timekeeping.c 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* The shift value of the current clocksource. */
	int	shift;
30 31 32 33 34

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
35 36
	/* shifted nano seconds left over when rounding cycle_interval */
	s64	xtime_remainder;
37 38 39 40 41 42 43 44
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
45 46 47
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
48 49
	/* NTP adjusted clock multiplier */
	u32	mult;
50 51
};

52
static struct timekeeper timekeeper;
53 54 55 56 57 58 59 60 61 62 63 64 65 66

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
67
	u64 tmp, ntpinterval;
68 69 70 71 72 73 74

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
75
	ntpinterval = tmp;
76 77
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
78 79 80 81 82 83 84 85
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
86
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87
	timekeeper.raw_interval =
88
		((u64) interval * clock->mult) >> clock->shift;
89 90

	timekeeper.xtime_nsec = 0;
91
	timekeeper.shift = clock->shift;
92 93

	timekeeper.ntp_error = 0;
94
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
95 96 97 98 99 100 101

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
102
}
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

138 139
/*
 * This read-write spinlock protects us from races in SMP while
140
 * playing with xtime.
141
 */
A
Adrian Bunk 已提交
142
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
143 144 145 146 147 148 149 150 151


/*
 * The current time
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
T
Tomas Janousek 已提交
152 153 154 155 156 157 158
 *
 * wall_to_monotonic is moved after resume from suspend for the monotonic
 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
 * to get the real boot based time offset.
 *
 * - wall_to_monotonic is no longer the boot time, getboottime must be
 * used instead.
159
 */
160 161
static struct timespec xtime __attribute__ ((aligned (16)));
static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162
static struct timespec total_sleep_time;
163

164 165 166
/*
 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
 */
167
static struct timespec raw_time;
168

169 170 171
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

172 173 174 175 176
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
	xtime.tv_sec += leapsecond;
	wall_to_monotonic.tv_sec -= leapsecond;
177 178
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
			timekeeper.mult);
179
}
180 181

/**
182
 * timekeeping_forward_now - update clock to the current time
183
 *
184 185 186
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
187
 */
188
static void timekeeping_forward_now(void)
189 190
{
	cycle_t cycle_now, cycle_delta;
191
	struct clocksource *clock;
192
	s64 nsec;
193

194
	clock = timekeeper.clock;
195
	cycle_now = clock->read(clock);
196
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197
	clock->cycle_last = cycle_now;
198

199 200
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
201 202 203 204

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

205
	timespec_add_ns(&xtime, nsec);
206

207
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208
	timespec_add_ns(&raw_time, nsec);
209 210 211
}

/**
212
 * getnstimeofday - Returns the time of day in a timespec
213 214
 * @ts:		pointer to the timespec to be set
 *
215
 * Returns the time of day in a timespec.
216
 */
217
void getnstimeofday(struct timespec *ts)
218 219 220 221
{
	unsigned long seq;
	s64 nsecs;

222 223
	WARN_ON(timekeeping_suspended);

224 225 226 227
	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
228
		nsecs = timekeeping_get_ns();
229

230 231 232
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

233 234 235 236 237 238 239
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

240 241 242 243 244 245 246 247 248 249 250
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251
		nsecs += timekeeping_get_ns();
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
282
		nsecs = timekeeping_get_ns();
283 284 285 286 287 288 289 290

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		u32 arch_offset;

		seq = read_seqbegin(&xtime_lock);

		*ts_raw = raw_time;
		*ts_real = xtime;

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

		/* If arch requires, add in gettimeoffset() */
		arch_offset = arch_gettimeoffset();
		nsecs_raw += arch_offset;
		nsecs_real += arch_offset;

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

334 335 336 337
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
338
 * NOTE: Users should be converted to using getnstimeofday()
339 340 341 342 343
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

344
	getnstimeofday(&now);
345 346 347 348 349 350 351 352 353 354 355
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
356
int do_settimeofday(const struct timespec *tv)
357
{
358
	struct timespec ts_delta;
359 360 361 362 363 364 365
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

366
	timekeeping_forward_now();
367 368 369 370

	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
371

372
	xtime = *tv;
373

374
	timekeeper.ntp_error = 0;
375 376
	ntp_clear();

377 378
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
379 380 381 382 383 384 385 386 387 388 389

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
	unsigned long flags;

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

	timekeeping_forward_now();

	xtime = timespec_add(xtime, *ts);
	wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);

	timekeeper.ntp_error = 0;
	ntp_clear();

	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

426 427 428 429 430
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
431
static int change_clocksource(void *data)
432
{
433
	struct clocksource *new, *old;
434

435
	new = (struct clocksource *) data;
436

437
	timekeeping_forward_now();
438 439 440 441 442 443 444 445
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
446

447 448 449 450 451 452 453 454 455 456
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
457
		return;
458
	stop_machine(change_clocksource, clock, NULL);
459 460
	tick_clock_notify();
}
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
476

477 478 479 480 481 482 483 484 485 486 487 488 489
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
490
		nsecs = timekeeping_get_ns_raw();
491
		*ts = raw_time;
492 493 494 495 496 497 498 499

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


500
/**
501
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
502
 */
503
int timekeeping_valid_for_hres(void)
504 505 506 507 508 509 510
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

511
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
512 513 514 515 516 517

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

518 519 520 521 522 523 524 525 526 527 528
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 *
 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
 * ensure that the clocksource does not change!
 */
u64 timekeeping_max_deferment(void)
{
	return timekeeper.clock->max_idle_ns;
}

529
/**
530
 * read_persistent_clock -  Return time from the persistent clock.
531 532
 *
 * Weak dummy function for arches that do not yet support it.
533 534
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
535 536 537
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
538
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
539
{
540 541
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
542 543
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

559 560 561 562 563
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
564
	struct clocksource *clock;
565
	unsigned long flags;
566
	struct timespec now, boot;
567 568

	read_persistent_clock(&now);
569
	read_boot_clock(&boot);
570 571 572

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
573
	ntp_init();
574

575
	clock = clocksource_default_clock();
576 577
	if (clock->enable)
		clock->enable(clock);
578
	timekeeper_setup_internals(clock);
579

580 581
	xtime.tv_sec = now.tv_sec;
	xtime.tv_nsec = now.tv_nsec;
582 583
	raw_time.tv_sec = 0;
	raw_time.tv_nsec = 0;
584 585 586 587
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
		boot.tv_sec = xtime.tv_sec;
		boot.tv_nsec = xtime.tv_nsec;
	}
588
	set_normalized_timespec(&wall_to_monotonic,
589
				-boot.tv_sec, -boot.tv_nsec);
590 591
	total_sleep_time.tv_sec = 0;
	total_sleep_time.tv_nsec = 0;
592 593 594 595
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
596
static struct timespec timekeeping_suspend_time;
597

598 599 600 601 602 603 604 605 606
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timespec *delta)
{
607
	if (!timespec_valid(delta)) {
608
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
609 610 611 612
					"sleep delta value!\n");
		return;
	}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	xtime = timespec_add(xtime, *delta);
	wall_to_monotonic = timespec_sub(wall_to_monotonic, *delta);
	total_sleep_time = timespec_add(total_sleep_time, *delta);
}


/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
	unsigned long flags;
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

	write_seqlock_irqsave(&xtime_lock, flags);
	timekeeping_forward_now();

	__timekeeping_inject_sleeptime(delta);

	timekeeper.ntp_error = 0;
	ntp_clear();
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();
}


656 657 658 659 660 661 662
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
663
static void timekeeping_resume(void)
664 665
{
	unsigned long flags;
666 667 668
	struct timespec ts;

	read_persistent_clock(&ts);
669

670 671
	clocksource_resume();

672 673
	write_seqlock_irqsave(&xtime_lock, flags);

674 675
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
676
		__timekeeping_inject_sleeptime(&ts);
677 678
	}
	/* re-base the last cycle value */
679 680
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
681 682 683 684 685 686 687 688
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
689
	hrtimers_resume();
690 691
}

692
static int timekeeping_suspend(void)
693 694
{
	unsigned long flags;
695 696
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
697

698
	read_persistent_clock(&timekeeping_suspend_time);
699

700
	write_seqlock_irqsave(&xtime_lock, flags);
701
	timekeeping_forward_now();
702
	timekeeping_suspended = 1;
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
	delta = timespec_sub(xtime, timekeeping_suspend_time);
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
723 724 725
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
726
	clocksource_suspend();
727 728 729 730 731

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
732
static struct syscore_ops timekeeping_syscore_ops = {
733 734 735 736
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

737
static int __init timekeeping_init_ops(void)
738
{
739 740
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
741 742
}

743
device_initcall(timekeeping_init_ops);
744 745 746 747 748

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
749
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
750 751 752 753 754 755 756 757 758 759 760 761
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
762
	 * here.  This is tuned so that an error of about 1 msec is adjusted
763 764
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
765
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
766 767 768 769 770 771 772 773
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
774
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
775
	tick_error -= timekeeper.xtime_interval >> 1;
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
800
static void timekeeping_adjust(s64 offset)
801
{
802
	s64 error, interval = timekeeper.cycle_interval;
803 804
	int adj;

805
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
806 807 808 809 810
	if (error > interval) {
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
811
			adj = timekeeping_bigadjust(error, &interval, &offset);
812 813 814 815 816 817 818
	} else if (error < -interval) {
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
819
			adj = timekeeping_bigadjust(error, &interval, &offset);
820 821 822
	} else
		return;

823
	timekeeper.mult += adj;
824 825 826
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
827
				timekeeper.ntp_error_shift;
828 829
}

L
Linus Torvalds 已提交
830

831 832 833 834 835 836 837 838 839 840 841 842
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
843
	u64 raw_nsecs;
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
		xtime.tv_sec++;
		second_overflow();
	}

860 861 862
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
	raw_nsecs += raw_time.tv_nsec;
863 864 865 866
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
		raw_time.tv_sec += raw_secs;
867
	}
868
	raw_time.tv_nsec = raw_nsecs;
869 870 871

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
872 873
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
874 875 876 877 878
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
879

880 881 882 883 884
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
885
static void update_wall_time(void)
886
{
887
	struct clocksource *clock;
888
	cycle_t offset;
889
	int shift = 0, maxshift;
890 891 892 893 894

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

895
	clock = timekeeper.clock;
J
John Stultz 已提交
896 897

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
898
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
899 900
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
901
#endif
902
	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
903

904 905 906 907 908 909 910
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
911
	 */
912 913 914 915 916
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
917
	while (offset >= timekeeper.cycle_interval) {
918
		offset = logarithmic_accumulation(offset, shift);
919 920
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
921 922 923
	}

	/* correct the clock when NTP error is too big */
924
	timekeeping_adjust(offset);
925

926 927 928 929
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
930
	 * slightly speeding the clocksource up in timekeeping_adjust(),
931 932 933 934 935 936 937 938 939 940 941
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
942 943 944
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
945
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
946 947
	}

J
John Stultz 已提交
948 949 950

	/*
	 * Store full nanoseconds into xtime after rounding it up and
951 952
	 * add the remainder to the error difference.
	 */
953 954 955 956
	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
957

J
John Stultz 已提交
958 959 960 961 962 963 964 965 966
	/*
	 * Finally, make sure that after the rounding
	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
	 */
	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
		xtime.tv_nsec -= NSEC_PER_SEC;
		xtime.tv_sec++;
		second_overflow();
	}
L
Linus Torvalds 已提交
967

968
	/* check to see if there is a new clocksource to use */
969 970
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
971
}
T
Tomas Janousek 已提交
972 973 974 975 976

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
977
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
978 979 980 981 982 983 984 985
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
986 987 988 989
	struct timespec boottime = {
		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
	};
990 991

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
992
}
993
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
994

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
	struct timespec tomono, sleep;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
		sleep = total_sleep_time;
		nsecs = timekeeping_get_ns();

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1044 1045 1046 1047 1048 1049
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
J
John Stultz 已提交
1050
	*ts = timespec_add(*ts, total_sleep_time);
T
Tomas Janousek 已提交
1051
}
1052
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1053

1054 1055
unsigned long get_seconds(void)
{
J
John Stultz 已提交
1056
	return xtime.tv_sec;
1057 1058 1059
}
EXPORT_SYMBOL(get_seconds);

1060 1061
struct timespec __current_kernel_time(void)
{
J
John Stultz 已提交
1062
	return xtime;
1063
}
1064

1065 1066 1067 1068 1069 1070 1071
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1072

J
John Stultz 已提交
1073
		now = xtime;
1074 1075 1076 1077 1078
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1079 1080 1081 1082 1083 1084 1085 1086

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1087

J
John Stultz 已提交
1088
		now = xtime;
1089 1090 1091 1092 1093 1094 1095
		mono = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1108 1109

/**
1110 1111
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1112 1113
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1114
 * @sleep:	pointer to timespec to be set with time in suspend
1115
 */
1116 1117
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1118 1119 1120 1121 1122 1123 1124
{
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		*xtim = xtime;
		*wtom = wall_to_monotonic;
1125
		*sleep = total_sleep_time;
1126 1127
	} while (read_seqretry(&xtime_lock, seq));
}
T
Torben Hohn 已提交
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
	unsigned long seq;
	struct timespec wtom;

	do {
		seq = read_seqbegin(&xtime_lock);
		wtom = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));
	return timespec_to_ktime(wtom);
}

T
Torben Hohn 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}