277 278 279
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
280
			tk->tkr_mono.xtime_nsec >>= -shift_change;
281
		else
282
			tk->tkr_mono.xtime_nsec <<= shift_change;
283
	}
P
Peter Zijlstra 已提交
284 285
	tk->tkr_raw.xtime_nsec = 0;

286
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
287
	tk->tkr_raw.shift = clock->shift;
288

289 290
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
291
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
292 293 294 295 296 297

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
298
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
299
	tk->tkr_raw.mult = clock->mult;
300
	tk->ntp_err_mult = 0;
301
}
302

303
/* Timekeeper helper functions. */
304 305

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
306 307
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
308
#else
309
static inline u32 arch_gettimeoffset(void) { return 0; }
310 311
#endif

312
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
313
{
314
	cycle_t delta;
315
	s64 nsec;
316

317
	delta = timekeeping_get_delta(tkr);
318

319 320
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
321

322
	/* If arch requires, add in get_arch_timeoffset() */
323
	return nsec + arch_gettimeoffset();
324 325
}

326 327
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
328
 * @tkr: Timekeeping readout base from which we take the update
329 330 331 332
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
333
 * Employ the latch technique; see @raw_write_seqcount_latch.
334 335 336 337 338 339
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
340
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
341
{
342
	struct tk_read_base *base = tkf->base;
343 344

	/* Force readers off to base[1] */
345
	raw_write_seqcount_latch(&tkf->seq);
346 347

	/* Update base[0] */
348
	memcpy(base, tkr, sizeof(*base));
349 350

	/* Force readers back to base[0] */
351
	raw_write_seqcount_latch(&tkf->seq);
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
389
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
390 391 392 393 394 395
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
396 397
		seq = raw_read_seqcount(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
398
		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
399
	} while (read_seqcount_retry(&tkf->seq, seq));
400 401 402

	return now;
}
403 404 405 406 407

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
408 409
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
410 411 412 413 414 415
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
437
	struct tk_read_base *tkr = &tk->tkr_mono;
438 439 440 441

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
442
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
443 444 445 446 447

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
448 449
}

450 451 452 453
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
454
	struct timespec xt, wm;
455

456
	xt = timespec64_to_timespec(tk_xtime(tk));
457
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
458 459
	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
			    tk->tkr_mono.cycle_last);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
476 477 478
	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
	tk->tkr_mono.xtime_nsec -= remainder;
	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
479
	tk->ntp_error += remainder << tk->ntp_error_shift;
480
	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
481 482 483 484 485
}
#else
#define old_vsyscall_fixup(tk)
#endif

486 487
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

488
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
489
{
490
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
491 492 493 494 495 496 497
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
498
	struct timekeeper *tk = &tk_core.timekeeper;
499 500 501
	unsigned long flags;
	int ret;

502
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
503
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
504
	update_pvclock_gtod(tk, true);
505
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
506 507 508 509 510 511 512 513 514 515 516 517 518 519

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

520
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
521
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
522
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
523 524 525 526 527

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

528 529 530 531 532
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
533 534
	u64 seconds;
	u32 nsec;
535 536 537 538 539 540 541 542

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
543 544
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
545
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
546 547

	/* Update the monotonic raw base */
P
Peter Zijlstra 已提交
548
	tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
549 550 551 552 553 554

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
555
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
556 557 558
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
559 560
}

561
/* must hold timekeeper_lock */
562
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
563
{
564
	if (action & TK_CLEAR_NTP) {
565
		tk->ntp_error = 0;
566 567
		ntp_clear();
	}
568

569 570
	tk_update_ktime_data(tk);

571 572 573
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

574
	if (action & TK_MIRROR)
575 576
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
577

578
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
579
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
580 581
}

582
/**
583
 * timekeeping_forward_now - update clock to the current time
584
 *
585 586 587
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
588
 */
589
static void timekeeping_forward_now(struct timekeeper *tk)
590
{
591
	struct clocksource *clock = tk->tkr_mono.clock;
592
	cycle_t cycle_now, delta;
593
	s64 nsec;
594

595 596 597
	cycle_now = tk->tkr_mono.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
598
	tk->tkr_raw.cycle_last  = cycle_now;
599

600
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
601

602
	/* If arch requires, add in get_arch_timeoffset() */
603
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
604

605
	tk_normalize_xtime(tk);
606

P
Peter Zijlstra 已提交
607
	nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
608
	timespec64_add_ns(&tk->raw_time, nsec);
609 610 611
}

/**
612
 * __getnstimeofday64 - Returns the time of day in a timespec64.
613 614
 * @ts:		pointer to the timespec to be set
 *
615 616
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
617
 */
618
int __getnstimeofday64(struct timespec64 *ts)
619
{
620
	struct timekeeper *tk = &tk_core.timekeeper;
621
	unsigned long seq;
622
	s64 nsecs = 0;
623 624

	do {
625
		seq = read_seqcount_begin(&tk_core.seq);
626

627
		ts->tv_sec = tk->xtime_sec;
628
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
629

630
	} while (read_seqcount_retry(&tk_core.seq, seq));
631

632
	ts->tv_nsec = 0;
633
	timespec64_add_ns(ts, nsecs);
634 635 636 637 638 639 640 641 642

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
643
EXPORT_SYMBOL(__getnstimeofday64);
644 645

/**
646
 * getnstimeofday64 - Returns the time of day in a timespec64.
647
 * @ts:		pointer to the timespec64 to be set
648
 *
649
 * Returns the time of day in a timespec64 (WARN if suspended).
650
 */
651
void getnstimeofday64(struct timespec64 *ts)
652
{
653
	WARN_ON(__getnstimeofday64(ts));
654
}
655
EXPORT_SYMBOL(getnstimeofday64);
656

657 658
ktime_t ktime_get(void)
{
659
	struct timekeeper *tk = &tk_core.timekeeper;
660
	unsigned int seq;
661 662
	ktime_t base;
	s64 nsecs;
663 664 665 666

	WARN_ON(timekeeping_suspended);

	do {
667
		seq = read_seqcount_begin(&tk_core.seq);
668 669
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
670

671
	} while (read_seqcount_retry(&tk_core.seq, seq));
672

673
	return ktime_add_ns(base, nsecs);
674 675 676
}
EXPORT_SYMBOL_GPL(ktime_get);

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
694 695
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
696 697 698 699 700 701 702 703

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

724 725 726 727 728 729 730 731 732 733 734 735
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
736 737
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
738 739 740 741 742 743 744

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

745
/**
746
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
747 748 749 750
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
751
 * in normalized timespec64 format in the variable pointed to by @ts.
752
 */
753
void ktime_get_ts64(struct timespec64 *ts)
754
{
755
	struct timekeeper *tk = &tk_core.timekeeper;
756
	struct timespec64 tomono;
757
	s64 nsec;
758 759 760 761 762
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
763
		seq = read_seqcount_begin(&tk_core.seq);
764
		ts->tv_sec = tk->xtime_sec;
765
		nsec = timekeeping_get_ns(&tk->tkr_mono);
766
		tomono = tk->wall_to_monotonic;
767

768
	} while (read_seqcount_retry(&tk_core.seq, seq));
769

770 771 772
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
773
}
774
EXPORT_SYMBOL_GPL(ktime_get_ts64);
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

824 825 826 827 828 829 830 831 832 833 834 835 836
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
837
	struct timekeeper *tk = &tk_core.timekeeper;
838 839 840 841 842 843
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
844
		seq = read_seqcount_begin(&tk_core.seq);
845

846
		*ts_raw = timespec64_to_timespec(tk->raw_time);
847
		ts_real->tv_sec = tk->xtime_sec;
848
		ts_real->tv_nsec = 0;
849

P
Peter Zijlstra 已提交
850
		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
851
		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
852

853
	} while (read_seqcount_retry(&tk_core.seq, seq));
854 855 856 857 858 859 860 861

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

862 863 864 865
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
866
 * NOTE: Users should be converted to using getnstimeofday()
867 868 869
 */
void do_gettimeofday(struct timeval *tv)
{
870
	struct timespec64 now;
871

872
	getnstimeofday64(&now);
873 874 875 876
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
877

878
/**
879 880
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
881 882 883
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
884
int do_settimeofday64(const struct timespec64 *ts)
885
{
886
	struct timekeeper *tk = &tk_core.timekeeper;
887
	struct timespec64 ts_delta, xt;
888
	unsigned long flags;
889

890
	if (!timespec64_valid_strict(ts))
891 892
		return -EINVAL;

893
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
894
	write_seqcount_begin(&tk_core.seq);
895

896
	timekeeping_forward_now(tk);
897

898
	xt = tk_xtime(tk);
899 900
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
901

902
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
903

904
	tk_set_xtime(tk, ts);
905

906
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
907

908
	write_seqcount_end(&tk_core.seq);
909
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
910 911 912 913 914 915

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
916
EXPORT_SYMBOL(do_settimeofday64);
917

918 919 920 921 922 923 924 925
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
926
	struct timekeeper *tk = &tk_core.timekeeper;
927
	unsigned long flags;
928
	struct timespec64 ts64, tmp;
929
	int ret = 0;
930 931 932 933

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

934 935
	ts64 = timespec_to_timespec64(*ts);

936
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
937
	write_seqcount_begin(&tk_core.seq);
938

939
	timekeeping_forward_now(tk);
940

941
	/* Make sure the proposed value is valid */
942 943
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
944 945 946
		ret = -EINVAL;
		goto error;
	}
947

948 949
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
950

951
error: /* even if we error out, we forwarded the time, so call update */
952
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
953

954
	write_seqcount_end(&tk_core.seq);
955
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
956 957 958 959

	/* signal hrtimers about time change */
	clock_was_set();

960
	return ret;
961 962 963
}
EXPORT_SYMBOL(timekeeping_inject_offset);

964 965 966 967 968 969 970

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
971
	struct timekeeper *tk = &tk_core.timekeeper;
972 973 974 975
	unsigned int seq;
	s32 ret;

	do {
976
		seq = read_seqcount_begin(&tk_core.seq);
977
		ret = tk->tai_offset;
978
	} while (read_seqcount_retry(&tk_core.seq, seq));
979 980 981 982 983 984 985 986

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
987
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
988 989
{
	tk->tai_offset = tai_offset;
990
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
991 992 993 994 995 996 997 998
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
999
	struct timekeeper *tk = &tk_core.timekeeper;
1000 1001
	unsigned long flags;

1002
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1003
	write_seqcount_begin(&tk_core.seq);
1004
	__timekeeping_set_tai_offset(tk, tai_offset);
1005
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1006
	write_seqcount_end(&tk_core.seq);
1007
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1008
	clock_was_set();
1009 1010
}

1011 1012 1013 1014 1015
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1016
static int change_clocksource(void *data)
1017
{
1018
	struct timekeeper *tk = &tk_core.timekeeper;
1019
	struct clocksource *new, *old;
1020
	unsigned long flags;
1021

1022
	new = (struct clocksource *) data;
1023

1024
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1025
	write_seqcount_begin(&tk_core.seq);
1026

1027
	timekeeping_forward_now(tk);
1028 1029 1030 1031 1032 1033
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1034
			old = tk->tkr_mono.clock;
1035 1036 1037 1038 1039 1040 1041
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1042
	}
1043
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1044

1045
	write_seqcount_end(&tk_core.seq);
1046
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1047

1048 1049
	return 0;
}
1050

1051 1052 1053 1054 1055 1056 1057
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1058
int timekeeping_notify(struct clocksource *clock)
1059
{
1060
	struct timekeeper *tk = &tk_core.timekeeper;
1061

1062
	if (tk->tkr_mono.clock == clock)
1063
		return 0;
1064
	stop_machine(change_clocksource, clock, NULL);
1065
	tick_clock_notify();
1066
	return tk->tkr_mono.clock == clock ? 0 : -1;
1067
}
1068

1069
/**
1070 1071
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1072 1073 1074
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1075
void getrawmonotonic64(struct timespec64 *ts)
1076
{
1077
	struct timekeeper *tk = &tk_core.timekeeper;
1078
	struct timespec64 ts64;
1079 1080 1081 1082
	unsigned long seq;
	s64 nsecs;

	do {
1083
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
1084
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1085
		ts64 = tk->raw_time;
1086

1087
	} while (read_seqcount_retry(&tk_core.seq, seq));
1088

1089
	timespec64_add_ns(&ts64, nsecs);
1090
	*ts = ts64;
1091
}
1092 1093
EXPORT_SYMBOL(getrawmonotonic64);

1094

1095
/**
1096
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1097
 */
1098
int timekeeping_valid_for_hres(void)
1099
{
1100
	struct timekeeper *tk = &tk_core.timekeeper;
1101 1102 1103 1104
	unsigned long seq;
	int ret;

	do {
1105
		seq = read_seqcount_begin(&tk_core.seq);
1106

1107
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1108

1109
	} while (read_seqcount_retry(&tk_core.seq, seq));
1110 1111 1112 1113

	return ret;
}

1114 1115 1116 1117 1118
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1119
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1120 1121
	unsigned long seq;
	u64 ret;
1122

J
John Stultz 已提交
1123
	do {
1124
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1125

1126
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1127

1128
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1129 1130

	return ret;
1131 1132
}

1133
/**
1134
 * read_persistent_clock -  Return time from the persistent clock.
1135 1136
 *
 * Weak dummy function for arches that do not yet support it.
1137 1138
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1139 1140 1141
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1142
void __weak read_persistent_clock(struct timespec *ts)
1143
{
1144 1145
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1146 1147
}

1148 1149 1150 1151 1152 1153 1154 1155
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1156 1157 1158 1159 1160 1161 1162 1163 1164
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1165
void __weak read_boot_clock(struct timespec *ts)
1166 1167 1168 1169 1170
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1171 1172 1173 1174 1175 1176 1177 1178
void __weak read_boot_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_boot_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1179 1180 1181 1182 1183 1184
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1185 1186 1187 1188 1189
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1190
	struct timekeeper *tk = &tk_core.timekeeper;
1191
	struct clocksource *clock;
1192
	unsigned long flags;
1193
	struct timespec64 now, boot, tmp;
1194

1195
	read_persistent_clock64(&now);
1196
	if (!timespec64_valid_strict(&now)) {
1197 1198 1199 1200
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1201
	} else if (now.tv_sec || now.tv_nsec)
1202
		persistent_clock_exists = true;
1203

1204
	read_boot_clock64(&boot);
1205
	if (!timespec64_valid_strict(&boot)) {
1206 1207 1208 1209 1210
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1211

1212
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1213
	write_seqcount_begin(&tk_core.seq);
1214 1215
	ntp_init();

1216
	clock = clocksource_default_clock();
1217 1218
	if (clock->enable)
		clock->enable(clock);
1219
	tk_setup_internals(tk, clock);
1220

1221 1222 1223
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1224
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1225
		boot = tk_xtime(tk);
1226

1227
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1228
	tk_set_wall_to_mono(tk, tmp);
1229

1230
	timekeeping_update(tk, TK_MIRROR);
1231

1232
	write_seqcount_end(&tk_core.seq);
1233
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1234 1235
}

1236
/* time in seconds when suspend began for persistent clock */
1237
static struct timespec64 timekeeping_suspend_time;
1238

1239 1240 1241 1242 1243 1244 1245
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1246
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1247
					   struct timespec64 *delta)
1248
{
1249
	if (!timespec64_valid_strict(delta)) {
1250 1251 1252
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1253 1254
		return;
	}
1255
	tk_xtime_add(tk, delta);
1256
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1257
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1258
	tk_debug_account_sleep_time(delta);
1259 1260
}

1261
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1297
/**
1298 1299
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1300
 *
1301
 * This hook is for architectures that cannot support read_persistent_clock64
1302
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1303
 * and also don't have an effective nonstop clocksource.
1304 1305 1306 1307
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1308
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1309
{
1310
	struct timekeeper *tk = &tk_core.timekeeper;
1311
	unsigned long flags;
1312

1313
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1314
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1315

1316
	timekeeping_forward_now(tk);
1317

1318
	__timekeeping_inject_sleeptime(tk, delta);
1319

1320
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1321

1322
	write_seqcount_end(&tk_core.seq);
1323
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1324 1325 1326 1327

	/* signal hrtimers about time change */
	clock_was_set();
}
1328
#endif
1329

1330 1331 1332
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1333
void timekeeping_resume(void)
1334
{
1335
	struct timekeeper *tk = &tk_core.timekeeper;
1336
	struct clocksource *clock = tk->tkr_mono.clock;
1337
	unsigned long flags;
1338
	struct timespec64 ts_new, ts_delta;
1339
	cycle_t cycle_now, cycle_delta;
1340

1341
	sleeptime_injected = false;
1342
	read_persistent_clock64(&ts_new);
1343

1344
	clockevents_resume();
1345 1346
	clocksource_resume();

1347
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1348
	write_seqcount_begin(&tk_core.seq);
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1362
	cycle_now = tk->tkr_mono.read(clock);
1363
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1364
		cycle_now > tk->tkr_mono.cycle_last) {
1365 1366 1367 1368 1369
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1370 1371
		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
						tk->tkr_mono.mask);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1386
		ts_delta = ns_to_timespec64(nsec);
1387
		sleeptime_injected = true;
1388 1389
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1390
		sleeptime_injected = true;
1391
	}
1392

1393
	if (sleeptime_injected)
1394 1395 1396
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1397
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1398 1399
	tk->tkr_raw.cycle_last  = cycle_now;

1400
	tk->ntp_error = 0;
1401
	timekeeping_suspended = 0;
1402
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1403
	write_seqcount_end(&tk_core.seq);
1404
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1405 1406 1407

	touch_softlockup_watchdog();

1408
	tick_resume();
1409
	hrtimers_resume();
1410 1411
}

1412
int timekeeping_suspend(void)
1413
{
1414
	struct timekeeper *tk = &tk_core.timekeeper;
1415
	unsigned long flags;
1416 1417
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1418

1419
	read_persistent_clock64(&timekeeping_suspend_time);
1420

1421 1422 1423 1424 1425 1426
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1427
		persistent_clock_exists = true;
1428

1429
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1430
	write_seqcount_begin(&tk_core.seq);
1431
	timekeeping_forward_now(tk);
1432
	timekeeping_suspended = 1;
1433

1434
	if (persistent_clock_exists) {
1435
		/*
1436 1437 1438 1439
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1440
		 */
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1454
	}
1455 1456

	timekeeping_update(tk, TK_MIRROR);
1457
	halt_fast_timekeeper(tk);
1458
	write_seqcount_end(&tk_core.seq);
1459
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1460

1461
	tick_suspend();
M
Magnus Damm 已提交
1462
	clocksource_suspend();
1463
	clockevents_suspend();
1464 1465 1466 1467 1468

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1469
static struct syscore_ops timekeeping_syscore_ops = {
1470 1471 1472 1473
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1474
static int __init timekeeping_init_ops(void)
1475
{
1476 1477
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1478
}
1479
device_initcall(timekeeping_init_ops);
1480 1481

/*
1482
 * Apply a multiplier adjustment to the timekeeper
1483
 */
1484 1485 1486 1487
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1488
{
1489 1490
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1491

1492 1493 1494 1495
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1496
	}
1497 1498 1499
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1500

1501 1502 1503
	/*
	 * So the following can be confusing.
	 *
1504
	 * To keep things simple, lets assume mult_adj == 1 for now.
1505
	 *
1506
	 * When mult_adj != 1, remember that the interval and offset values
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1550
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1551 1552 1553 1554 1555
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1556
	tk->tkr_mono.mult += mult_adj;
1557
	tk->xtime_interval += interval;
1558
	tk->tkr_mono.xtime_nsec -= offset;
1559
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1579 1580
	tk->ntp_tick = ntp_tick_length();

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

1620 1621 1622
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1623 1624
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1625 1626
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1627
	}
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1643 1644 1645
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
		tk->tkr_mono.xtime_nsec = 0;
1646
		tk->ntp_error += neg << tk->ntp_error_shift;
1647
	}
1648 1649
}

1650 1651 1652 1653 1654 1655 1656 1657
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1658
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1659
{
1660
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1661
	unsigned int clock_set = 0;
1662

1663
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1664 1665
		int leap;

1666
		tk->tkr_mono.xtime_nsec -= nsecps;
1667 1668 1669 1670
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1671
		if (unlikely(leap)) {
1672
			struct timespec64 ts;
1673 1674

			tk->xtime_sec += leap;
1675

1676 1677 1678
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1679
				timespec64_sub(tk->wall_to_monotonic, ts));
1680

1681 1682
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1683
			clock_set = TK_CLOCK_WAS_SET;
1684
		}
1685
	}
1686
	return clock_set;
1687 1688
}

1689 1690 1691 1692 1693 1694 1695 1696 1697
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1698
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1699 1700
						u32 shift,
						unsigned int *clock_set)
1701
{
T
Thomas Gleixner 已提交
1702
	cycle_t interval = tk->cycle_interval << shift;
1703
	u64 raw_nsecs;
1704

1705
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1706
	if (offset < interval)
1707 1708 1709
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1710
	offset -= interval;
1711
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
1712
	tk->tkr_raw.cycle_last  += interval;
1713

1714
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1715
	*clock_set |= accumulate_nsecs_to_secs(tk);
1716

1717
	/* Accumulate raw time */
1718
	raw_nsecs = (u64)tk->raw_interval << shift;
1719
	raw_nsecs += tk->raw_time.tv_nsec;
1720 1721 1722
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1723
		tk->raw_time.tv_sec += raw_secs;
1724
	}
1725
	tk->raw_time.tv_nsec = raw_nsecs;
1726 1727

	/* Accumulate error between NTP and clock interval */
1728
	tk->ntp_error += tk->ntp_tick << shift;
1729 1730
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1731 1732 1733 1734

	return offset;
}

1735 1736 1737 1738
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1739
void update_wall_time(void)
1740
{
1741
	struct timekeeper *real_tk = &tk_core.timekeeper;
1742
	struct timekeeper *tk = &shadow_timekeeper;
1743
	cycle_t offset;
1744
	int shift = 0, maxshift;
1745
	unsigned int clock_set = 0;
J
John Stultz 已提交
1746 1747
	unsigned long flags;

1748
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1749 1750 1751

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1752
		goto out;
1753

J
John Stultz 已提交
1754
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1755
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1756
#else
1757 1758
	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1759 1760
#endif

1761
	/* Check if there's really nothing to do */
1762
	if (offset < real_tk->cycle_interval)
1763 1764
		goto out;

1765 1766 1767
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1768 1769 1770 1771
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1772
	 * that is smaller than the offset.  We then accumulate that
1773 1774
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1775
	 */
1776
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1777
	shift = max(0, shift);
1778
	/* Bound shift to one less than what overflows tick_length */
1779
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1780
	shift = min(shift, maxshift);
1781
	while (offset >= tk->cycle_interval) {
1782 1783
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1784
		if (offset < tk->cycle_interval<<shift)
1785
			shift--;
1786 1787 1788
	}

	/* correct the clock when NTP error is too big */
1789
	timekeeping_adjust(tk, offset);
1790

J
John Stultz 已提交
1791
	/*
1792 1793 1794 1795
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1796

J
John Stultz 已提交
1797 1798
	/*
	 * Finally, make sure that after the rounding
1799
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1800
	 */
1801
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1802

1803
	write_seqcount_begin(&tk_core.seq);
1804 1805 1806 1807 1808 1809 1810
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1811
	 * memcpy under the tk_core.seq against one before we start
1812 1813 1814
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1815
	timekeeping_update(real_tk, clock_set);
1816
	write_seqcount_end(&tk_core.seq);
1817
out:
1818
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1819
	if (clock_set)
1820 1821
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1822
}
T
Tomas Janousek 已提交
1823 1824

/**
1825 1826
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1827
 *
1828
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1829 1830 1831 1832 1833 1834
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1835
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1836
{
1837
	struct timekeeper *tk = &tk_core.timekeeper;
1838 1839
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1840
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1841
}
1842
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1843

1844 1845
unsigned long get_seconds(void)
{
1846
	struct timekeeper *tk = &tk_core.timekeeper;
1847 1848

	return tk->xtime_sec;
1849 1850 1851
}
EXPORT_SYMBOL(get_seconds);

1852 1853
struct timespec __current_kernel_time(void)
{
1854
	struct timekeeper *tk = &tk_core.timekeeper;
1855

1856
	return timespec64_to_timespec(tk_xtime(tk));
1857
}
1858

1859 1860
struct timespec current_kernel_time(void)
{
1861
	struct timekeeper *tk = &tk_core.timekeeper;
1862
	struct timespec64 now;
1863 1864 1865
	unsigned long seq;

	do {
1866
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1867

1868
		now = tk_xtime(tk);
1869
	} while (read_seqcount_retry(&tk_core.seq, seq));
1870

1871
	return timespec64_to_timespec(now);
1872 1873
}
EXPORT_SYMBOL(current_kernel_time);
1874

1875
struct timespec64 get_monotonic_coarse64(void)
1876
{
1877
	struct timekeeper *tk = &tk_core.timekeeper;
1878
	struct timespec64 now, mono;
1879 1880 1881
	unsigned long seq;

	do {
1882
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1883

1884 1885
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1886
	} while (read_seqcount_retry(&tk_core.seq, seq));
1887

1888
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1889
				now.tv_nsec + mono.tv_nsec);
1890

1891
	return now;
1892
}
1893 1894

/*
1895
 * Must hold jiffies_lock
1896 1897 1898 1899 1900 1901
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1902 1903

/**
1904 1905 1906 1907 1908 1909
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1910
 */
1911 1912
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1913
{
1914
	struct timekeeper *tk = &tk_core.timekeeper;
1915
	unsigned int seq;
1916 1917
	ktime_t base;
	u64 nsecs;
1918 1919

	do {
1920
		seq = read_seqcount_begin(&tk_core.seq);
1921

1922 1923
		base = tk->tkr_mono.base;
		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1924

1925 1926 1927
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1928
	} while (read_seqcount_retry(&tk_core.seq, seq));
1929

1930
	return ktime_add_ns(base, nsecs);
1931
}
T
Torben Hohn 已提交
1932

1933 1934
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1935
 * ktime_get_update_offsets_now - hrtimer helper
1936 1937
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1938
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1939 1940
 *
 * Returns current monotonic time and updates the offsets
1941
 * Called from hrtimer_interrupt() or retrigger_next_event()
1942
 */
1943
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1944
							ktime_t *offs_tai)
1945
{
1946
	struct timekeeper *tk = &tk_core.timekeeper;
1947
	unsigned int seq;
1948 1949
	ktime_t base;
	u64 nsecs;
1950 1951

	do {
1952
		seq = read_seqcount_begin(&tk_core.seq);
1953

1954 1955
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1956

1957 1958
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1959
		*offs_tai = tk->offs_tai;
1960
	} while (read_seqcount_retry(&tk_core.seq, seq));
1961

1962
	return ktime_add_ns(base, nsecs);
1963 1964 1965
}
#endif

1966 1967 1968 1969 1970
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1971
	struct timekeeper *tk = &tk_core.timekeeper;
1972
	unsigned long flags;
1973
	struct timespec64 ts;
1974
	s32 orig_tai, tai;
1975 1976 1977 1978 1979 1980 1981
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1993
	getnstimeofday64(&ts);
1994

1995
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1996
	write_seqcount_begin(&tk_core.seq);
1997

1998
	orig_tai = tai = tk->tai_offset;
1999
	ret = __do_adjtimex(txc, &ts, &tai);
2000

2001 2002
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2003
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2004
	}
2005
	write_seqcount_end(&tk_core.seq);
2006 2007
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2008 2009 2010
	if (tai != orig_tai)
		clock_was_set();

2011 2012
	ntp_notify_cmos_timer();

2013 2014
	return ret;
}
2015 2016 2017 2018 2019 2020 2021

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
2022 2023 2024
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2025
	write_seqcount_begin(&tk_core.seq);
2026

2027
	__hardpps(phase_ts, raw_ts);
2028

2029
	write_seqcount_end(&tk_core.seq);
2030
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2031 2032 2033 2034
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2035 2036 2037 2038 2039 2040 2041 2042
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2043
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2044
	do_timer(ticks);
2045
	write_sequnlock(&jiffies_lock);
2046
	update_wall_time();
T
Torben Hohn 已提交
2047
}