timekeeping.c 47.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

50 51 52
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

53 54 55 56 57 58 59 60
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

61 62 63 64 65 66 67 68 69
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
	return ts;
}

70
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
71 72
{
	tk->xtime_sec = ts->tv_sec;
73
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
74 75
}

76
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
77 78
{
	tk->xtime_sec += ts->tv_sec;
79
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
80
	tk_normalize_xtime(tk);
81
}
82

83
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
84
{
85
	struct timespec64 tmp;
86 87 88 89 90

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
91
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
92
					-tk->wall_to_monotonic.tv_nsec);
93
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
94
	tk->wall_to_monotonic = wtm;
95 96
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
97
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
98 99
}

100
static void tk_set_sleep_time(struct timekeeper *tk, struct timespec64 t)
101 102
{
	/* Verify consistency before modifying */
103
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec64_to_ktime(tk->total_sleep_time).tv64);
104 105

	tk->total_sleep_time	= t;
106
	tk->offs_boot		= timespec64_to_ktime(t);
107 108
}

109
/**
110
 * tk_setup_internals - Set up internals to use clocksource clock.
111
 *
112
 * @tk:		The target timekeeper to setup.
113 114 115 116 117 118 119
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
120
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
121 122
{
	cycle_t interval;
123
	u64 tmp, ntpinterval;
124
	struct clocksource *old_clock;
125

126 127
	old_clock = tk->clock;
	tk->clock = clock;
128
	tk->cycle_last = clock->cycle_last = clock->read(clock);
129 130 131 132

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
133
	ntpinterval = tmp;
134 135
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
136 137 138 139
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
140
	tk->cycle_interval = interval;
141 142

	/* Go back from cycles -> shifted ns */
143 144 145
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
146
		((u64) interval * clock->mult) >> clock->shift;
147

148 149 150 151
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
152
			tk->xtime_nsec >>= -shift_change;
153
		else
154
			tk->xtime_nsec <<= shift_change;
155
	}
156
	tk->shift = clock->shift;
157

158 159
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
160 161 162 163 164 165

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
166
	tk->mult = clock->mult;
167
}
168

169
/* Timekeeper helper functions. */
170 171

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
172 173
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
174
#else
175
static inline u32 arch_gettimeoffset(void) { return 0; }
176 177
#endif

178
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
179 180 181
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
182
	s64 nsec;
183 184

	/* read clocksource: */
185
	clock = tk->clock;
186 187 188 189 190
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

191 192
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
193

194
	/* If arch requires, add in get_arch_timeoffset() */
195
	return nsec + arch_gettimeoffset();
196 197
}

198
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
199 200 201
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
202
	s64 nsec;
203 204

	/* read clocksource: */
205
	clock = tk->clock;
206 207 208 209 210
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

211 212 213
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

214
	/* If arch requires, add in get_arch_timeoffset() */
215
	return nsec + arch_gettimeoffset();
216 217
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
	struct timespec xt;

	xt = tk_xtime(tk);
	update_vsyscall_old(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;
	tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
}
#else
#define old_vsyscall_fixup(tk)
#endif

252 253
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

254
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
255
{
256
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
257 258 259 260 261 262 263
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
264
	struct timekeeper *tk = &tk_core.timekeeper;
265 266 267
	unsigned long flags;
	int ret;

268
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
269
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
270
	update_pvclock_gtod(tk, true);
271
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
272 273 274 275 276 277 278 279 280 281 282 283 284 285

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

286
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
287
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
288
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
289 290 291 292 293

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
	s64 nsec;

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
	nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec *= NSEC_PER_SEC;
	nsec += tk->wall_to_monotonic.tv_nsec;
	tk->base_mono = ns_to_ktime(nsec);
}

314
/* must hold timekeeper_lock */
315
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
316
{
317
	if (action & TK_CLEAR_NTP) {
318
		tk->ntp_error = 0;
319 320
		ntp_clear();
	}
321
	update_vsyscall(tk);
322
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
323

324 325
	tk_update_ktime_data(tk);

326
	if (action & TK_MIRROR)
327 328
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
329 330
}

331
/**
332
 * timekeeping_forward_now - update clock to the current time
333
 *
334 335 336
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
337
 */
338
static void timekeeping_forward_now(struct timekeeper *tk)
339 340
{
	cycle_t cycle_now, cycle_delta;
341
	struct clocksource *clock;
342
	s64 nsec;
343

344
	clock = tk->clock;
345
	cycle_now = clock->read(clock);
346
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
347
	tk->cycle_last = clock->cycle_last = cycle_now;
348

349
	tk->xtime_nsec += cycle_delta * tk->mult;
350

351
	/* If arch requires, add in get_arch_timeoffset() */
352
	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
353

354
	tk_normalize_xtime(tk);
355

356
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
357
	timespec64_add_ns(&tk->raw_time, nsec);
358 359 360
}

/**
361
 * __getnstimeofday64 - Returns the time of day in a timespec64.
362 363
 * @ts:		pointer to the timespec to be set
 *
364 365
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
366
 */
367
int __getnstimeofday64(struct timespec64 *ts)
368
{
369
	struct timekeeper *tk = &tk_core.timekeeper;
370
	unsigned long seq;
371
	s64 nsecs = 0;
372 373

	do {
374
		seq = read_seqcount_begin(&tk_core.seq);
375

376
		ts->tv_sec = tk->xtime_sec;
377
		nsecs = timekeeping_get_ns(tk);
378

379
	} while (read_seqcount_retry(&tk_core.seq, seq));
380

381
	ts->tv_nsec = 0;
382
	timespec64_add_ns(ts, nsecs);
383 384 385 386 387 388 389 390 391

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
392
EXPORT_SYMBOL(__getnstimeofday64);
393 394

/**
395
 * getnstimeofday64 - Returns the time of day in a timespec64.
396 397 398 399
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
400
void getnstimeofday64(struct timespec64 *ts)
401
{
402
	WARN_ON(__getnstimeofday64(ts));
403
}
404
EXPORT_SYMBOL(getnstimeofday64);
405

406 407
ktime_t ktime_get(void)
{
408
	struct timekeeper *tk = &tk_core.timekeeper;
409
	unsigned int seq;
410 411
	ktime_t base;
	s64 nsecs;
412 413 414 415

	WARN_ON(timekeeping_suspended);

	do {
416
		seq = read_seqcount_begin(&tk_core.seq);
417 418
		base = tk->base_mono;
		nsecs = timekeeping_get_ns(tk);
419

420
	} while (read_seqcount_retry(&tk_core.seq, seq));
421

422
	return ktime_add_ns(base, nsecs);
423 424 425 426
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
427
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
428 429 430 431 432 433
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
434
void ktime_get_ts64(struct timespec64 *ts)
435
{
436
	struct timekeeper *tk = &tk_core.timekeeper;
437
	struct timespec64 tomono;
438
	s64 nsec;
439 440 441 442 443
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
444
		seq = read_seqcount_begin(&tk_core.seq);
445
		ts->tv_sec = tk->xtime_sec;
446
		nsec = timekeeping_get_ns(tk);
447
		tomono = tk->wall_to_monotonic;
448

449
	} while (read_seqcount_retry(&tk_core.seq, seq));
450

451 452 453
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
454
}
455
EXPORT_SYMBOL_GPL(ktime_get_ts64);
456

J
John Stultz 已提交
457 458 459 460 461 462 463 464 465

/**
 * timekeeping_clocktai - Returns the TAI time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void timekeeping_clocktai(struct timespec *ts)
{
466
	struct timekeeper *tk = &tk_core.timekeeper;
467
	struct timespec64 ts64;
J
John Stultz 已提交
468 469 470 471 472 473
	unsigned long seq;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
474
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
475

476
		ts64.tv_sec = tk->xtime_sec + tk->tai_offset;
J
John Stultz 已提交
477 478
		nsecs = timekeeping_get_ns(tk);

479
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
480

481 482 483
	ts64.tv_nsec = 0;
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
J
John Stultz 已提交
484 485 486 487 488

}
EXPORT_SYMBOL(timekeeping_clocktai);


489 490 491 492 493 494 495 496 497 498 499 500 501 502
/**
 * ktime_get_clocktai - Returns the TAI time of day in a ktime
 *
 * Returns the time of day in a ktime.
 */
ktime_t ktime_get_clocktai(void)
{
	struct timespec ts;

	timekeeping_clocktai(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL(ktime_get_clocktai);

503 504 505 506 507 508 509 510 511 512 513 514 515
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
516
	struct timekeeper *tk = &tk_core.timekeeper;
517 518 519 520 521 522
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
523
		seq = read_seqcount_begin(&tk_core.seq);
524

525
		*ts_raw = timespec64_to_timespec(tk->raw_time);
526
		ts_real->tv_sec = tk->xtime_sec;
527
		ts_real->tv_nsec = 0;
528

529 530
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
531

532
	} while (read_seqcount_retry(&tk_core.seq, seq));
533 534 535 536 537 538 539 540

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

541 542 543 544
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
545
 * NOTE: Users should be converted to using getnstimeofday()
546 547 548
 */
void do_gettimeofday(struct timeval *tv)
{
549
	struct timespec64 now;
550

551
	getnstimeofday64(&now);
552 553 554 555
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
556

557 558 559 560 561 562
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
563
int do_settimeofday(const struct timespec *tv)
564
{
565
	struct timekeeper *tk = &tk_core.timekeeper;
566
	struct timespec64 ts_delta, xt, tmp;
567
	unsigned long flags;
568

569
	if (!timespec_valid_strict(tv))
570 571
		return -EINVAL;

572
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
573
	write_seqcount_begin(&tk_core.seq);
574

575
	timekeeping_forward_now(tk);
576

577
	xt = tk_xtime(tk);
578 579 580
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

581
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
582

583 584
	tmp = timespec_to_timespec64(*tv);
	tk_set_xtime(tk, &tmp);
585

586
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
587

588
	write_seqcount_end(&tk_core.seq);
589
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
590 591 592 593 594 595 596 597

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

598 599 600 601 602 603 604 605
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
606
	struct timekeeper *tk = &tk_core.timekeeper;
607
	unsigned long flags;
608
	struct timespec64 ts64, tmp;
609
	int ret = 0;
610 611 612 613

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

614 615
	ts64 = timespec_to_timespec64(*ts);

616
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
617
	write_seqcount_begin(&tk_core.seq);
618

619
	timekeeping_forward_now(tk);
620

621
	/* Make sure the proposed value is valid */
622 623
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
624 625 626
		ret = -EINVAL;
		goto error;
	}
627

628 629
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
630

631
error: /* even if we error out, we forwarded the time, so call update */
632
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
633

634
	write_seqcount_end(&tk_core.seq);
635
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
636 637 638 639

	/* signal hrtimers about time change */
	clock_was_set();

640
	return ret;
641 642 643
}
EXPORT_SYMBOL(timekeeping_inject_offset);

644 645 646 647 648 649 650

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
651
	struct timekeeper *tk = &tk_core.timekeeper;
652 653 654 655
	unsigned int seq;
	s32 ret;

	do {
656
		seq = read_seqcount_begin(&tk_core.seq);
657
		ret = tk->tai_offset;
658
	} while (read_seqcount_retry(&tk_core.seq, seq));
659 660 661 662 663 664 665 666

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
667
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
668 669
{
	tk->tai_offset = tai_offset;
670
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
671 672 673 674 675 676 677 678
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
679
	struct timekeeper *tk = &tk_core.timekeeper;
680 681
	unsigned long flags;

682
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
683
	write_seqcount_begin(&tk_core.seq);
684
	__timekeeping_set_tai_offset(tk, tai_offset);
685
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
686
	write_seqcount_end(&tk_core.seq);
687
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
688
	clock_was_set();
689 690
}

691 692 693 694 695
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
696
static int change_clocksource(void *data)
697
{
698
	struct timekeeper *tk = &tk_core.timekeeper;
699
	struct clocksource *new, *old;
700
	unsigned long flags;
701

702
	new = (struct clocksource *) data;
703

704
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
705
	write_seqcount_begin(&tk_core.seq);
706

707
	timekeeping_forward_now(tk);
708 709 710 711 712 713 714 715 716 717 718 719 720 721
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
			old = tk->clock;
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
722
	}
723
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
724

725
	write_seqcount_end(&tk_core.seq);
726
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
727

728 729
	return 0;
}
730

731 732 733 734 735 736 737
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
738
int timekeeping_notify(struct clocksource *clock)
739
{
740
	struct timekeeper *tk = &tk_core.timekeeper;
741 742

	if (tk->clock == clock)
743
		return 0;
744
	stop_machine(change_clocksource, clock, NULL);
745
	tick_clock_notify();
746
	return tk->clock == clock ? 0 : -1;
747
}
748

749 750 751 752 753 754 755
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
756
	struct timespec64 now;
757

758
	getnstimeofday64(&now);
759

760
	return timespec64_to_ktime(now);
761 762
}
EXPORT_SYMBOL_GPL(ktime_get_real);
763

764 765 766 767 768 769 770 771
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
772
	struct timekeeper *tk = &tk_core.timekeeper;
773
	struct timespec64 ts64;
774 775 776 777
	unsigned long seq;
	s64 nsecs;

	do {
778
		seq = read_seqcount_begin(&tk_core.seq);
779
		nsecs = timekeeping_get_ns_raw(tk);
780
		ts64 = tk->raw_time;
781

782
	} while (read_seqcount_retry(&tk_core.seq, seq));
783

784 785
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
786 787 788
}
EXPORT_SYMBOL(getrawmonotonic);

789
/**
790
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
791
 */
792
int timekeeping_valid_for_hres(void)
793
{
794
	struct timekeeper *tk = &tk_core.timekeeper;
795 796 797 798
	unsigned long seq;
	int ret;

	do {
799
		seq = read_seqcount_begin(&tk_core.seq);
800

801
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
802

803
	} while (read_seqcount_retry(&tk_core.seq, seq));
804 805 806 807

	return ret;
}

808 809 810 811 812
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
813
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
814 815
	unsigned long seq;
	u64 ret;
816

J
John Stultz 已提交
817
	do {
818
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
819

820
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
821

822
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
823 824

	return ret;
825 826
}

827
/**
828
 * read_persistent_clock -  Return time from the persistent clock.
829 830
 *
 * Weak dummy function for arches that do not yet support it.
831 832
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
833 834 835
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
836
void __weak read_persistent_clock(struct timespec *ts)
837
{
838 839
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
840 841
}

842 843 844 845 846 847 848 849 850
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
851
void __weak read_boot_clock(struct timespec *ts)
852 853 854 855 856
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

857 858 859 860 861
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
862
	struct timekeeper *tk = &tk_core.timekeeper;
863
	struct clocksource *clock;
864
	unsigned long flags;
865 866
	struct timespec64 now, boot, tmp;
	struct timespec ts;
867

868 869 870
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
871 872 873 874
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
875 876
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
877

878 879 880
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
881 882 883 884 885
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
886

887
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
888
	write_seqcount_begin(&tk_core.seq);
889 890
	ntp_init();

891
	clock = clocksource_default_clock();
892 893
	if (clock->enable)
		clock->enable(clock);
894
	tk_setup_internals(tk, clock);
895

896 897 898
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
899
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
900
		boot = tk_xtime(tk);
901

902
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
903
	tk_set_wall_to_mono(tk, tmp);
904 905 906

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
907
	tk_set_sleep_time(tk, tmp);
908

909
	timekeeping_update(tk, TK_MIRROR);
910

911
	write_seqcount_end(&tk_core.seq);
912
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
913 914 915
}

/* time in seconds when suspend began */
916
static struct timespec64 timekeeping_suspend_time;
917

918 919 920 921 922 923 924
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
925
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
926
					   struct timespec64 *delta)
927
{
928
	if (!timespec64_valid_strict(delta)) {
929 930 931
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
932 933
		return;
	}
934
	tk_xtime_add(tk, delta);
935 936
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec64_add(tk->total_sleep_time, *delta));
937
	tk_debug_account_sleep_time(delta);
938 939 940 941 942 943 944 945 946 947 948 949 950 951
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
952
	struct timekeeper *tk = &tk_core.timekeeper;
953
	struct timespec64 tmp;
954
	unsigned long flags;
955

956 957 958 959 960
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
961 962
		return;

963
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
964
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
965

966
	timekeeping_forward_now(tk);
967

968 969
	tmp = timespec_to_timespec64(*delta);
	__timekeeping_inject_sleeptime(tk, &tmp);
970

971
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
972

973
	write_seqcount_end(&tk_core.seq);
974
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
975 976 977 978 979

	/* signal hrtimers about time change */
	clock_was_set();
}

980 981 982 983 984 985 986
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
987
static void timekeeping_resume(void)
988
{
989
	struct timekeeper *tk = &tk_core.timekeeper;
990
	struct clocksource *clock = tk->clock;
991
	unsigned long flags;
992 993
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
994 995
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
996

997 998
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
999

1000
	clockevents_resume();
1001 1002
	clocksource_resume();

1003
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1004
	write_seqcount_begin(&tk_core.seq);
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1041
		ts_delta = ns_to_timespec64(nsec);
1042
		suspendtime_found = true;
1043 1044
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1045
		suspendtime_found = true;
1046
	}
1047 1048 1049 1050 1051

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1052
	tk->cycle_last = clock->cycle_last = cycle_now;
1053
	tk->ntp_error = 0;
1054
	timekeeping_suspended = 0;
1055
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1056
	write_seqcount_end(&tk_core.seq);
1057
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1058 1059 1060 1061 1062 1063

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1064
	hrtimers_resume();
1065 1066
}

1067
static int timekeeping_suspend(void)
1068
{
1069
	struct timekeeper *tk = &tk_core.timekeeper;
1070
	unsigned long flags;
1071 1072 1073
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1074

1075 1076
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1077

1078 1079 1080 1081 1082 1083 1084 1085
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1086
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1087
	write_seqcount_begin(&tk_core.seq);
1088
	timekeeping_forward_now(tk);
1089
	timekeeping_suspended = 1;
1090 1091 1092 1093 1094 1095 1096

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1097 1098
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1099 1100 1101 1102 1103 1104 1105 1106 1107
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1108
			timespec64_add(timekeeping_suspend_time, delta_delta);
1109
	}
1110 1111

	timekeeping_update(tk, TK_MIRROR);
1112
	write_seqcount_end(&tk_core.seq);
1113
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1114 1115

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1116
	clocksource_suspend();
1117
	clockevents_suspend();
1118 1119 1120 1121 1122

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1123
static struct syscore_ops timekeeping_syscore_ops = {
1124 1125 1126 1127
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1128
static int __init timekeeping_init_ops(void)
1129
{
1130 1131
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1132 1133
}

1134
device_initcall(timekeeping_init_ops);
1135 1136 1137 1138 1139

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
1140 1141
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
1154
	 * here.  This is tuned so that an error of about 1 msec is adjusted
1155 1156
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
1157
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1158 1159 1160 1161 1162 1163 1164 1165
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
1166 1167
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1192
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1193
{
1194
	s64 error, interval = tk->cycle_interval;
1195 1196
	int adj;

1197
	/*
1198
	 * The point of this is to check if the error is greater than half
1199 1200 1201 1202 1203
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1204 1205
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1206
	 * larger than half an interval.
1207
	 *
1208
	 * Note: It does not "save" on aggravation when reading the code.
1209
	 */
1210
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1211
	if (error > interval) {
1212 1213
		/*
		 * We now divide error by 4(via shift), which checks if
1214
		 * the error is greater than twice the interval.
1215 1216 1217
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1218 1219 1220 1221
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1238

1239 1240
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1241
		printk_deferred_once(KERN_WARNING
1242
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1243 1244
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1245
	}
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1295 1296 1297 1298
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1299

1300
out_adjust:
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1315 1316 1317 1318
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1319 1320
	}

1321 1322
}

1323 1324 1325 1326 1327 1328 1329 1330
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1331
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1332 1333
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1334
	unsigned int clock_set = 0;
1335 1336 1337 1338 1339 1340 1341 1342 1343

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1344
		if (unlikely(leap)) {
1345
			struct timespec64 ts;
1346 1347

			tk->xtime_sec += leap;
1348

1349 1350 1351
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1352
				timespec64_sub(tk->wall_to_monotonic, ts));
1353

1354 1355
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1356
			clock_set = TK_CLOCK_WAS_SET;
1357
		}
1358
	}
1359
	return clock_set;
1360 1361
}

1362 1363 1364 1365 1366 1367 1368 1369 1370
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1371
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1372 1373
						u32 shift,
						unsigned int *clock_set)
1374
{
T
Thomas Gleixner 已提交
1375
	cycle_t interval = tk->cycle_interval << shift;
1376
	u64 raw_nsecs;
1377

1378
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1379
	if (offset < interval)
1380 1381 1382
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1383
	offset -= interval;
1384
	tk->cycle_last += interval;
1385

1386
	tk->xtime_nsec += tk->xtime_interval << shift;
1387
	*clock_set |= accumulate_nsecs_to_secs(tk);
1388

1389
	/* Accumulate raw time */
1390
	raw_nsecs = (u64)tk->raw_interval << shift;
1391
	raw_nsecs += tk->raw_time.tv_nsec;
1392 1393 1394
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1395
		tk->raw_time.tv_sec += raw_secs;
1396
	}
1397
	tk->raw_time.tv_nsec = raw_nsecs;
1398 1399

	/* Accumulate error between NTP and clock interval */
1400 1401 1402
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1403 1404 1405 1406

	return offset;
}

1407 1408 1409 1410
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1411
void update_wall_time(void)
1412
{
1413
	struct clocksource *clock;
1414
	struct timekeeper *real_tk = &tk_core.timekeeper;
1415
	struct timekeeper *tk = &shadow_timekeeper;
1416
	cycle_t offset;
1417
	int shift = 0, maxshift;
1418
	unsigned int clock_set = 0;
J
John Stultz 已提交
1419 1420
	unsigned long flags;

1421
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1422 1423 1424

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1425
		goto out;
1426

1427
	clock = real_tk->clock;
J
John Stultz 已提交
1428 1429

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1430
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1431 1432
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1433 1434
#endif

1435
	/* Check if there's really nothing to do */
1436
	if (offset < real_tk->cycle_interval)
1437 1438
		goto out;

1439 1440 1441 1442
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1443
	 * that is smaller than the offset.  We then accumulate that
1444 1445
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1446
	 */
1447
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1448
	shift = max(0, shift);
1449
	/* Bound shift to one less than what overflows tick_length */
1450
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1451
	shift = min(shift, maxshift);
1452
	while (offset >= tk->cycle_interval) {
1453 1454
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1455
		if (offset < tk->cycle_interval<<shift)
1456
			shift--;
1457 1458 1459
	}

	/* correct the clock when NTP error is too big */
1460
	timekeeping_adjust(tk, offset);
1461

J
John Stultz 已提交
1462
	/*
1463 1464 1465 1466
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1467

J
John Stultz 已提交
1468 1469
	/*
	 * Finally, make sure that after the rounding
1470
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1471
	 */
1472
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1473

1474
	write_seqcount_begin(&tk_core.seq);
1475 1476
	/* Update clock->cycle_last with the new value */
	clock->cycle_last = tk->cycle_last;
1477 1478 1479 1480 1481 1482 1483
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1484
	 * memcpy under the tk_core.seq against one before we start
1485 1486 1487
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1488
	timekeeping_update(real_tk, clock_set);
1489
	write_seqcount_end(&tk_core.seq);
1490
out:
1491
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1492
	if (clock_set)
1493 1494
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1495
}
T
Tomas Janousek 已提交
1496 1497 1498 1499 1500

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1501
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1502 1503 1504 1505 1506 1507 1508 1509
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1510
	struct timekeeper *tk = &tk_core.timekeeper;
1511
	struct timespec boottime = {
1512 1513 1514 1515
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1516
	};
1517 1518

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1519
}
1520
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1533
	struct timekeeper *tk = &tk_core.timekeeper;
1534
	struct timespec64 tomono, sleep, ret;
1535
	s64 nsec;
1536 1537 1538 1539 1540
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1541
		seq = read_seqcount_begin(&tk_core.seq);
1542
		ret.tv_sec = tk->xtime_sec;
1543
		nsec = timekeeping_get_ns(tk);
1544 1545
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1546

1547
	} while (read_seqcount_retry(&tk_core.seq, seq));
1548

1549 1550 1551 1552
	ret.tv_sec += tomono.tv_sec + sleep.tv_sec;
	ret.tv_nsec = 0;
	timespec64_add_ns(&ret, nsec + tomono.tv_nsec + sleep.tv_nsec);
	*ts = timespec64_to_timespec(ret);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1573 1574 1575 1576 1577 1578
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1579
	struct timekeeper *tk = &tk_core.timekeeper;
1580
	struct timespec64 ts64;
1581

1582 1583 1584
	ts64 = timespec_to_timespec64(*ts);
	ts64 = timespec64_add(ts64, tk->total_sleep_time);
	*ts = timespec64_to_timespec(ts64);
T
Tomas Janousek 已提交
1585
}
1586
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1587

1588 1589
unsigned long get_seconds(void)
{
1590
	struct timekeeper *tk = &tk_core.timekeeper;
1591 1592

	return tk->xtime_sec;
1593 1594 1595
}
EXPORT_SYMBOL(get_seconds);

1596 1597
struct timespec __current_kernel_time(void)
{
1598
	struct timekeeper *tk = &tk_core.timekeeper;
1599

1600
	return timespec64_to_timespec(tk_xtime(tk));
1601
}
1602

1603 1604
struct timespec current_kernel_time(void)
{
1605
	struct timekeeper *tk = &tk_core.timekeeper;
1606
	struct timespec64 now;
1607 1608 1609
	unsigned long seq;

	do {
1610
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1611

1612
		now = tk_xtime(tk);
1613
	} while (read_seqcount_retry(&tk_core.seq, seq));
1614

1615
	return timespec64_to_timespec(now);
1616 1617
}
EXPORT_SYMBOL(current_kernel_time);
1618 1619 1620

struct timespec get_monotonic_coarse(void)
{
1621
	struct timekeeper *tk = &tk_core.timekeeper;
1622
	struct timespec64 now, mono;
1623 1624 1625
	unsigned long seq;

	do {
1626
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1627

1628 1629
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1630
	} while (read_seqcount_retry(&tk_core.seq, seq));
1631

1632
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1633
				now.tv_nsec + mono.tv_nsec);
1634 1635

	return timespec64_to_timespec(now);
1636
}
1637 1638

/*
1639
 * Must hold jiffies_lock
1640 1641 1642 1643 1644 1645
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1646 1647

/**
1648 1649 1650 1651 1652 1653
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1654
 */
1655 1656
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1657
{
1658
	struct timekeeper *tk = &tk_core.timekeeper;
1659
	struct timespec64 ts;
1660 1661
	ktime_t now;
	unsigned int seq;
1662 1663

	do {
1664
		seq = read_seqcount_begin(&tk_core.seq);
1665 1666 1667 1668 1669

		ts = tk_xtime(tk);
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1670
	} while (read_seqcount_retry(&tk_core.seq, seq));
1671 1672 1673 1674

	now = ktime_set(ts.tv_sec, ts.tv_nsec);
	now = ktime_sub(now, *offs_real);
	return now;
1675
}
T
Torben Hohn 已提交
1676

1677 1678
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1679
 * ktime_get_update_offsets_now - hrtimer helper
1680 1681
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1682
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1683 1684
 *
 * Returns current monotonic time and updates the offsets
1685
 * Called from hrtimer_interrupt() or retrigger_next_event()
1686
 */
1687
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1688
							ktime_t *offs_tai)
1689
{
1690
	struct timekeeper *tk = &tk_core.timekeeper;
1691 1692 1693 1694 1695
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1696
		seq = read_seqcount_begin(&tk_core.seq);
1697

1698 1699
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1700

1701 1702
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1703
		*offs_tai = tk->offs_tai;
1704
	} while (read_seqcount_retry(&tk_core.seq, seq));
1705 1706 1707 1708 1709 1710 1711

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1712 1713 1714 1715 1716
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1717
	struct timekeeper *tk = &tk_core.timekeeper;
1718
	unsigned long seq;
1719
	struct timespec64 wtom;
1720 1721

	do {
1722
		seq = read_seqcount_begin(&tk_core.seq);
1723
		wtom = tk->wall_to_monotonic;
1724
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1725

1726
	return timespec64_to_ktime(wtom);
1727
}
1728 1729
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

1730 1731 1732 1733 1734
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1735
	struct timekeeper *tk = &tk_core.timekeeper;
1736
	unsigned long flags;
1737
	struct timespec64 ts;
1738
	s32 orig_tai, tai;
1739 1740 1741 1742 1743 1744 1745
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1757
	getnstimeofday64(&ts);
1758

1759
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1760
	write_seqcount_begin(&tk_core.seq);
1761

1762
	orig_tai = tai = tk->tai_offset;
1763
	ret = __do_adjtimex(txc, &ts, &tai);
1764

1765 1766
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1767
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1768
	}
1769
	write_seqcount_end(&tk_core.seq);
1770 1771
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1772 1773 1774
	if (tai != orig_tai)
		clock_was_set();

1775 1776
	ntp_notify_cmos_timer();

1777 1778
	return ret;
}
1779 1780 1781 1782 1783 1784 1785

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1786 1787 1788
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1789
	write_seqcount_begin(&tk_core.seq);
1790

1791
	__hardpps(phase_ts, raw_ts);
1792

1793
	write_seqcount_end(&tk_core.seq);
1794
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1795 1796 1797 1798
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1799 1800 1801 1802 1803 1804 1805 1806
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1807
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1808
	do_timer(ticks);
1809
	write_sequnlock(&jiffies_lock);
1810
	update_wall_time();
T
Torben Hohn 已提交
1811
}