core.c 193.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
G
Glauber Costa 已提交
77 78 79
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
80

81
#include "sched.h"
82
#include "../workqueue_sched.h"
83

84
#define CREATE_TRACE_POINTS
85
#include <trace/events/sched.h>
86

87
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
88
{
89 90
	unsigned long delta;
	ktime_t soft, hard, now;
91

92 93 94 95 96 97
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
98

99 100 101 102 103 104 105 106
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

107 108
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
109

110
static void update_rq_clock_task(struct rq *rq, s64 delta);
111

112
void update_rq_clock(struct rq *rq)
113
{
114
	s64 delta;
115

116
	if (rq->skip_clock_update > 0)
117
		return;
118

119 120 121
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
122 123
}

I
Ingo Molnar 已提交
124 125 126
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
127 128 129 130

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
131
const_debug unsigned int sysctl_sched_features =
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136 137 138 139 140
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

141
static __read_mostly char *sched_feat_names[] = {
142
#include "features.h"
P
Peter Zijlstra 已提交
143 144 145 146 147
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
148
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
149 150 151 152
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
153 154 155
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
156
	}
L
Li Zefan 已提交
157
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
158

L
Li Zefan 已提交
159
	return 0;
P
Peter Zijlstra 已提交
160 161 162 163 164 165 166
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
167
	char *cmp;
P
Peter Zijlstra 已提交
168 169 170 171 172 173 174 175 176 177
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
178
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
179

H
Hillf Danton 已提交
180
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
181 182 183 184 185
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
186
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
P
Peter Zijlstra 已提交
187 188 189 190 191 192 193 194 195 196 197
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

198
	*ppos += cnt;
P
Peter Zijlstra 已提交
199 200 201 202

	return cnt;
}

L
Li Zefan 已提交
203 204 205 206 207
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

208
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
209 210 211 212 213
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

227 228 229 230 231 232
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

233 234 235 236 237 238 239 240
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

241 242 243 244 245
/*
 * period over which we measure -rt task cpu usage in us.
 * default: 1s
 */
unsigned int sysctl_sched_rt_period = 1000000;
246

247 248 249 250 251 252 253
__read_mostly int scheduler_running;

/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
254 255


L
Linus Torvalds 已提交
256

257
/*
258
 * __task_rq_lock - lock the rq @p resides on.
259
 */
260
static inline struct rq *__task_rq_lock(struct task_struct *p)
261 262
	__acquires(rq->lock)
{
263 264
	struct rq *rq;

265 266
	lockdep_assert_held(&p->pi_lock);

267
	for (;;) {
268
		rq = task_rq(p);
269
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
270
		if (likely(rq == task_rq(p)))
271
			return rq;
272
		raw_spin_unlock(&rq->lock);
273 274 275
	}
}

L
Linus Torvalds 已提交
276
/*
277
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
278
 */
279
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
280
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
281 282
	__acquires(rq->lock)
{
283
	struct rq *rq;
L
Linus Torvalds 已提交
284

285
	for (;;) {
286
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
287
		rq = task_rq(p);
288
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
289
		if (likely(rq == task_rq(p)))
290
			return rq;
291 292
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
293 294 295
	}
}

A
Alexey Dobriyan 已提交
296
static void __task_rq_unlock(struct rq *rq)
297 298
	__releases(rq->lock)
{
299
	raw_spin_unlock(&rq->lock);
300 301
}

302 303
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
304
	__releases(rq->lock)
305
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
306
{
307 308
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
309 310 311
}

/*
312
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
313
 */
A
Alexey Dobriyan 已提交
314
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
315 316
	__acquires(rq->lock)
{
317
	struct rq *rq;
L
Linus Torvalds 已提交
318 319 320

	local_irq_disable();
	rq = this_rq();
321
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
322 323 324 325

	return rq;
}

P
Peter Zijlstra 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

354
	raw_spin_lock(&rq->lock);
355
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
356
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
357
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
358 359 360 361

	return HRTIMER_NORESTART;
}

362
#ifdef CONFIG_SMP
363 364 365 366
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
367
{
368
	struct rq *rq = arg;
369

370
	raw_spin_lock(&rq->lock);
371 372
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
373
	raw_spin_unlock(&rq->lock);
374 375
}

376 377 378 379 380
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
381
void hrtick_start(struct rq *rq, u64 delay)
382
{
383 384
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
385

386
	hrtimer_set_expires(timer, time);
387 388 389 390

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
391
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
392 393
		rq->hrtick_csd_pending = 1;
	}
394 395 396 397 398 399 400 401 402 403 404 405 406 407
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
408
		hrtick_clear(cpu_rq(cpu));
409 410 411 412 413 414
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

415
static __init void init_hrtick(void)
416 417 418
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
419 420 421 422 423 424
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
425
void hrtick_start(struct rq *rq, u64 delay)
426
{
427
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
428
			HRTIMER_MODE_REL_PINNED, 0);
429
}
430

A
Andrew Morton 已提交
431
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
432 433
{
}
434
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
435

436
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
437
{
438 439
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
440

441 442 443 444
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
445

446 447
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
448
}
A
Andrew Morton 已提交
449
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
450 451 452 453 454 455 456 457
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

458 459 460
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
461
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
462

I
Ingo Molnar 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

476
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
477 478 479
{
	int cpu;

480
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
481

482
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
483 484
		return;

485
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
486 487 488 489 490 491 492 493 494 495 496

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

497
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
498 499 500 501
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

502
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
503 504
		return;
	resched_task(cpu_curr(cpu));
505
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
506
}
507 508

#ifdef CONFIG_NO_HZ
509 510 511 512 513 514 515 516 517 518 519 520 521 522
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

523
	rcu_read_lock();
524
	for_each_domain(cpu, sd) {
525 526 527 528 529 530
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
531
	}
532 533
unlock:
	rcu_read_unlock();
534 535
	return cpu;
}
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
568
	set_tsk_need_resched(rq->idle);
569 570 571 572 573 574

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
575

576 577
static inline bool got_nohz_idle_kick(void)
{
578 579
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
580 581 582 583 584 585 586 587 588
}

#else /* CONFIG_NO_HZ */

static inline bool got_nohz_idle_kick(void)
{
	return false;
}

589
#endif /* CONFIG_NO_HZ */
590

591
void sched_avg_update(struct rq *rq)
592 593 594 595
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
596 597 598 599 600 601
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
602 603 604 605 606
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

607
#else /* !CONFIG_SMP */
608
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
609
{
610
	assert_raw_spin_locked(&task_rq(p)->lock);
611
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
612
}
613
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
614

615 616
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
617
/*
618 619 620 621
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
622
 */
623
int walk_tg_tree_from(struct task_group *from,
624
			     tg_visitor down, tg_visitor up, void *data)
625 626
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
627
	int ret;
628

629 630
	parent = from;

631
down:
P
Peter Zijlstra 已提交
632 633
	ret = (*down)(parent, data);
	if (ret)
634
		goto out;
635 636 637 638 639
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
640 641 642 643 644
		continue;
	}
	ret = (*up)(parent, data);
	if (ret || parent == from)
		goto out;
645

646 647 648 649 650 651
	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
out:
	return ret;
652 653
}

654
int tg_nop(struct task_group *tg, void *data)
655
{
656
	return 0;
657
}
658 659 660
#endif

void update_cpu_load(struct rq *this_rq);
661

662 663
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
664 665 666
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
667 668 669 670
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
671
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
672
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
673 674
		return;
	}
675

676
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
677
	load->inv_weight = prio_to_wmult[prio];
678 679
}

680
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
681
{
682
	update_rq_clock(rq);
I
Ingo Molnar 已提交
683
	sched_info_queued(p);
684
	p->sched_class->enqueue_task(rq, p, flags);
685 686
}

687
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
688
{
689
	update_rq_clock(rq);
690
	sched_info_dequeued(p);
691
	p->sched_class->dequeue_task(rq, p, flags);
692 693
}

694 695 696
/*
 * activate_task - move a task to the runqueue.
 */
697
void activate_task(struct rq *rq, struct task_struct *p, int flags)
698 699 700 701
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

702
	enqueue_task(rq, p, flags);
703 704 705 706 707
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
708
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
709 710 711 712
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

713
	dequeue_task(rq, p, flags);
714 715
}

716 717
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

718 719 720 721 722 723 724
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
725 726 727
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
728
 */
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
783 784 785
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
786
#endif /* CONFIG_64BIT */
787

788 789 790 791
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
792 793 794
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
795
	s64 delta;
796 797 798 799 800 801 802 803
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
804 805 806
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

807
	irq_time_write_begin();
808 809 810 811 812 813 814
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
815
		__this_cpu_add(cpu_hardirq_time, delta);
816
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
817
		__this_cpu_add(cpu_softirq_time, delta);
818

819
	irq_time_write_end();
820 821
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
822
EXPORT_SYMBOL_GPL(account_system_vtime);
823

G
Glauber Costa 已提交
824 825 826 827
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
828
{
G
Glauber Costa 已提交
829 830
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
831

G
Glauber Costa 已提交
832 833 834 835
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

836
static void update_rq_clock_task(struct rq *rq, s64 delta)
837
{
838 839 840 841 842 843 844 845
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
846
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_branch((&paravirt_steal_rq_enabled))) {
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

888 889
	rq->clock_task += delta;

890 891 892 893
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
894 895
}

896
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
static int irqtime_account_hi_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

927
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
928

929 930
#define sched_clock_irqtime	(0)

931
#endif
932

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

963
/*
I
Ingo Molnar 已提交
964
 * __normal_prio - return the priority that is based on the static prio
965 966 967
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
968
	return p->static_prio;
969 970
}

971 972 973 974 975 976 977
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
978
static inline int normal_prio(struct task_struct *p)
979 980 981
{
	int prio;

982
	if (task_has_rt_policy(p))
983 984 985 986 987 988 989 990 991 992 993 994 995
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
996
static int effective_prio(struct task_struct *p)
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1009 1010 1011 1012
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1013
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1014 1015 1016 1017
{
	return cpu_curr(task_cpu(p)) == p;
}

1018 1019
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1020
				       int oldprio)
1021 1022 1023
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1024 1025 1026 1027
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
1028 1029
}

1030
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1051
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1052 1053 1054
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1055
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1056
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1057
{
1058 1059 1060 1061 1062
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1063 1064
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1065 1066

#ifdef CONFIG_LOCKDEP
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1077 1078 1079
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1080 1081
#endif

1082
	trace_sched_migrate_task(p, new_cpu);
1083

1084 1085
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
1086
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1087
	}
I
Ingo Molnar 已提交
1088 1089

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1090 1091
}

1092
struct migration_arg {
1093
	struct task_struct *task;
L
Linus Torvalds 已提交
1094
	int dest_cpu;
1095
};
L
Linus Torvalds 已提交
1096

1097 1098
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1099 1100 1101
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1102 1103 1104 1105 1106 1107 1108
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1109 1110 1111 1112 1113 1114
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1115
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1116 1117
{
	unsigned long flags;
I
Ingo Molnar 已提交
1118
	int running, on_rq;
R
Roland McGrath 已提交
1119
	unsigned long ncsw;
1120
	struct rq *rq;
L
Linus Torvalds 已提交
1121

1122 1123 1124 1125 1126 1127 1128 1129
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1142 1143 1144
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1145
			cpu_relax();
R
Roland McGrath 已提交
1146
		}
1147

1148 1149 1150 1151 1152 1153
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1154
		trace_sched_wait_task(p);
1155
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1156
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1157
		ncsw = 0;
1158
		if (!match_state || p->state == match_state)
1159
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1160
		task_rq_unlock(rq, p, &flags);
1161

R
Roland McGrath 已提交
1162 1163 1164 1165 1166 1167
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1178

1179 1180 1181 1182 1183
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1184
		 * So if it was still runnable (but just not actively
1185 1186 1187 1188
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1189 1190 1191 1192
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1193 1194
			continue;
		}
1195

1196 1197 1198 1199 1200 1201 1202
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1203 1204

	return ncsw;
L
Linus Torvalds 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1214
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1215 1216 1217 1218 1219
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1220
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1230
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1231
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1232

1233
#ifdef CONFIG_SMP
1234
/*
1235
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1236
 */
1237 1238 1239 1240 1241 1242 1243
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1244
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1245 1246 1247
			return dest_cpu;

	/* Any allowed, online CPU? */
1248
	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1249 1250 1251 1252
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
1253 1254 1255 1256 1257 1258 1259 1260 1261
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
1262 1263 1264 1265 1266
	}

	return dest_cpu;
}

1267
/*
1268
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1269
 */
1270
static inline
1271
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1272
{
1273
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1285
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1286
		     !cpu_online(cpu)))
1287
		cpu = select_fallback_rq(task_cpu(p), p);
1288 1289

	return cpu;
1290
}
1291 1292 1293 1294 1295 1296

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1297 1298
#endif

P
Peter Zijlstra 已提交
1299
static void
1300
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1301
{
P
Peter Zijlstra 已提交
1302
#ifdef CONFIG_SCHEDSTATS
1303 1304
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1315
		rcu_read_lock();
P
Peter Zijlstra 已提交
1316 1317 1318 1319 1320 1321
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1322
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1323
	}
1324 1325 1326 1327

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1328 1329 1330
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1331
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1332 1333

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1334
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1335 1336 1337 1338 1339 1340

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1341
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1342
	p->on_rq = 1;
1343 1344 1345 1346

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1347 1348
}

1349 1350 1351
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1352
static void
1353
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1354
{
1355
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1356 1357 1358 1359 1360 1361 1362
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1363
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1409
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1410
static void sched_ttwu_pending(void)
1411 1412
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1413 1414
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1415 1416 1417

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1418 1419 1420
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1421 1422 1423 1424 1425 1426 1427 1428
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1429
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1446
	sched_ttwu_pending();
1447 1448 1449 1450

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1451 1452
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1453
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1454
	}
1455
	irq_exit();
1456 1457 1458 1459
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1460
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1461 1462
		smp_send_reschedule(cpu);
}
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
#endif /* CONFIG_SMP */
1483

1484 1485 1486 1487
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1488
#if defined(CONFIG_SMP)
1489
	if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
1490
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1491 1492 1493 1494 1495
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1496 1497 1498
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1499 1500 1501
}

/**
L
Linus Torvalds 已提交
1502
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1503
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1504
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1505
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510 1511 1512
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1513 1514
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1515
 */
1516 1517
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1518 1519
{
	unsigned long flags;
1520
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1521

1522
	smp_wmb();
1523
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1524
	if (!(p->state & state))
L
Linus Torvalds 已提交
1525 1526
		goto out;

1527
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1528 1529
	cpu = task_cpu(p);

1530 1531
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1532 1533

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1534
	/*
1535 1536
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1537
	 */
1538 1539 1540
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1541 1542 1543 1544 1545
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1546
		 */
1547
		if (ttwu_activate_remote(p, wake_flags))
1548
			goto stat;
1549
#else
1550
		cpu_relax();
1551
#endif
1552
	}
1553
	/*
1554
	 * Pairs with the smp_wmb() in finish_lock_switch().
1555
	 */
1556
	smp_rmb();
L
Linus Torvalds 已提交
1557

1558
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1559
	p->state = TASK_WAKING;
1560

1561
	if (p->sched_class->task_waking)
1562
		p->sched_class->task_waking(p);
1563

1564
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1565 1566
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1567
		set_task_cpu(p, cpu);
1568
	}
L
Linus Torvalds 已提交
1569 1570
#endif /* CONFIG_SMP */

1571 1572
	ttwu_queue(p, cpu);
stat:
1573
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1574
out:
1575
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1576 1577 1578 1579

	return success;
}

T
Tejun Heo 已提交
1580 1581 1582 1583
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1584
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1585
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1586
 * the current task.
T
Tejun Heo 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1596 1597 1598 1599 1600 1601
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1602
	if (!(p->state & TASK_NORMAL))
1603
		goto out;
T
Tejun Heo 已提交
1604

P
Peter Zijlstra 已提交
1605
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1606 1607
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1608
	ttwu_do_wakeup(rq, p, 0);
1609
	ttwu_stat(p, smp_processor_id(), 0);
1610 1611
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1612 1613
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1625
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1626
{
1627
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1628 1629 1630
}
EXPORT_SYMBOL(wake_up_process);

1631
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1632 1633 1634 1635 1636 1637 1638
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1639 1640 1641 1642 1643
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1644 1645 1646
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1647 1648
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1649
	p->se.prev_sum_exec_runtime	= 0;
1650
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1651
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1652
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1653 1654

#ifdef CONFIG_SCHEDSTATS
1655
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1656
#endif
N
Nick Piggin 已提交
1657

P
Peter Zijlstra 已提交
1658
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1659

1660 1661 1662
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1663 1664 1665 1666 1667
}

/*
 * fork()/clone()-time setup:
 */
1668
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1669
{
1670
	unsigned long flags;
I
Ingo Molnar 已提交
1671 1672 1673
	int cpu = get_cpu();

	__sched_fork(p);
1674
	/*
1675
	 * We mark the process as running here. This guarantees that
1676 1677 1678
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1679
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1680

1681 1682 1683 1684 1685
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1686 1687 1688 1689
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1690
		if (task_has_rt_policy(p)) {
1691
			p->policy = SCHED_NORMAL;
1692
			p->static_prio = NICE_TO_PRIO(0);
1693 1694 1695 1696 1697 1698
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1699

1700 1701 1702 1703 1704 1705
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1706

H
Hiroshi Shimamoto 已提交
1707 1708
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1709

P
Peter Zijlstra 已提交
1710 1711 1712
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1713 1714 1715 1716 1717 1718 1719
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1720
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1721
	set_task_cpu(p, cpu);
1722
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1723

1724
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1725
	if (likely(sched_info_on()))
1726
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1727
#endif
P
Peter Zijlstra 已提交
1728 1729
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1730
#endif
1731
#ifdef CONFIG_PREEMPT_COUNT
1732
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1733
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1734
#endif
1735
#ifdef CONFIG_SMP
1736
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1737
#endif
1738

N
Nick Piggin 已提交
1739
	put_cpu();
L
Linus Torvalds 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1749
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1750 1751
{
	unsigned long flags;
I
Ingo Molnar 已提交
1752
	struct rq *rq;
1753

1754
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1755 1756 1757 1758 1759 1760
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1761
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1762 1763
#endif

1764
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1765
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1766
	p->on_rq = 1;
1767
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1768
	check_preempt_curr(rq, p, WF_FORK);
1769
#ifdef CONFIG_SMP
1770 1771
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1772
#endif
1773
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1774 1775
}

1776 1777 1778
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1779
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1780
 * @notifier: notifier struct to register
1781 1782 1783 1784 1785 1786 1787 1788 1789
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1790
 * @notifier: notifier struct to unregister
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1820
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1832
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1833

1834 1835 1836
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1837
 * @prev: the current task that is being switched out
1838 1839 1840 1841 1842 1843 1844 1845 1846
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1847 1848 1849
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1850
{
1851 1852
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1853
	fire_sched_out_preempt_notifiers(prev, next);
1854 1855
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
1856
	trace_sched_switch(prev, next);
1857 1858
}

L
Linus Torvalds 已提交
1859 1860
/**
 * finish_task_switch - clean up after a task-switch
1861
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1862 1863
 * @prev: the thread we just switched away from.
 *
1864 1865 1866 1867
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1868 1869
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1870
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1871 1872 1873
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1874
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1875 1876 1877
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1878
	long prev_state;
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1884
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1885 1886
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1887
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1888 1889 1890 1891 1892
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1893
	prev_state = prev->state;
1894
	finish_arch_switch(prev);
1895 1896 1897
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1898
	perf_event_task_sched_in(prev, current);
1899 1900 1901
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1902
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
1903

1904
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1905 1906
	if (mm)
		mmdrop(mm);
1907
	if (unlikely(prev_state == TASK_DEAD)) {
1908 1909 1910
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1911
		 */
1912
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1913
		put_task_struct(prev);
1914
	}
L
Linus Torvalds 已提交
1915 1916
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1932
		raw_spin_lock_irqsave(&rq->lock, flags);
1933 1934
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1935
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1936 1937 1938 1939 1940 1941

		rq->post_schedule = 0;
	}
}

#else
1942

1943 1944 1945 1946 1947 1948
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1949 1950
}

1951 1952
#endif

L
Linus Torvalds 已提交
1953 1954 1955 1956
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1957
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1958 1959
	__releases(rq->lock)
{
1960 1961
	struct rq *rq = this_rq();

1962
	finish_task_switch(rq, prev);
1963

1964 1965 1966 1967 1968
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1969

1970 1971 1972 1973
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1974
	if (current->set_child_tid)
1975
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980 1981
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1982
static inline void
1983
context_switch(struct rq *rq, struct task_struct *prev,
1984
	       struct task_struct *next)
L
Linus Torvalds 已提交
1985
{
I
Ingo Molnar 已提交
1986
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1987

1988
	prepare_task_switch(rq, prev, next);
1989

I
Ingo Molnar 已提交
1990 1991
	mm = next->mm;
	oldmm = prev->active_mm;
1992 1993 1994 1995 1996
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1997
	arch_start_context_switch(prev);
1998

1999
	if (!mm) {
L
Linus Torvalds 已提交
2000 2001 2002 2003 2004 2005
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2006
	if (!prev->mm) {
L
Linus Torvalds 已提交
2007 2008 2009
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2010 2011 2012 2013 2014 2015 2016
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2017
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2018
#endif
L
Linus Torvalds 已提交
2019 2020 2021 2022

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2023 2024 2025 2026 2027 2028 2029
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2047
}
L
Linus Torvalds 已提交
2048 2049

unsigned long nr_uninterruptible(void)
2050
{
L
Linus Torvalds 已提交
2051
	unsigned long i, sum = 0;
2052

2053
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2054
		sum += cpu_rq(i)->nr_uninterruptible;
2055 2056

	/*
L
Linus Torvalds 已提交
2057 2058
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2059
	 */
L
Linus Torvalds 已提交
2060 2061
	if (unlikely((long)sum < 0))
		sum = 0;
2062

L
Linus Torvalds 已提交
2063
	return sum;
2064 2065
}

L
Linus Torvalds 已提交
2066
unsigned long long nr_context_switches(void)
2067
{
2068 2069
	int i;
	unsigned long long sum = 0;
2070

2071
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2072
		sum += cpu_rq(i)->nr_switches;
2073

L
Linus Torvalds 已提交
2074 2075
	return sum;
}
2076

L
Linus Torvalds 已提交
2077 2078 2079
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2080

2081
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2082
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2083

L
Linus Torvalds 已提交
2084 2085
	return sum;
}
2086

2087
unsigned long nr_iowait_cpu(int cpu)
2088
{
2089
	struct rq *this = cpu_rq(cpu);
2090 2091
	return atomic_read(&this->nr_iowait);
}
2092

2093 2094 2095 2096 2097
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2098

2099

2100 2101 2102 2103 2104
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2105

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2121 2122 2123 2124 2125 2126 2127 2128 2129
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2130 2131 2132 2133 2134 2135 2136 2137
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

2138
void calc_load_account_idle(struct rq *this_rq)
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
2281
#else
2282
void calc_load_account_idle(struct rq *this_rq)
2283 2284 2285 2286 2287 2288 2289
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
2290 2291 2292 2293

static void calc_global_nohz(unsigned long ticks)
{
}
2294 2295
#endif

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2309 2310 2311
}

/*
2312 2313
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2314
 */
2315
void calc_global_load(unsigned long ticks)
2316
{
2317
	long active;
L
Linus Torvalds 已提交
2318

2319 2320 2321
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
2322
		return;
L
Linus Torvalds 已提交
2323

2324 2325
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2326

2327 2328 2329
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2330

2331 2332
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2333

2334
/*
2335 2336
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2337 2338 2339
 */
static void calc_load_account_active(struct rq *this_rq)
{
2340
	long delta;
2341

2342 2343
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2344

2345 2346 2347
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
2348
		atomic_long_add(delta, &calc_load_tasks);
2349 2350

	this_rq->calc_load_update += LOAD_FREQ;
2351 2352
}

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2420
/*
I
Ingo Molnar 已提交
2421
 * Update rq->cpu_load[] statistics. This function is usually called every
2422 2423
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2424
 */
2425
void update_cpu_load(struct rq *this_rq)
2426
{
2427
	unsigned long this_load = this_rq->load.weight;
2428 2429
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
2430
	int i, scale;
2431

I
Ingo Molnar 已提交
2432
	this_rq->nr_load_updates++;
2433

2434 2435 2436 2437 2438 2439 2440
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
2441
	/* Update our load: */
2442 2443
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2444
		unsigned long old_load, new_load;
2445

I
Ingo Molnar 已提交
2446
		/* scale is effectively 1 << i now, and >> i divides by scale */
2447

I
Ingo Molnar 已提交
2448
		old_load = this_rq->cpu_load[i];
2449
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2450
		new_load = this_load;
I
Ingo Molnar 已提交
2451 2452 2453 2454 2455 2456
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2457 2458 2459
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2460
	}
2461 2462

	sched_avg_update(this_rq);
2463 2464 2465 2466 2467
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
2468

2469
	calc_load_account_active(this_rq);
2470 2471
}

I
Ingo Molnar 已提交
2472
#ifdef CONFIG_SMP
2473

2474
/*
P
Peter Zijlstra 已提交
2475 2476
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2477
 */
P
Peter Zijlstra 已提交
2478
void sched_exec(void)
2479
{
P
Peter Zijlstra 已提交
2480
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2481
	unsigned long flags;
2482
	int dest_cpu;
2483

2484
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2485
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2486 2487
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2488

2489
	if (likely(cpu_active(dest_cpu))) {
2490
		struct migration_arg arg = { p, dest_cpu };
2491

2492 2493
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2494 2495
		return;
	}
2496
unlock:
2497
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2498
}
I
Ingo Molnar 已提交
2499

L
Linus Torvalds 已提交
2500 2501 2502 2503 2504 2505 2506
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
2507
 * Return any ns on the sched_clock that have not yet been accounted in
2508
 * @p in case that task is currently running.
2509 2510
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2511
 */
2512 2513 2514 2515 2516 2517
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2518
		ns = rq->clock_task - p->se.exec_start;
2519 2520 2521 2522 2523 2524 2525
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2526
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2527 2528
{
	unsigned long flags;
2529
	struct rq *rq;
2530
	u64 ns = 0;
2531

2532
	rq = task_rq_lock(p, &flags);
2533
	ns = do_task_delta_exec(p, rq);
2534
	task_rq_unlock(rq, p, &flags);
2535

2536 2537
	return ns;
}
2538

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2552
	task_rq_unlock(rq, p, &flags);
2553 2554 2555

	return ns;
}
2556

L
Linus Torvalds 已提交
2557 2558 2559 2560
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
2561
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2562
 */
2563 2564
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2565 2566 2567 2568
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

2569
	/* Add user time to process. */
L
Linus Torvalds 已提交
2570
	p->utime = cputime_add(p->utime, cputime);
2571
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
2572
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
2573 2574 2575 2576 2577 2578 2579

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
2580 2581

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
2582 2583
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
2584 2585
}

2586 2587 2588 2589
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
2590
 * @cputime_scaled: cputime scaled by cpu frequency
2591
 */
2592 2593
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
2594 2595 2596 2597 2598 2599
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

2600
	/* Add guest time to process. */
2601
	p->utime = cputime_add(p->utime, cputime);
2602
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
2603
	account_group_user_time(p, cputime);
2604 2605
	p->gtime = cputime_add(p->gtime, cputime);

2606
	/* Add guest time to cpustat. */
2607 2608 2609 2610 2611 2612 2613
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
2614 2615
}

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
			cputime_t cputime_scaled, cputime64_t *target_cputime64)
{
	cputime64_t tmp = cputime_to_cputime64(cputime);

	/* Add system time to process. */
	p->stime = cputime_add(p->stime, cputime);
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
2642 2643 2644 2645 2646
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
2647
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2648 2649
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
2650
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2651 2652
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2653
	cputime64_t *target_cputime64;
L
Linus Torvalds 已提交
2654

2655
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2656
		account_guest_time(p, cputime, cputime_scaled);
2657 2658
		return;
	}
2659

L
Linus Torvalds 已提交
2660
	if (hardirq_count() - hardirq_offset)
2661
		target_cputime64 = &cpustat->irq;
2662
	else if (in_serving_softirq())
2663
		target_cputime64 = &cpustat->softirq;
L
Linus Torvalds 已提交
2664
	else
2665
		target_cputime64 = &cpustat->system;
2666

2667
	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
L
Linus Torvalds 已提交
2668 2669
}

2670
/*
L
Linus Torvalds 已提交
2671
 * Account for involuntary wait time.
2672
 * @cputime: the cpu time spent in involuntary wait
2673
 */
2674
void account_steal_time(cputime_t cputime)
2675
{
2676 2677 2678 2679
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
2680 2681
}

L
Linus Torvalds 已提交
2682
/*
2683 2684
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
2685
 */
2686
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
2687 2688
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2689
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
2690
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2691

2692 2693 2694 2695
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
2696 2697
}

G
Glauber Costa 已提交
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_branch(&paravirt_steal_enabled)) {
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

2717 2718
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

G
Glauber Costa 已提交
2748 2749 2750
	if (steal_account_process_tick())
		return;

2751 2752 2753 2754
	if (irqtime_account_hi_update()) {
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	} else if (irqtime_account_si_update()) {
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2755 2756 2757 2758 2759 2760 2761 2762
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->softirq);
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
					&cpustat->system);
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
2783
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2784 2785 2786
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
2787
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2788 2789 2790 2791 2792 2793 2794 2795

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
2796
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2797 2798
	struct rq *rq = this_rq();

2799 2800 2801 2802 2803
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
2804 2805 2806
	if (steal_account_process_tick())
		return;

2807
	if (user_tick)
2808
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2809
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2810
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2811 2812
				    one_jiffy_scaled);
	else
2813
		account_idle_time(cputime_one_jiffy);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
2832 2833 2834 2835 2836 2837

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

2838
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
2839 2840
}

2841 2842
#endif

2843 2844 2845 2846
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2847
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2848
{
2849 2850
	*ut = p->utime;
	*st = p->stime;
2851 2852
}

2853
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2854
{
2855 2856 2857 2858 2859 2860
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
2861 2862
}
#else
2863 2864

#ifndef nsecs_to_cputime
2865
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2866 2867
#endif

2868
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2869
{
2870
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
2871 2872 2873 2874

	/*
	 * Use CFS's precise accounting:
	 */
2875
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2876 2877

	if (total) {
2878
		u64 temp = rtime;
2879

2880
		temp *= utime;
2881
		do_div(temp, total);
2882 2883 2884
		utime = (cputime_t)temp;
	} else
		utime = rtime;
2885

2886 2887 2888
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
2889
	p->prev_utime = max(p->prev_utime, utime);
2890
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
2891

2892 2893
	*ut = p->prev_utime;
	*st = p->prev_stime;
2894 2895
}

2896 2897 2898 2899
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2900
{
2901 2902 2903
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
2904

2905
	thread_group_cputime(p, &cputime);
2906

2907 2908
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2909

2910
	if (total) {
2911
		u64 temp = rtime;
2912

2913
		temp *= cputime.utime;
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
2925 2926 2927
}
#endif

2928 2929 2930 2931 2932 2933 2934 2935
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2936
	struct task_struct *curr = rq->curr;
2937 2938

	sched_clock_tick();
I
Ingo Molnar 已提交
2939

2940
	raw_spin_lock(&rq->lock);
2941
	update_rq_clock(rq);
2942
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2943
	curr->sched_class->task_tick(rq, curr, 0);
2944
	raw_spin_unlock(&rq->lock);
2945

2946
	perf_event_task_tick();
2947

2948
#ifdef CONFIG_SMP
2949
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2950
	trigger_load_balance(rq, cpu);
2951
#endif
L
Linus Torvalds 已提交
2952 2953
}

2954
notrace unsigned long get_parent_ip(unsigned long addr)
2955 2956 2957 2958 2959 2960 2961 2962
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2963

2964 2965 2966
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2967
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2968
{
2969
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2970 2971 2972
	/*
	 * Underflow?
	 */
2973 2974
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2975
#endif
L
Linus Torvalds 已提交
2976
	preempt_count() += val;
2977
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2978 2979 2980
	/*
	 * Spinlock count overflowing soon?
	 */
2981 2982
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2983 2984 2985
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2986 2987 2988
}
EXPORT_SYMBOL(add_preempt_count);

2989
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2990
{
2991
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2992 2993 2994
	/*
	 * Underflow?
	 */
2995
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2996
		return;
L
Linus Torvalds 已提交
2997 2998 2999
	/*
	 * Is the spinlock portion underflowing?
	 */
3000 3001 3002
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3003
#endif
3004

3005 3006
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3007 3008 3009 3010 3011 3012 3013
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3014
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3015
 */
I
Ingo Molnar 已提交
3016
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3017
{
3018 3019
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3020 3021
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3022

I
Ingo Molnar 已提交
3023
	debug_show_held_locks(prev);
3024
	print_modules();
I
Ingo Molnar 已提交
3025 3026
	if (irqs_disabled())
		print_irqtrace_events(prev);
3027 3028 3029 3030 3031

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3032
}
L
Linus Torvalds 已提交
3033

I
Ingo Molnar 已提交
3034 3035 3036 3037 3038
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3039
	/*
I
Ingo Molnar 已提交
3040
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3041 3042 3043
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3044
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3045
		__schedule_bug(prev);
3046
	rcu_sleep_check();
I
Ingo Molnar 已提交
3047

L
Linus Torvalds 已提交
3048 3049
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3050
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3051 3052
}

P
Peter Zijlstra 已提交
3053
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3054
{
3055
	if (prev->on_rq || rq->skip_clock_update < 0)
3056
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3057
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3058 3059
}

I
Ingo Molnar 已提交
3060 3061 3062 3063
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3064
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3065
{
3066
	const struct sched_class *class;
I
Ingo Molnar 已提交
3067
	struct task_struct *p;
L
Linus Torvalds 已提交
3068 3069

	/*
I
Ingo Molnar 已提交
3070 3071
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3072
	 */
3073
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3074
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3075 3076
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3077 3078
	}

3079
	for_each_class(class) {
3080
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3081 3082 3083
		if (p)
			return p;
	}
3084 3085

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3086
}
L
Linus Torvalds 已提交
3087

I
Ingo Molnar 已提交
3088
/*
3089
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
3090
 */
3091
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3092 3093
{
	struct task_struct *prev, *next;
3094
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3095
	struct rq *rq;
3096
	int cpu;
I
Ingo Molnar 已提交
3097

3098 3099
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3100 3101
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3102
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3103 3104 3105
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3106

3107
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3108
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3109

3110
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3111

3112
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3113
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3114
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3115
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3116
		} else {
3117 3118 3119
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3120
			/*
3121 3122 3123
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3124 3125 3126 3127 3128 3129 3130 3131 3132
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3133
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3134 3135
	}

3136
	pre_schedule(rq, prev);
3137

I
Ingo Molnar 已提交
3138
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3139 3140
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3141
	put_prev_task(rq, prev);
3142
	next = pick_next_task(rq);
3143 3144
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3145 3146 3147 3148 3149 3150

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3151
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3152
		/*
3153 3154 3155 3156
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3157 3158 3159
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3160
	} else
3161
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3162

3163
	post_schedule(rq);
L
Linus Torvalds 已提交
3164 3165

	preempt_enable_no_resched();
3166
	if (need_resched())
L
Linus Torvalds 已提交
3167 3168
		goto need_resched;
}
3169

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
static inline void sched_submit_work(struct task_struct *tsk)
{
	if (!tsk->state)
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3182
asmlinkage void __sched schedule(void)
3183
{
3184 3185 3186
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3187 3188
	__schedule();
}
L
Linus Torvalds 已提交
3189 3190
EXPORT_SYMBOL(schedule);

3191
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3192

3193 3194 3195
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3196
		return false;
3197 3198

	/*
3199 3200 3201 3202
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3203
	 */
3204
	barrier();
3205

3206
	return owner->on_cpu;
3207
}
3208

3209 3210 3211 3212 3213 3214 3215 3216
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3217

3218
	rcu_read_lock();
3219 3220
	while (owner_running(lock, owner)) {
		if (need_resched())
3221
			break;
3222

3223
		arch_mutex_cpu_relax();
3224
	}
3225
	rcu_read_unlock();
3226

3227
	/*
3228 3229 3230
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3231
	 */
3232
	return lock->owner == NULL;
3233 3234 3235
}
#endif

L
Linus Torvalds 已提交
3236 3237
#ifdef CONFIG_PREEMPT
/*
3238
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3239
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3240 3241
 * occur there and call schedule directly.
 */
3242
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3243 3244
{
	struct thread_info *ti = current_thread_info();
3245

L
Linus Torvalds 已提交
3246 3247
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3248
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3249
	 */
N
Nick Piggin 已提交
3250
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3251 3252
		return;

3253
	do {
3254
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3255
		__schedule();
3256
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3257

3258 3259 3260 3261 3262
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3263
	} while (need_resched());
L
Linus Torvalds 已提交
3264 3265 3266 3267
}
EXPORT_SYMBOL(preempt_schedule);

/*
3268
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3269 3270 3271 3272 3273 3274 3275
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3276

3277
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3278 3279
	BUG_ON(ti->preempt_count || !irqs_disabled());

3280 3281 3282
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3283
		__schedule();
3284 3285
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3286

3287 3288 3289 3290 3291
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3292
	} while (need_resched());
L
Linus Torvalds 已提交
3293 3294 3295 3296
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3297
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3298
			  void *key)
L
Linus Torvalds 已提交
3299
{
P
Peter Zijlstra 已提交
3300
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3301 3302 3303 3304
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3305 3306
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3307 3308 3309
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3310
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3311 3312
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3313
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3314
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3315
{
3316
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3317

3318
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3319 3320
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3321
		if (curr->func(curr, mode, wake_flags, key) &&
3322
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3323 3324 3325 3326 3327 3328 3329 3330 3331
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3332
 * @key: is directly passed to the wakeup function
3333 3334 3335
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3336
 */
3337
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3338
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3351
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3352 3353 3354
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
3355
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3356

3357 3358 3359 3360
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3361
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3362

L
Linus Torvalds 已提交
3363
/**
3364
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3365 3366 3367
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3368
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3369 3370 3371 3372 3373 3374 3375
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3376 3377 3378
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3379
 */
3380 3381
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3382 3383
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3384
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3385 3386 3387 3388 3389

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3390
		wake_flags = 0;
L
Linus Torvalds 已提交
3391 3392

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3393
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3394 3395
	spin_unlock_irqrestore(&q->lock, flags);
}
3396 3397 3398 3399 3400 3401 3402 3403 3404
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3405 3406
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3407 3408 3409 3410 3411 3412 3413 3414
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3415 3416 3417
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3418
 */
3419
void complete(struct completion *x)
L
Linus Torvalds 已提交
3420 3421 3422 3423 3424
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3425
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3426 3427 3428 3429
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3430 3431 3432 3433 3434
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3435 3436 3437
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3438
 */
3439
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3440 3441 3442 3443 3444
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3445
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3446 3447 3448 3449
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3450 3451
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3452 3453 3454 3455
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3456
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3457
		do {
3458
			if (signal_pending_state(state, current)) {
3459 3460
				timeout = -ERESTARTSYS;
				break;
3461 3462
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3463 3464 3465
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3466
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3467
		__remove_wait_queue(&x->wait, &wait);
3468 3469
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3470 3471
	}
	x->done--;
3472
	return timeout ?: 1;
L
Linus Torvalds 已提交
3473 3474
}

3475 3476
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3477 3478 3479 3480
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3481
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3482
	spin_unlock_irq(&x->wait.lock);
3483 3484
	return timeout;
}
L
Linus Torvalds 已提交
3485

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3496
void __sched wait_for_completion(struct completion *x)
3497 3498
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3499
}
3500
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3501

3502 3503 3504 3505 3506 3507 3508 3509
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3510 3511 3512
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3513
 */
3514
unsigned long __sched
3515
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3516
{
3517
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3518
}
3519
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3520

3521 3522 3523 3524 3525 3526
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3527 3528
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3529
 */
3530
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3531
{
3532 3533 3534 3535
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3536
}
3537
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3538

3539 3540 3541 3542 3543 3544 3545
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3546 3547 3548
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3549
 */
3550
long __sched
3551 3552
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3553
{
3554
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3555
}
3556
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3557

3558 3559 3560 3561 3562 3563
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3564 3565
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3566
 */
M
Matthew Wilcox 已提交
3567 3568 3569 3570 3571 3572 3573 3574 3575
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3576 3577 3578 3579 3580 3581 3582 3583
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3584 3585 3586
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3587
 */
3588
long __sched
3589 3590 3591 3592 3593 3594 3595
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3610
	unsigned long flags;
3611 3612
	int ret = 1;

3613
	spin_lock_irqsave(&x->wait.lock, flags);
3614 3615 3616 3617
	if (!x->done)
		ret = 0;
	else
		x->done--;
3618
	spin_unlock_irqrestore(&x->wait.lock, flags);
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3633
	unsigned long flags;
3634 3635
	int ret = 1;

3636
	spin_lock_irqsave(&x->wait.lock, flags);
3637 3638
	if (!x->done)
		ret = 0;
3639
	spin_unlock_irqrestore(&x->wait.lock, flags);
3640 3641 3642 3643
	return ret;
}
EXPORT_SYMBOL(completion_done);

3644 3645
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3646
{
I
Ingo Molnar 已提交
3647 3648 3649 3650
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3651

3652
	__set_current_state(state);
L
Linus Torvalds 已提交
3653

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3668 3669 3670
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3671
long __sched
I
Ingo Molnar 已提交
3672
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3673
{
3674
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3675 3676 3677
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3678
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3679
{
3680
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3681 3682 3683
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3684
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3685
{
3686
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3687 3688 3689
}
EXPORT_SYMBOL(sleep_on_timeout);

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3702
void rt_mutex_setprio(struct task_struct *p, int prio)
3703
{
3704
	int oldprio, on_rq, running;
3705
	struct rq *rq;
3706
	const struct sched_class *prev_class;
3707 3708 3709

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3710
	rq = __task_rq_lock(p);
3711

3712
	trace_sched_pi_setprio(p, prio);
3713
	oldprio = p->prio;
3714
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3715
	on_rq = p->on_rq;
3716
	running = task_current(rq, p);
3717
	if (on_rq)
3718
		dequeue_task(rq, p, 0);
3719 3720
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3721 3722 3723 3724 3725 3726

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3727 3728
	p->prio = prio;

3729 3730
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3731
	if (on_rq)
3732
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3733

P
Peter Zijlstra 已提交
3734
	check_class_changed(rq, p, prev_class, oldprio);
3735
	__task_rq_unlock(rq);
3736 3737 3738 3739
}

#endif

3740
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3741
{
I
Ingo Molnar 已提交
3742
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3743
	unsigned long flags;
3744
	struct rq *rq;
L
Linus Torvalds 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3757
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3758
	 */
3759
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3760 3761 3762
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3763
	on_rq = p->on_rq;
3764
	if (on_rq)
3765
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3766 3767

	p->static_prio = NICE_TO_PRIO(nice);
3768
	set_load_weight(p);
3769 3770 3771
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3772

I
Ingo Molnar 已提交
3773
	if (on_rq) {
3774
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3775
		/*
3776 3777
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3778
		 */
3779
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3780 3781 3782
			resched_task(rq->curr);
	}
out_unlock:
3783
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3784 3785 3786
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3787 3788 3789 3790 3791
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3792
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3793
{
3794 3795
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3796

3797
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3798 3799 3800
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3810
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3811
{
3812
	long nice, retval;
L
Linus Torvalds 已提交
3813 3814 3815 3816 3817 3818

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3819 3820
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3821 3822 3823
	if (increment > 40)
		increment = 40;

3824
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3825 3826 3827 3828 3829
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3830 3831 3832
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3851
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3852 3853 3854 3855 3856 3857 3858 3859
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3860
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3861 3862 3863
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3864
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3865 3866 3867 3868 3869 3870 3871

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3886 3887 3888 3889 3890 3891
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3892
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3893 3894 3895 3896 3897 3898 3899 3900
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3901
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3902
{
3903
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3904 3905 3906
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3907 3908
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3909 3910 3911
{
	p->policy = policy;
	p->rt_priority = prio;
3912 3913 3914
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3915 3916 3917 3918
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3919
	set_load_weight(p);
L
Linus Torvalds 已提交
3920 3921
}

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3932 3933 3934 3935 3936
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
3937 3938 3939 3940
	rcu_read_unlock();
	return match;
}

3941
static int __sched_setscheduler(struct task_struct *p, int policy,
3942
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3943
{
3944
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3945
	unsigned long flags;
3946
	const struct sched_class *prev_class;
3947
	struct rq *rq;
3948
	int reset_on_fork;
L
Linus Torvalds 已提交
3949

3950 3951
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3952 3953
recheck:
	/* double check policy once rq lock held */
3954 3955
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3956
		policy = oldpolicy = p->policy;
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3967 3968
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3969 3970
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3971 3972
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3973
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3974
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3975
		return -EINVAL;
3976
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3977 3978
		return -EINVAL;

3979 3980 3981
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3982
	if (user && !capable(CAP_SYS_NICE)) {
3983
		if (rt_policy(policy)) {
3984 3985
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3996

I
Ingo Molnar 已提交
3997
		/*
3998 3999
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4000
		 */
4001 4002 4003 4004
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4005

4006
		/* can't change other user's priorities */
4007
		if (!check_same_owner(p))
4008
			return -EPERM;
4009 4010 4011 4012

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4013
	}
L
Linus Torvalds 已提交
4014

4015
	if (user) {
4016
		retval = security_task_setscheduler(p);
4017 4018 4019 4020
		if (retval)
			return retval;
	}

4021 4022 4023
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4024
	 *
L
Lucas De Marchi 已提交
4025
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4026 4027
	 * runqueue lock must be held.
	 */
4028
	rq = task_rq_lock(p, &flags);
4029

4030 4031 4032 4033
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4034
		task_rq_unlock(rq, p, &flags);
4035 4036 4037
		return -EINVAL;
	}

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

4049 4050 4051 4052 4053 4054 4055
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4056 4057
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4058
			task_rq_unlock(rq, p, &flags);
4059 4060 4061 4062 4063
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4064 4065 4066
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4067
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4068 4069
		goto recheck;
	}
P
Peter Zijlstra 已提交
4070
	on_rq = p->on_rq;
4071
	running = task_current(rq, p);
4072
	if (on_rq)
4073
		deactivate_task(rq, p, 0);
4074 4075
	if (running)
		p->sched_class->put_prev_task(rq, p);
4076

4077 4078
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4079
	oldprio = p->prio;
4080
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4081
	__setscheduler(rq, p, policy, param->sched_priority);
4082

4083 4084
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4085
	if (on_rq)
I
Ingo Molnar 已提交
4086
		activate_task(rq, p, 0);
4087

P
Peter Zijlstra 已提交
4088
	check_class_changed(rq, p, prev_class, oldprio);
4089
	task_rq_unlock(rq, p, &flags);
4090

4091 4092
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4093 4094
	return 0;
}
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4105
		       const struct sched_param *param)
4106 4107 4108
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4109 4110
EXPORT_SYMBOL_GPL(sched_setscheduler);

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4123
			       const struct sched_param *param)
4124 4125 4126 4127
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4128 4129
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4130 4131 4132
{
	struct sched_param lparam;
	struct task_struct *p;
4133
	int retval;
L
Linus Torvalds 已提交
4134 4135 4136 4137 4138

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4139 4140 4141

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4142
	p = find_process_by_pid(pid);
4143 4144 4145
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4146

L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4156 4157
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4158
{
4159 4160 4161 4162
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4163 4164 4165 4166 4167 4168 4169 4170
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4171
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4172 4173 4174 4175 4176 4177 4178 4179
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4180
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4181
{
4182
	struct task_struct *p;
4183
	int retval;
L
Linus Torvalds 已提交
4184 4185

	if (pid < 0)
4186
		return -EINVAL;
L
Linus Torvalds 已提交
4187 4188

	retval = -ESRCH;
4189
	rcu_read_lock();
L
Linus Torvalds 已提交
4190 4191 4192 4193
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4194 4195
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4196
	}
4197
	rcu_read_unlock();
L
Linus Torvalds 已提交
4198 4199 4200 4201
	return retval;
}

/**
4202
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4203 4204 4205
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4206
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4207 4208
{
	struct sched_param lp;
4209
	struct task_struct *p;
4210
	int retval;
L
Linus Torvalds 已提交
4211 4212

	if (!param || pid < 0)
4213
		return -EINVAL;
L
Linus Torvalds 已提交
4214

4215
	rcu_read_lock();
L
Linus Torvalds 已提交
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4226
	rcu_read_unlock();
L
Linus Torvalds 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4236
	rcu_read_unlock();
L
Linus Torvalds 已提交
4237 4238 4239
	return retval;
}

4240
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4241
{
4242
	cpumask_var_t cpus_allowed, new_mask;
4243 4244
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4245

4246
	get_online_cpus();
4247
	rcu_read_lock();
L
Linus Torvalds 已提交
4248 4249 4250

	p = find_process_by_pid(pid);
	if (!p) {
4251
		rcu_read_unlock();
4252
		put_online_cpus();
L
Linus Torvalds 已提交
4253 4254 4255
		return -ESRCH;
	}

4256
	/* Prevent p going away */
L
Linus Torvalds 已提交
4257
	get_task_struct(p);
4258
	rcu_read_unlock();
L
Linus Torvalds 已提交
4259

4260 4261 4262 4263 4264 4265 4266 4267
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4268
	retval = -EPERM;
4269
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
4270 4271
		goto out_unlock;

4272
	retval = security_task_setscheduler(p);
4273 4274 4275
	if (retval)
		goto out_unlock;

4276 4277
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4278
again:
4279
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4280

P
Paul Menage 已提交
4281
	if (!retval) {
4282 4283
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4284 4285 4286 4287 4288
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4289
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4290 4291 4292
			goto again;
		}
	}
L
Linus Torvalds 已提交
4293
out_unlock:
4294 4295 4296 4297
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4298
	put_task_struct(p);
4299
	put_online_cpus();
L
Linus Torvalds 已提交
4300 4301 4302 4303
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4304
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4305
{
4306 4307 4308 4309 4310
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4311 4312 4313 4314 4315 4316 4317 4318 4319
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4320 4321
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4322
{
4323
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4324 4325
	int retval;

4326 4327
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4328

4329 4330 4331 4332 4333
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4334 4335
}

4336
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4337
{
4338
	struct task_struct *p;
4339
	unsigned long flags;
L
Linus Torvalds 已提交
4340 4341
	int retval;

4342
	get_online_cpus();
4343
	rcu_read_lock();
L
Linus Torvalds 已提交
4344 4345 4346 4347 4348 4349

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4350 4351 4352 4353
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4354
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4355
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4356
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4357 4358

out_unlock:
4359
	rcu_read_unlock();
4360
	put_online_cpus();
L
Linus Torvalds 已提交
4361

4362
	return retval;
L
Linus Torvalds 已提交
4363 4364 4365 4366 4367 4368 4369 4370
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4371 4372
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4373 4374
{
	int ret;
4375
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4376

A
Anton Blanchard 已提交
4377
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4378 4379
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4380 4381
		return -EINVAL;

4382 4383
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4384

4385 4386
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4387
		size_t retlen = min_t(size_t, len, cpumask_size());
4388 4389

		if (copy_to_user(user_mask_ptr, mask, retlen))
4390 4391
			ret = -EFAULT;
		else
4392
			ret = retlen;
4393 4394
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4395

4396
	return ret;
L
Linus Torvalds 已提交
4397 4398 4399 4400 4401
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4402 4403
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4404
 */
4405
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4406
{
4407
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4408

4409
	schedstat_inc(rq, yld_count);
4410
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4411 4412 4413 4414 4415 4416

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4417
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4418
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4419 4420 4421 4422 4423 4424 4425
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4426 4427 4428 4429 4430
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4431
static void __cond_resched(void)
L
Linus Torvalds 已提交
4432
{
4433
	add_preempt_count(PREEMPT_ACTIVE);
4434
	__schedule();
4435
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4436 4437
}

4438
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4439
{
P
Peter Zijlstra 已提交
4440
	if (should_resched()) {
L
Linus Torvalds 已提交
4441 4442 4443 4444 4445
		__cond_resched();
		return 1;
	}
	return 0;
}
4446
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4447 4448

/*
4449
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4450 4451
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4452
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4453 4454 4455
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4456
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4457
{
P
Peter Zijlstra 已提交
4458
	int resched = should_resched();
J
Jan Kara 已提交
4459 4460
	int ret = 0;

4461 4462
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4463
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4464
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4465
		if (resched)
N
Nick Piggin 已提交
4466 4467 4468
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4469
		ret = 1;
L
Linus Torvalds 已提交
4470 4471
		spin_lock(lock);
	}
J
Jan Kara 已提交
4472
	return ret;
L
Linus Torvalds 已提交
4473
}
4474
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4475

4476
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4477 4478 4479
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4480
	if (should_resched()) {
4481
		local_bh_enable();
L
Linus Torvalds 已提交
4482 4483 4484 4485 4486 4487
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4488
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4489 4490 4491 4492

/**
 * yield - yield the current processor to other threads.
 *
4493
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4494 4495 4496 4497 4498 4499 4500 4501 4502
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4503 4504 4505 4506
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4507 4508
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4543
	if (yielded) {
4544
		schedstat_inc(rq, yld_count);
4545 4546 4547 4548 4549 4550
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4551 4552 4553 4554 4555 4556 4557
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4558
	}
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4571
/*
I
Ingo Molnar 已提交
4572
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4573 4574 4575 4576
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4577
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4578

4579
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4580
	atomic_inc(&rq->nr_iowait);
4581
	blk_flush_plug(current);
4582
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4583
	schedule();
4584
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4585
	atomic_dec(&rq->nr_iowait);
4586
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4587 4588 4589 4590 4591
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4592
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4593 4594
	long ret;

4595
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4596
	atomic_inc(&rq->nr_iowait);
4597
	blk_flush_plug(current);
4598
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4599
	ret = schedule_timeout(timeout);
4600
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4601
	atomic_dec(&rq->nr_iowait);
4602
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4613
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4614 4615 4616 4617 4618 4619 4620 4621 4622
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4623
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4624
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4638
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4648
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4649
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4663
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4664
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4665
{
4666
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4667
	unsigned int time_slice;
4668 4669
	unsigned long flags;
	struct rq *rq;
4670
	int retval;
L
Linus Torvalds 已提交
4671 4672 4673
	struct timespec t;

	if (pid < 0)
4674
		return -EINVAL;
L
Linus Torvalds 已提交
4675 4676

	retval = -ESRCH;
4677
	rcu_read_lock();
L
Linus Torvalds 已提交
4678 4679 4680 4681 4682 4683 4684 4685
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4686 4687
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4688
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4689

4690
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4691
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4692 4693
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4694

L
Linus Torvalds 已提交
4695
out_unlock:
4696
	rcu_read_unlock();
L
Linus Torvalds 已提交
4697 4698 4699
	return retval;
}

4700
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4701

4702
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4703 4704
{
	unsigned long free = 0;
4705
	unsigned state;
L
Linus Torvalds 已提交
4706 4707

	state = p->state ? __ffs(p->state) + 1 : 0;
4708
	printk(KERN_INFO "%-15.15s %c", p->comm,
4709
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4710
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4711
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4712
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4713
	else
P
Peter Zijlstra 已提交
4714
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4715 4716
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4717
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4718
	else
P
Peter Zijlstra 已提交
4719
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4720 4721
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4722
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4723
#endif
P
Peter Zijlstra 已提交
4724
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4725 4726
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4727

4728
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4729 4730
}

I
Ingo Molnar 已提交
4731
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4732
{
4733
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4734

4735
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4736 4737
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4738
#else
P
Peter Zijlstra 已提交
4739 4740
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4741
#endif
4742
	rcu_read_lock();
L
Linus Torvalds 已提交
4743 4744 4745
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4746
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4747 4748
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4749
		if (!state_filter || (p->state & state_filter))
4750
			sched_show_task(p);
L
Linus Torvalds 已提交
4751 4752
	} while_each_thread(g, p);

4753 4754
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4755 4756 4757
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4758
	rcu_read_unlock();
I
Ingo Molnar 已提交
4759 4760 4761
	/*
	 * Only show locks if all tasks are dumped:
	 */
4762
	if (!state_filter)
I
Ingo Molnar 已提交
4763
		debug_show_all_locks();
L
Linus Torvalds 已提交
4764 4765
}

I
Ingo Molnar 已提交
4766 4767
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4768
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4769 4770
}

4771 4772 4773 4774 4775 4776 4777 4778
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4779
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4780
{
4781
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4782 4783
	unsigned long flags;

4784
	raw_spin_lock_irqsave(&rq->lock, flags);
4785

I
Ingo Molnar 已提交
4786
	__sched_fork(idle);
4787
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4788 4789
	idle->se.exec_start = sched_clock();

4790
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4802
	__set_task_cpu(idle, cpu);
4803
	rcu_read_unlock();
L
Linus Torvalds 已提交
4804 4805

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4806 4807
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4808
#endif
4809
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4810 4811

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4812
	task_thread_info(idle)->preempt_count = 0;
J
Jonathan Corbet 已提交
4813

I
Ingo Molnar 已提交
4814 4815 4816 4817
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4818
	ftrace_graph_init_idle_task(idle, cpu);
4819 4820 4821
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
L
Linus Torvalds 已提交
4822 4823 4824
}

#ifdef CONFIG_SMP
4825 4826 4827 4828
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4829 4830 4831

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4832 4833
}

L
Linus Torvalds 已提交
4834 4835 4836
/*
 * This is how migration works:
 *
4837 4838 4839 4840 4841 4842
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4843
 *    it and puts it into the right queue.
4844 4845
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4846 4847 4848 4849 4850 4851 4852 4853
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4854
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4855 4856
 * call is not atomic; no spinlocks may be held.
 */
4857
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4858 4859
{
	unsigned long flags;
4860
	struct rq *rq;
4861
	unsigned int dest_cpu;
4862
	int ret = 0;
L
Linus Torvalds 已提交
4863 4864

	rq = task_rq_lock(p, &flags);
4865

4866 4867 4868
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4869
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4870 4871 4872 4873
		ret = -EINVAL;
		goto out;
	}

4874
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4875 4876 4877 4878
		ret = -EINVAL;
		goto out;
	}

4879
	do_set_cpus_allowed(p, new_mask);
4880

L
Linus Torvalds 已提交
4881
	/* Can the task run on the task's current CPU? If so, we're done */
4882
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4883 4884
		goto out;

4885
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4886
	if (p->on_rq) {
4887
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4888
		/* Need help from migration thread: drop lock and wait. */
4889
		task_rq_unlock(rq, p, &flags);
4890
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4891 4892 4893 4894
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4895
	task_rq_unlock(rq, p, &flags);
4896

L
Linus Torvalds 已提交
4897 4898
	return ret;
}
4899
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4900 4901

/*
I
Ingo Molnar 已提交
4902
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4903 4904 4905 4906 4907 4908
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4909 4910
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4911
 */
4912
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4913
{
4914
	struct rq *rq_dest, *rq_src;
4915
	int ret = 0;
L
Linus Torvalds 已提交
4916

4917
	if (unlikely(!cpu_active(dest_cpu)))
4918
		return ret;
L
Linus Torvalds 已提交
4919 4920 4921 4922

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4923
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4924 4925 4926
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4927
		goto done;
L
Linus Torvalds 已提交
4928
	/* Affinity changed (again). */
4929
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4930
		goto fail;
L
Linus Torvalds 已提交
4931

4932 4933 4934 4935
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4936
	if (p->on_rq) {
4937
		deactivate_task(rq_src, p, 0);
4938
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4939
		activate_task(rq_dest, p, 0);
4940
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4941
	}
L
Linus Torvalds 已提交
4942
done:
4943
	ret = 1;
L
Linus Torvalds 已提交
4944
fail:
L
Linus Torvalds 已提交
4945
	double_rq_unlock(rq_src, rq_dest);
4946
	raw_spin_unlock(&p->pi_lock);
4947
	return ret;
L
Linus Torvalds 已提交
4948 4949 4950
}

/*
4951 4952 4953
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4954
 */
4955
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4956
{
4957
	struct migration_arg *arg = data;
4958

4959 4960 4961 4962
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4963
	local_irq_disable();
4964
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4965
	local_irq_enable();
L
Linus Torvalds 已提交
4966
	return 0;
4967 4968
}

L
Linus Torvalds 已提交
4969
#ifdef CONFIG_HOTPLUG_CPU
4970

4971
/*
4972 4973
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4974
 */
4975
void idle_task_exit(void)
L
Linus Torvalds 已提交
4976
{
4977
	struct mm_struct *mm = current->active_mm;
4978

4979
	BUG_ON(cpu_online(smp_processor_id()));
4980

4981 4982 4983
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4984 4985 4986 4987 4988 4989 4990 4991 4992
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
4993
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
4994
{
4995
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
4996 4997 4998 4999 5000

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5001
/*
5002
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5003
 */
5004
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5005
{
5006 5007
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5008 5009
}

5010
/*
5011 5012 5013 5014 5015 5016
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5017
 */
5018
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5019
{
5020
	struct rq *rq = cpu_rq(dead_cpu);
5021 5022
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5023 5024

	/*
5025 5026 5027 5028 5029 5030 5031
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5032
	 */
5033
	rq->stop = NULL;
5034

5035 5036 5037
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
5038
	for ( ; ; ) {
5039 5040 5041 5042 5043
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5044
			break;
5045

5046
		next = pick_next_task(rq);
5047
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5048
		next->sched_class->put_prev_task(rq, next);
5049

5050 5051 5052 5053 5054 5055 5056
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5057
	}
5058

5059
	rq->stop = stop;
5060
}
5061

L
Linus Torvalds 已提交
5062 5063
#endif /* CONFIG_HOTPLUG_CPU */

5064 5065 5066
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5067 5068
	{
		.procname	= "sched_domain",
5069
		.mode		= 0555,
5070
	},
5071
	{}
5072 5073 5074
};

static struct ctl_table sd_ctl_root[] = {
5075 5076
	{
		.procname	= "kernel",
5077
		.mode		= 0555,
5078 5079
		.child		= sd_ctl_dir,
	},
5080
	{}
5081 5082 5083 5084 5085
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5086
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5087 5088 5089 5090

	return entry;
}

5091 5092
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5093
	struct ctl_table *entry;
5094

5095 5096 5097
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5098
	 * will always be set. In the lowest directory the names are
5099 5100 5101
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5102 5103
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5104 5105 5106
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5107 5108 5109 5110 5111

	kfree(*tablep);
	*tablep = NULL;
}

5112
static void
5113
set_table_entry(struct ctl_table *entry,
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5127
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5128

5129 5130 5131
	if (table == NULL)
		return NULL;

5132
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5133
		sizeof(long), 0644, proc_doulongvec_minmax);
5134
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5135
		sizeof(long), 0644, proc_doulongvec_minmax);
5136
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5137
		sizeof(int), 0644, proc_dointvec_minmax);
5138
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5139
		sizeof(int), 0644, proc_dointvec_minmax);
5140
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5141
		sizeof(int), 0644, proc_dointvec_minmax);
5142
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5143
		sizeof(int), 0644, proc_dointvec_minmax);
5144
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5145
		sizeof(int), 0644, proc_dointvec_minmax);
5146
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5147
		sizeof(int), 0644, proc_dointvec_minmax);
5148
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5149
		sizeof(int), 0644, proc_dointvec_minmax);
5150
	set_table_entry(&table[9], "cache_nice_tries",
5151 5152
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5153
	set_table_entry(&table[10], "flags", &sd->flags,
5154
		sizeof(int), 0644, proc_dointvec_minmax);
5155 5156 5157
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5158 5159 5160 5161

	return table;
}

5162
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5163 5164 5165 5166 5167 5168 5169 5170 5171
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5172 5173
	if (table == NULL)
		return NULL;
5174 5175 5176 5177 5178

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5179
		entry->mode = 0555;
5180 5181 5182 5183 5184 5185 5186 5187
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5188
static void register_sched_domain_sysctl(void)
5189
{
5190
	int i, cpu_num = num_possible_cpus();
5191 5192 5193
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5194 5195 5196
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5197 5198 5199
	if (entry == NULL)
		return;

5200
	for_each_possible_cpu(i) {
5201 5202
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5203
		entry->mode = 0555;
5204
		entry->child = sd_alloc_ctl_cpu_table(i);
5205
		entry++;
5206
	}
5207 5208

	WARN_ON(sd_sysctl_header);
5209 5210
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5211

5212
/* may be called multiple times per register */
5213 5214
static void unregister_sched_domain_sysctl(void)
{
5215 5216
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5217
	sd_sysctl_header = NULL;
5218 5219
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5220
}
5221
#else
5222 5223 5224 5225
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5226 5227 5228 5229
{
}
#endif

5230 5231 5232 5233 5234
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5235
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5255
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5256 5257 5258 5259
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5260 5261 5262 5263
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5264 5265
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5266
{
5267
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5268
	unsigned long flags;
5269
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5270

5271
	switch (action & ~CPU_TASKS_FROZEN) {
5272

L
Linus Torvalds 已提交
5273
	case CPU_UP_PREPARE:
5274
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5275
		break;
5276

L
Linus Torvalds 已提交
5277
	case CPU_ONLINE:
5278
		/* Update our root-domain */
5279
		raw_spin_lock_irqsave(&rq->lock, flags);
5280
		if (rq->rd) {
5281
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5282 5283

			set_rq_online(rq);
5284
		}
5285
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5286
		break;
5287

L
Linus Torvalds 已提交
5288
#ifdef CONFIG_HOTPLUG_CPU
5289
	case CPU_DYING:
5290
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5291
		/* Update our root-domain */
5292
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5293
		if (rq->rd) {
5294
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5295
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5296
		}
5297 5298
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5299
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5300 5301 5302

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5303
		break;
L
Linus Torvalds 已提交
5304 5305
#endif
	}
5306 5307 5308

	update_max_interval();

L
Linus Torvalds 已提交
5309 5310 5311
	return NOTIFY_OK;
}

5312 5313 5314
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5315
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5316
 */
5317
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5318
	.notifier_call = migration_call,
5319
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5320 5321
};

5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5347
static int __init migration_init(void)
L
Linus Torvalds 已提交
5348 5349
{
	void *cpu = (void *)(long)smp_processor_id();
5350
	int err;
5351

5352
	/* Initialize migration for the boot CPU */
5353 5354
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5355 5356
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5357

5358 5359 5360 5361
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5362
	return 0;
L
Linus Torvalds 已提交
5363
}
5364
early_initcall(migration_init);
L
Linus Torvalds 已提交
5365 5366 5367
#endif

#ifdef CONFIG_SMP
5368

5369 5370
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5371
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5372

5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5383
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5384
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5385
{
I
Ingo Molnar 已提交
5386
	struct sched_group *group = sd->groups;
5387
	char str[256];
L
Linus Torvalds 已提交
5388

R
Rusty Russell 已提交
5389
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5390
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5391 5392 5393 5394

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5395
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5396
		if (sd->parent)
P
Peter Zijlstra 已提交
5397 5398
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5399
		return -1;
N
Nick Piggin 已提交
5400 5401
	}

P
Peter Zijlstra 已提交
5402
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5403

5404
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5405 5406
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5407
	}
5408
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5409 5410
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5411
	}
L
Linus Torvalds 已提交
5412

I
Ingo Molnar 已提交
5413
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5414
	do {
I
Ingo Molnar 已提交
5415
		if (!group) {
P
Peter Zijlstra 已提交
5416 5417
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5418 5419 5420
			break;
		}

5421
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
5422 5423 5424
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5425 5426
			break;
		}
L
Linus Torvalds 已提交
5427

5428
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5429 5430
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5431 5432
			break;
		}
L
Linus Torvalds 已提交
5433

5434
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5435 5436
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5437 5438
			break;
		}
L
Linus Torvalds 已提交
5439

5440
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5441

R
Rusty Russell 已提交
5442
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5443

P
Peter Zijlstra 已提交
5444
		printk(KERN_CONT " %s", str);
5445
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5446
			printk(KERN_CONT " (cpu_power = %d)",
5447
				group->sgp->power);
5448
		}
L
Linus Torvalds 已提交
5449

I
Ingo Molnar 已提交
5450 5451
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5452
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5453

5454
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5455
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5456

5457 5458
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5459 5460
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5461 5462
	return 0;
}
L
Linus Torvalds 已提交
5463

I
Ingo Molnar 已提交
5464 5465 5466
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5467

5468 5469 5470
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5471 5472 5473 5474
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5475

I
Ingo Molnar 已提交
5476 5477 5478
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5479
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5480
			break;
L
Linus Torvalds 已提交
5481 5482
		level++;
		sd = sd->parent;
5483
		if (!sd)
I
Ingo Molnar 已提交
5484 5485
			break;
	}
L
Linus Torvalds 已提交
5486
}
5487
#else /* !CONFIG_SCHED_DEBUG */
5488
# define sched_domain_debug(sd, cpu) do { } while (0)
5489
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5490

5491
static int sd_degenerate(struct sched_domain *sd)
5492
{
5493
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5494 5495 5496 5497 5498 5499
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5500 5501 5502
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5503 5504 5505 5506 5507
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5508
	if (sd->flags & (SD_WAKE_AFFINE))
5509 5510 5511 5512 5513
		return 0;

	return 1;
}

5514 5515
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5516 5517 5518 5519 5520 5521
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5522
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5523 5524 5525 5526 5527 5528 5529
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5530 5531 5532
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5533 5534
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5535 5536 5537 5538 5539 5540 5541
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5542
static void free_rootdomain(struct rcu_head *rcu)
5543
{
5544
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5545

5546
	cpupri_cleanup(&rd->cpupri);
5547 5548 5549 5550 5551 5552
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5553 5554
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5555
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5556 5557
	unsigned long flags;

5558
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5559 5560

	if (rq->rd) {
I
Ingo Molnar 已提交
5561
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5562

5563
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5564
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5565

5566
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5567

I
Ingo Molnar 已提交
5568 5569 5570 5571 5572 5573 5574
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5575 5576 5577 5578 5579
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5580
	cpumask_set_cpu(rq->cpu, rd->span);
5581
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5582
		set_rq_online(rq);
G
Gregory Haskins 已提交
5583

5584
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5585 5586

	if (old_rd)
5587
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5588 5589
}

5590
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5591 5592 5593
{
	memset(rd, 0, sizeof(*rd));

5594
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5595
		goto out;
5596
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5597
		goto free_span;
5598
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5599
		goto free_online;
5600

5601
	if (cpupri_init(&rd->cpupri) != 0)
5602
		goto free_rto_mask;
5603
	return 0;
5604

5605 5606
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5607 5608 5609 5610
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5611
out:
5612
	return -ENOMEM;
G
Gregory Haskins 已提交
5613 5614
}

5615 5616 5617 5618 5619 5620
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5621 5622
static void init_defrootdomain(void)
{
5623
	init_rootdomain(&def_root_domain);
5624

G
Gregory Haskins 已提交
5625 5626 5627
	atomic_set(&def_root_domain.refcount, 1);
}

5628
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5629 5630 5631 5632 5633 5634 5635
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5636
	if (init_rootdomain(rd) != 0) {
5637 5638 5639
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5640 5641 5642 5643

	return rd;
}

5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5663 5664 5665
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5666 5667 5668 5669 5670 5671 5672 5673

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5674
		kfree(sd->groups->sgp);
5675
		kfree(sd->groups);
5676
	}
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

L
Linus Torvalds 已提交
5691
/*
I
Ingo Molnar 已提交
5692
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5693 5694
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5695 5696
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5697
{
5698
	struct rq *rq = cpu_rq(cpu);
5699 5700 5701
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5702
	for (tmp = sd; tmp; ) {
5703 5704 5705
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5706

5707
		if (sd_parent_degenerate(tmp, parent)) {
5708
			tmp->parent = parent->parent;
5709 5710
			if (parent->parent)
				parent->parent->child = tmp;
5711
			destroy_sched_domain(parent, cpu);
5712 5713
		} else
			tmp = tmp->parent;
5714 5715
	}

5716
	if (sd && sd_degenerate(sd)) {
5717
		tmp = sd;
5718
		sd = sd->parent;
5719
		destroy_sched_domain(tmp, cpu);
5720 5721 5722
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5723

5724
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5725

G
Gregory Haskins 已提交
5726
	rq_attach_root(rq, rd);
5727
	tmp = rq->sd;
N
Nick Piggin 已提交
5728
	rcu_assign_pointer(rq->sd, sd);
5729
	destroy_sched_domains(tmp, cpu);
L
Linus Torvalds 已提交
5730 5731 5732
}

/* cpus with isolated domains */
5733
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5734 5735 5736 5737

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5738
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5739
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5740 5741 5742
	return 1;
}

I
Ingo Molnar 已提交
5743
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5744

5745
#ifdef CONFIG_NUMA
5746

5747 5748 5749 5750 5751
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5752
 * Find the next node to include in a given scheduling domain. Simply
5753 5754 5755 5756
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
5757
static int find_next_best_node(int node, nodemask_t *used_nodes)
5758
{
5759
	int i, n, val, min_val, best_node = -1;
5760 5761 5762

	min_val = INT_MAX;

5763
	for (i = 0; i < nr_node_ids; i++) {
5764
		/* Start at @node */
5765
		n = (node + i) % nr_node_ids;
5766 5767 5768 5769 5770

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
5771
		if (node_isset(n, *used_nodes))
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

5783 5784
	if (best_node != -1)
		node_set(best_node, *used_nodes);
5785 5786 5787 5788 5789 5790
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
5791
 * @span: resulting cpumask
5792
 *
I
Ingo Molnar 已提交
5793
 * Given a node, construct a good cpumask for its sched_domain to span. It
5794 5795 5796
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
5797
static void sched_domain_node_span(int node, struct cpumask *span)
5798
{
5799
	nodemask_t used_nodes;
5800
	int i;
5801

5802
	cpumask_clear(span);
5803
	nodes_clear(used_nodes);
5804

5805
	cpumask_or(span, span, cpumask_of_node(node));
5806
	node_set(node, used_nodes);
5807 5808

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5809
		int next_node = find_next_best_node(node, &used_nodes);
5810 5811
		if (next_node < 0)
			break;
5812
		cpumask_or(span, span, cpumask_of_node(next_node));
5813 5814
	}
}
5815 5816 5817 5818 5819 5820 5821 5822 5823

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
5824 5825 5826 5827 5828

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
5829
#endif /* CONFIG_NUMA */
5830

5831 5832 5833 5834 5835
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5836
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5837

5838 5839 5840
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5841
	struct sched_group_power **__percpu sgp;
5842 5843
};

5844
struct s_data {
5845
	struct sched_domain ** __percpu sd;
5846 5847 5848
	struct root_domain	*rd;
};

5849 5850
enum s_alloc {
	sa_rootdomain,
5851
	sa_sd,
5852
	sa_sd_storage,
5853 5854 5855
	sa_none,
};

5856 5857 5858
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5859 5860
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5861 5862
#define SDTL_OVERLAP	0x01

5863
struct sched_domain_topology_level {
5864 5865
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5866
	int		    flags;
5867
	struct sd_data      data;
5868 5869
};

5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5889
				GFP_KERNEL, cpu_to_node(cpu));
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5928
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5929
{
5930 5931
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5932

5933 5934
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5935

5936
	if (sg) {
5937
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5938
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5939
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5940
	}
5941 5942

	return cpu;
5943 5944
}

5945
/*
5946 5947 5948
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5949 5950
 *
 * Assumes the sched_domain tree is fully constructed
5951
 */
5952 5953
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5954
{
5955 5956 5957
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5958
	struct cpumask *covered;
5959
	int i;
5960

5961 5962 5963 5964 5965 5966
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5967 5968 5969
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5970
	cpumask_clear(covered);
5971

5972 5973 5974 5975
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5976

5977 5978
		if (cpumask_test_cpu(i, covered))
			continue;
5979

5980
		cpumask_clear(sched_group_cpus(sg));
5981
		sg->sgp->power = 0;
5982

5983 5984 5985
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5986

5987 5988 5989
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5990

5991 5992 5993 5994 5995 5996 5997
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5998 5999

	return 0;
6000
}
6001

6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
6014
	struct sched_group *sg = sd->groups;
6015

6016 6017 6018 6019 6020 6021
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6022

6023 6024
	if (cpu != group_first_cpu(sg))
		return;
6025

6026
	update_group_power(sd, cpu);
6027 6028
}

6029 6030 6031 6032 6033
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
}

6034 6035 6036 6037 6038
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6039 6040 6041 6042 6043 6044
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6045 6046 6047 6048 6049 6050 6051 6052 6053
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6067 6068 6069
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6070

6071
static int default_relax_domain_level = -1;
6072
int sched_domain_level_max;
6073 6074 6075

static int __init setup_relax_domain_level(char *str)
{
6076 6077 6078
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
6079
	if (val < sched_domain_level_max)
6080 6081
		default_relax_domain_level = val;

6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6100
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6101 6102
	} else {
		/* turn on idle balance on this domain */
6103
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6104 6105 6106
	}
}

6107 6108 6109
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6110 6111 6112 6113 6114
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6115 6116
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6117 6118
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6119
	case sa_sd_storage:
6120
		__sdt_free(cpu_map); /* fall through */
6121 6122 6123 6124
	case sa_none:
		break;
	}
}
6125

6126 6127 6128
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6129 6130
	memset(d, 0, sizeof(*d));

6131 6132
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6133 6134 6135
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6136
	d->rd = alloc_rootdomain();
6137
	if (!d->rd)
6138
		return sa_sd;
6139 6140
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6141

6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6154
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6155
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6156 6157

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6158
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6159 6160
}

6161 6162
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6163
{
6164
	return topology_thread_cpumask(cpu);
6165
}
6166
#endif
6167

6168 6169 6170
/*
 * Topology list, bottom-up.
 */
6171
static struct sched_domain_topology_level default_topology[] = {
6172 6173
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6174
#endif
6175
#ifdef CONFIG_SCHED_MC
6176
	{ sd_init_MC, cpu_coregroup_mask, },
6177
#endif
6178 6179 6180 6181 6182
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
6183
	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6184
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
6185
#endif
6186 6187 6188 6189 6190
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6207 6208 6209 6210
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6211 6212 6213
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6214
			struct sched_group_power *sgp;
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
6229 6230 6231 6232 6233 6234 6235

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6251 6252 6253
			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
			if (sd && (sd->flags & SD_OVERLAP))
				free_sched_groups(sd->groups, 0);
6254
			kfree(*per_cpu_ptr(sdd->sd, j));
6255
			kfree(*per_cpu_ptr(sdd->sg, j));
6256
			kfree(*per_cpu_ptr(sdd->sgp, j));
6257 6258 6259
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
6260
		free_percpu(sdd->sgp);
6261 6262 6263
	}
}

6264 6265
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6266
		struct sched_domain_attr *attr, struct sched_domain *child,
6267 6268
		int cpu)
{
6269
	struct sched_domain *sd = tl->init(tl, cpu);
6270
	if (!sd)
6271
		return child;
6272 6273 6274

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6275 6276 6277
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6278
		child->parent = sd;
6279
	}
6280
	sd->child = child;
6281 6282 6283 6284

	return sd;
}

6285 6286 6287 6288
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6289 6290
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6291 6292
{
	enum s_alloc alloc_state = sa_none;
6293
	struct sched_domain *sd;
6294
	struct s_data d;
6295
	int i, ret = -ENOMEM;
6296

6297 6298 6299
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6300

6301
	/* Set up domains for cpus specified by the cpu_map. */
6302
	for_each_cpu(i, cpu_map) {
6303 6304
		struct sched_domain_topology_level *tl;

6305
		sd = NULL;
6306
		for (tl = sched_domain_topology; tl->init; tl++) {
6307
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6308 6309
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6310 6311
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6312
		}
6313

6314 6315 6316
		while (sd->child)
			sd = sd->child;

6317
		*per_cpu_ptr(d.sd, i) = sd;
6318 6319 6320 6321 6322 6323
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6324 6325 6326 6327 6328 6329 6330
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6331
		}
6332
	}
6333

L
Linus Torvalds 已提交
6334
	/* Calculate CPU power for physical packages and nodes */
6335 6336 6337
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6338

6339 6340
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6341
			init_sched_groups_power(i, sd);
6342
		}
6343
	}
6344

L
Linus Torvalds 已提交
6345
	/* Attach the domains */
6346
	rcu_read_lock();
6347
	for_each_cpu(i, cpu_map) {
6348
		sd = *per_cpu_ptr(d.sd, i);
6349
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6350
	}
6351
	rcu_read_unlock();
6352

6353
	ret = 0;
6354
error:
6355
	__free_domain_allocs(&d, alloc_state, cpu_map);
6356
	return ret;
L
Linus Torvalds 已提交
6357
}
P
Paul Jackson 已提交
6358

6359
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6360
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6361 6362
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6363 6364 6365

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6366 6367
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6368
 */
6369
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6370

6371 6372 6373 6374 6375 6376
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6377
{
6378
	return 0;
6379 6380
}

6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6406
/*
I
Ingo Molnar 已提交
6407
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6408 6409
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6410
 */
6411
static int init_sched_domains(const struct cpumask *cpu_map)
6412
{
6413 6414
	int err;

6415
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6416
	ndoms_cur = 1;
6417
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6418
	if (!doms_cur)
6419 6420
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6421
	dattr_cur = NULL;
6422
	err = build_sched_domains(doms_cur[0], NULL);
6423
	register_sched_domain_sysctl();
6424 6425

	return err;
6426 6427 6428 6429 6430 6431
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6432
static void detach_destroy_domains(const struct cpumask *cpu_map)
6433 6434 6435
{
	int i;

6436
	rcu_read_lock();
6437
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6438
		cpu_attach_domain(NULL, &def_root_domain, i);
6439
	rcu_read_unlock();
6440 6441
}

6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6458 6459
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6460
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6461 6462 6463
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6464
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6465 6466 6467
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6468 6469 6470
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6471 6472 6473 6474 6475 6476
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6477
 *
6478
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6479 6480
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6481
 *
P
Paul Jackson 已提交
6482 6483
 * Call with hotplug lock held
 */
6484
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6485
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6486
{
6487
	int i, j, n;
6488
	int new_topology;
P
Paul Jackson 已提交
6489

6490
	mutex_lock(&sched_domains_mutex);
6491

6492 6493 6494
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6495 6496 6497
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6498
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6499 6500 6501

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6502
		for (j = 0; j < n && !new_topology; j++) {
6503
			if (cpumask_equal(doms_cur[i], doms_new[j])
6504
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6505 6506 6507
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6508
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6509 6510 6511 6512
match1:
		;
	}

6513 6514
	if (doms_new == NULL) {
		ndoms_cur = 0;
6515
		doms_new = &fallback_doms;
6516
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6517
		WARN_ON_ONCE(dattr_new);
6518 6519
	}

P
Paul Jackson 已提交
6520 6521
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6522
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6523
			if (cpumask_equal(doms_new[i], doms_cur[j])
6524
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6525 6526 6527
				goto match2;
		}
		/* no match - add a new doms_new */
6528
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6529 6530 6531 6532 6533
match2:
		;
	}

	/* Remember the new sched domains */
6534 6535
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6536
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6537
	doms_cur = doms_new;
6538
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6539
	ndoms_cur = ndoms_new;
6540 6541

	register_sched_domain_sysctl();
6542

6543
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6544 6545
}

6546
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6547
static void reinit_sched_domains(void)
6548
{
6549
	get_online_cpus();
6550 6551 6552 6553

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

6554
	rebuild_sched_domains();
6555
	put_online_cpus();
6556 6557 6558 6559
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
6560
	unsigned int level = 0;
6561

6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6573 6574 6575
		return -EINVAL;

	if (smt)
6576
		sched_smt_power_savings = level;
6577
	else
6578
		sched_mc_power_savings = level;
6579

6580
	reinit_sched_domains();
6581

6582
	return count;
6583 6584 6585
}

#ifdef CONFIG_SCHED_MC
6586
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
6587
					   struct sysdev_class_attribute *attr,
6588
					   char *page)
6589 6590 6591
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6592
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
6593
					    struct sysdev_class_attribute *attr,
6594
					    const char *buf, size_t count)
6595 6596 6597
{
	return sched_power_savings_store(buf, count, 0);
}
6598 6599 6600
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
6601 6602 6603
#endif

#ifdef CONFIG_SCHED_SMT
6604
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
6605
					    struct sysdev_class_attribute *attr,
6606
					    char *page)
6607 6608 6609
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6610
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
6611
					     struct sysdev_class_attribute *attr,
6612
					     const char *buf, size_t count)
6613 6614 6615
{
	return sched_power_savings_store(buf, count, 1);
}
6616 6617
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
6618 6619 6620
		   sched_smt_power_savings_store);
#endif

6621
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6637
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6638

L
Linus Torvalds 已提交
6639
/*
6640 6641 6642
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
6643
 */
6644 6645
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6646
{
6647
	switch (action & ~CPU_TASKS_FROZEN) {
6648
	case CPU_ONLINE:
6649
	case CPU_DOWN_FAILED:
6650
		cpuset_update_active_cpus();
6651
		return NOTIFY_OK;
6652 6653 6654 6655
	default:
		return NOTIFY_DONE;
	}
}
6656

6657 6658
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6659 6660 6661 6662 6663
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
6664 6665 6666 6667 6668
	default:
		return NOTIFY_DONE;
	}
}

L
Linus Torvalds 已提交
6669 6670
void __init sched_init_smp(void)
{
6671 6672 6673
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6674
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6675

6676
	get_online_cpus();
6677
	mutex_lock(&sched_domains_mutex);
6678
	init_sched_domains(cpu_active_mask);
6679 6680 6681
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6682
	mutex_unlock(&sched_domains_mutex);
6683
	put_online_cpus();
6684

6685 6686
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6687 6688 6689 6690

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6691
	init_hrtick();
6692 6693

	/* Move init over to a non-isolated CPU */
6694
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6695
		BUG();
I
Ingo Molnar 已提交
6696
	sched_init_granularity();
6697
	free_cpumask_var(non_isolated_cpus);
6698

6699
	init_sched_rt_class();
L
Linus Torvalds 已提交
6700 6701 6702 6703
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6704
	sched_init_granularity();
L
Linus Torvalds 已提交
6705 6706 6707
}
#endif /* CONFIG_SMP */

6708 6709
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6710 6711 6712 6713 6714 6715 6716
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6717 6718
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6719
#endif
P
Peter Zijlstra 已提交
6720

6721
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6722

L
Linus Torvalds 已提交
6723 6724
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6725
	int i, j;
6726 6727 6728 6729 6730 6731 6732
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6733
#endif
6734
#ifdef CONFIG_CPUMASK_OFFSTACK
6735
	alloc_size += num_possible_cpus() * cpumask_size();
6736 6737
#endif
	if (alloc_size) {
6738
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6739 6740

#ifdef CONFIG_FAIR_GROUP_SCHED
6741
		root_task_group.se = (struct sched_entity **)ptr;
6742 6743
		ptr += nr_cpu_ids * sizeof(void **);

6744
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6745
		ptr += nr_cpu_ids * sizeof(void **);
6746

6747
#endif /* CONFIG_FAIR_GROUP_SCHED */
6748
#ifdef CONFIG_RT_GROUP_SCHED
6749
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6750 6751
		ptr += nr_cpu_ids * sizeof(void **);

6752
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6753 6754
		ptr += nr_cpu_ids * sizeof(void **);

6755
#endif /* CONFIG_RT_GROUP_SCHED */
6756 6757 6758 6759 6760 6761
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6762
	}
I
Ingo Molnar 已提交
6763

G
Gregory Haskins 已提交
6764 6765 6766 6767
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6768 6769 6770 6771
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6772
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6773
			global_rt_period(), global_rt_runtime());
6774
#endif /* CONFIG_RT_GROUP_SCHED */
6775

D
Dhaval Giani 已提交
6776
#ifdef CONFIG_CGROUP_SCHED
6777 6778
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6779
	INIT_LIST_HEAD(&root_task_group.siblings);
6780
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
6781
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6782

6783
	for_each_possible_cpu(i) {
6784
		struct rq *rq;
L
Linus Torvalds 已提交
6785 6786

		rq = cpu_rq(i);
6787
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6788
		rq->nr_running = 0;
6789 6790
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6791
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6792
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6793
#ifdef CONFIG_FAIR_GROUP_SCHED
6794
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6795
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6796
		/*
6797
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6798 6799 6800 6801
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6802
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6803 6804 6805
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6806
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6807 6808 6809
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6810
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6811
		 *
6812 6813
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6814
		 */
6815
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6816
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6817 6818 6819
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6820
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6821
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6822
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6823
#endif
L
Linus Torvalds 已提交
6824

I
Ingo Molnar 已提交
6825 6826
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6827 6828 6829

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6830
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6831
		rq->sd = NULL;
G
Gregory Haskins 已提交
6832
		rq->rd = NULL;
6833
		rq->cpu_power = SCHED_POWER_SCALE;
6834
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6835
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6836
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6837
		rq->push_cpu = 0;
6838
		rq->cpu = i;
6839
		rq->online = 0;
6840 6841
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6842
		rq_attach_root(rq, &def_root_domain);
6843
#ifdef CONFIG_NO_HZ
6844
		rq->nohz_flags = 0;
6845
#endif
L
Linus Torvalds 已提交
6846
#endif
P
Peter Zijlstra 已提交
6847
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6848 6849 6850
		atomic_set(&rq->nr_iowait, 0);
	}

6851
	set_load_weight(&init_task);
6852

6853 6854 6855 6856
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6857
#ifdef CONFIG_RT_MUTEXES
6858
	plist_head_init(&init_task.pi_waiters);
6859 6860
#endif

L
Linus Torvalds 已提交
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6874 6875 6876

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6877 6878 6879 6880
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6881

6882
#ifdef CONFIG_SMP
6883
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6884 6885 6886
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6887 6888
#endif
	init_sched_fair_class();
6889

6890
	scheduler_running = 1;
L
Linus Torvalds 已提交
6891 6892
}

6893
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6894 6895
static inline int preempt_count_equals(int preempt_offset)
{
6896
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6897

A
Arnd Bergmann 已提交
6898
	return (nested == preempt_offset);
6899 6900
}

6901
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6902 6903 6904
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6905
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6906 6907
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6908 6909 6910 6911 6912
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6913 6914 6915 6916 6917 6918 6919
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6920 6921 6922 6923 6924

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6925 6926 6927 6928 6929
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6930 6931
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6932 6933
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6934
	int on_rq;
6935

P
Peter Zijlstra 已提交
6936
	on_rq = p->on_rq;
6937 6938 6939 6940 6941 6942 6943
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
6944 6945

	check_class_changed(rq, p, prev_class, old_prio);
6946 6947
}

L
Linus Torvalds 已提交
6948 6949
void normalize_rt_tasks(void)
{
6950
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6951
	unsigned long flags;
6952
	struct rq *rq;
L
Linus Torvalds 已提交
6953

6954
	read_lock_irqsave(&tasklist_lock, flags);
6955
	do_each_thread(g, p) {
6956 6957 6958 6959 6960 6961
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6962 6963
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
6964 6965 6966
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
6967
#endif
I
Ingo Molnar 已提交
6968 6969 6970 6971 6972 6973 6974 6975

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6976
			continue;
I
Ingo Molnar 已提交
6977
		}
L
Linus Torvalds 已提交
6978

6979
		raw_spin_lock(&p->pi_lock);
6980
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6981

6982
		normalize_task(rq, p);
6983

6984
		__task_rq_unlock(rq);
6985
		raw_spin_unlock(&p->pi_lock);
6986 6987
	} while_each_thread(g, p);

6988
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
6989 6990 6991
}

#endif /* CONFIG_MAGIC_SYSRQ */
6992

6993
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6994
/*
6995
 * These functions are only useful for the IA64 MCA handling, or kdb.
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7010
struct task_struct *curr_task(int cpu)
7011 7012 7013 7014
{
	return cpu_curr(cpu);
}

7015 7016 7017
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7018 7019 7020 7021 7022 7023
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7024 7025
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7026 7027 7028 7029 7030 7031 7032
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7033
void set_curr_task(int cpu, struct task_struct *p)
7034 7035 7036 7037 7038
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7039

7040
#ifdef CONFIG_RT_GROUP_SCHED
7041 7042
#else /* !CONFIG_RT_GROUP_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7043

D
Dhaval Giani 已提交
7044
#ifdef CONFIG_CGROUP_SCHED
7045 7046 7047
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7048 7049 7050 7051
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7052
	autogroup_free(tg);
7053 7054 7055 7056
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7057
struct task_group *sched_create_group(struct task_group *parent)
7058 7059 7060 7061 7062 7063 7064 7065
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7066
	if (!alloc_fair_sched_group(tg, parent))
7067 7068
		goto err;

7069
	if (!alloc_rt_sched_group(tg, parent))
7070 7071
		goto err;

7072
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7073
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7074 7075 7076 7077 7078

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7079
	list_add_rcu(&tg->siblings, &parent->children);
7080
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7081

7082
	return tg;
S
Srivatsa Vaddagiri 已提交
7083 7084

err:
P
Peter Zijlstra 已提交
7085
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7086 7087 7088
	return ERR_PTR(-ENOMEM);
}

7089
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7090
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7091 7092
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7093
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7094 7095
}

7096
/* Destroy runqueue etc associated with a task group */
7097
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7098
{
7099
	unsigned long flags;
7100
	int i;
S
Srivatsa Vaddagiri 已提交
7101

7102 7103
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7104
		unregister_fair_sched_group(tg, i);
7105 7106

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7107
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7108
	list_del_rcu(&tg->siblings);
7109
	spin_unlock_irqrestore(&task_group_lock, flags);
7110 7111

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7112
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7113 7114
}

7115
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7116 7117 7118
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7119 7120
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7121 7122 7123 7124 7125 7126 7127
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7128
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7129
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7130

7131
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7132
		dequeue_task(rq, tsk, 0);
7133 7134
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7135

P
Peter Zijlstra 已提交
7136
#ifdef CONFIG_FAIR_GROUP_SCHED
7137 7138 7139
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7140
#endif
7141
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7142

7143 7144 7145
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7146
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7147

7148
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7149
}
D
Dhaval Giani 已提交
7150
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7151

7152 7153
#ifdef CONFIG_FAIR_GROUP_SCHED
#endif
7154

7155
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7156 7157 7158
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7159
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7160

P
Peter Zijlstra 已提交
7161
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7162
}
7163 7164 7165 7166 7167 7168 7169
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7170

P
Peter Zijlstra 已提交
7171 7172
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7173
{
P
Peter Zijlstra 已提交
7174
	struct task_struct *g, *p;
7175

P
Peter Zijlstra 已提交
7176
	do_each_thread(g, p) {
7177
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7178 7179
			return 1;
	} while_each_thread(g, p);
7180

P
Peter Zijlstra 已提交
7181 7182
	return 0;
}
7183

P
Peter Zijlstra 已提交
7184 7185 7186 7187 7188
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7189

7190
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7191 7192 7193 7194 7195
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7196

P
Peter Zijlstra 已提交
7197 7198
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7199

P
Peter Zijlstra 已提交
7200 7201 7202
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7203 7204
	}

7205 7206 7207 7208 7209
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7210

7211 7212 7213
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7214 7215
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7216

P
Peter Zijlstra 已提交
7217
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7218

7219 7220 7221 7222 7223
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7224

7225 7226 7227
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7228 7229 7230
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7231

P
Peter Zijlstra 已提交
7232 7233 7234 7235
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7236

P
Peter Zijlstra 已提交
7237
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7238
	}
P
Peter Zijlstra 已提交
7239

P
Peter Zijlstra 已提交
7240 7241 7242 7243
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7244 7245
}

P
Peter Zijlstra 已提交
7246
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7247
{
7248 7249
	int ret;

P
Peter Zijlstra 已提交
7250 7251 7252 7253 7254 7255
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7256 7257 7258 7259 7260
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7261 7262
}

7263
static int tg_set_rt_bandwidth(struct task_group *tg,
7264
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7265
{
P
Peter Zijlstra 已提交
7266
	int i, err = 0;
P
Peter Zijlstra 已提交
7267 7268

	mutex_lock(&rt_constraints_mutex);
7269
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7270 7271
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7272
		goto unlock;
P
Peter Zijlstra 已提交
7273

7274
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7275 7276
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7277 7278 7279 7280

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7281
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7282
		rt_rq->rt_runtime = rt_runtime;
7283
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7284
	}
7285
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7286
unlock:
7287
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7288 7289 7290
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7291 7292
}

7293 7294 7295 7296 7297 7298 7299 7300 7301
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7302
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7303 7304
}

P
Peter Zijlstra 已提交
7305 7306 7307 7308
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7309
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7310 7311
		return -1;

7312
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7313 7314 7315
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7316 7317 7318 7319 7320 7321 7322 7323

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7324 7325 7326
	if (rt_period == 0)
		return -EINVAL;

7327
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7341
	u64 runtime, period;
7342 7343
	int ret = 0;

7344 7345 7346
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7347 7348 7349 7350 7351 7352 7353 7354
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7355

7356
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7357
	read_lock(&tasklist_lock);
7358
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7359
	read_unlock(&tasklist_lock);
7360 7361 7362 7363
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7374
#else /* !CONFIG_RT_GROUP_SCHED */
7375 7376
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7377 7378 7379
	unsigned long flags;
	int i;

7380 7381 7382
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7383 7384 7385 7386 7387 7388 7389
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7390
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7391 7392 7393
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7394
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7395
		rt_rq->rt_runtime = global_rt_runtime();
7396
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7397
	}
7398
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7399

7400 7401
	return 0;
}
7402
#endif /* CONFIG_RT_GROUP_SCHED */
7403 7404

int sched_rt_handler(struct ctl_table *table, int write,
7405
		void __user *buffer, size_t *lenp,
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7416
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7433

7434
#ifdef CONFIG_CGROUP_SCHED
7435 7436

/* return corresponding task_group object of a cgroup */
7437
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7438
{
7439 7440
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7441 7442 7443
}

static struct cgroup_subsys_state *
7444
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7445
{
7446
	struct task_group *tg, *parent;
7447

7448
	if (!cgrp->parent) {
7449
		/* This is early initialization for the top cgroup */
7450
		return &root_task_group.css;
7451 7452
	}

7453 7454
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7455 7456 7457 7458 7459 7460
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
7461 7462
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7463
{
7464
	struct task_group *tg = cgroup_tg(cgrp);
7465 7466 7467 7468

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7469
static int
7470
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7471
{
7472
#ifdef CONFIG_RT_GROUP_SCHED
7473
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
7474 7475
		return -EINVAL;
#else
7476 7477 7478
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
7479
#endif
7480 7481
	return 0;
}
7482 7483

static void
7484
cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7485 7486 7487 7488
{
	sched_move_task(tsk);
}

7489
static void
7490 7491
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7504
#ifdef CONFIG_FAIR_GROUP_SCHED
7505
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7506
				u64 shareval)
7507
{
7508
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7509 7510
}

7511
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7512
{
7513
	struct task_group *tg = cgroup_tg(cgrp);
7514

7515
	return (u64) scale_load_down(tg->shares);
7516
}
7517 7518

#ifdef CONFIG_CFS_BANDWIDTH
7519 7520
static DEFINE_MUTEX(cfs_constraints_mutex);

7521 7522 7523
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7524 7525
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7526 7527
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7528
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7529
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7550 7551 7552 7553 7554
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7555
	runtime_enabled = quota != RUNTIME_INF;
7556 7557
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7558 7559 7560
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7561

P
Paul Turner 已提交
7562
	__refill_cfs_bandwidth_runtime(cfs_b);
7563 7564 7565 7566 7567 7568
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7569 7570 7571 7572
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7573
		struct rq *rq = cfs_rq->rq;
7574 7575

		raw_spin_lock_irq(&rq->lock);
7576
		cfs_rq->runtime_enabled = runtime_enabled;
7577
		cfs_rq->runtime_remaining = 0;
7578

7579
		if (cfs_rq->throttled)
7580
			unthrottle_cfs_rq(cfs_rq);
7581 7582
		raw_spin_unlock_irq(&rq->lock);
	}
7583 7584
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7585

7586
	return ret;
7587 7588 7589 7590 7591 7592
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7593
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7606
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7607 7608
		return -1;

7609
	quota_us = tg->cfs_bandwidth.quota;
7610 7611 7612 7613 7614 7615 7616 7617 7618 7619
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7620
	quota = tg->cfs_bandwidth.quota;
7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631

	if (period <= 0)
		return -EINVAL;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7632
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7692
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7693 7694 7695 7696 7697
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7698
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7719
	int ret;
7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7731 7732 7733 7734 7735
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7736
}
7737 7738 7739 7740 7741

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7742
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7743 7744 7745 7746 7747 7748 7749

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7750
#endif /* CONFIG_CFS_BANDWIDTH */
7751
#endif /* CONFIG_FAIR_GROUP_SCHED */
7752

7753
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7754
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7755
				s64 val)
P
Peter Zijlstra 已提交
7756
{
7757
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7758 7759
}

7760
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7761
{
7762
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7763
}
7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7775
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7776

7777
static struct cftype cpu_files[] = {
7778
#ifdef CONFIG_FAIR_GROUP_SCHED
7779 7780
	{
		.name = "shares",
7781 7782
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7783
	},
7784
#endif
7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7796 7797 7798 7799
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7800
#endif
7801
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7802
	{
P
Peter Zijlstra 已提交
7803
		.name = "rt_runtime_us",
7804 7805
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7806
	},
7807 7808
	{
		.name = "rt_period_us",
7809 7810
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7811
	},
7812
#endif
7813 7814 7815 7816
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7817
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7818 7819 7820
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7821 7822 7823
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7824 7825
	.can_attach_task = cpu_cgroup_can_attach_task,
	.attach_task	= cpu_cgroup_attach_task,
7826
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7827 7828
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7829 7830 7831
	.early_init	= 1,
};

7832
#endif	/* CONFIG_CGROUP_SCHED */
7833 7834 7835 7836 7837 7838 7839 7840 7841 7842

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7843
/* track cpu usage of a group of tasks and its child groups */
7844 7845 7846
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
7847
	u64 __percpu *cpuusage;
7848
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
7849
	struct cpuacct *parent;
7850 7851 7852 7853 7854
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
7855
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
7856
{
7857
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
7870
	struct cgroup_subsys *ss, struct cgroup *cgrp)
7871 7872
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7873
	int i;
7874 7875

	if (!ca)
7876
		goto out;
7877 7878

	ca->cpuusage = alloc_percpu(u64);
7879 7880 7881 7882 7883 7884
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
7885

7886 7887 7888
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

7889
	return &ca->css;
7890 7891 7892 7893 7894 7895 7896 7897 7898

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7899 7900 7901
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7902
static void
7903
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7904
{
7905
	struct cpuacct *ca = cgroup_ca(cgrp);
7906
	int i;
7907

7908 7909
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
7910 7911 7912 7913
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7914 7915
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7916
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7917 7918 7919 7920 7921 7922
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7923
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7924
	data = *cpuusage;
7925
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7926 7927 7928 7929 7930 7931 7932 7933 7934
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7935
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7936 7937 7938 7939 7940

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7941
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7942
	*cpuusage = val;
7943
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7944 7945 7946 7947 7948
#else
	*cpuusage = val;
#endif
}

7949
/* return total cpu usage (in nanoseconds) of a group */
7950
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7951
{
7952
	struct cpuacct *ca = cgroup_ca(cgrp);
7953 7954 7955
	u64 totalcpuusage = 0;
	int i;

7956 7957
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7958 7959 7960 7961

	return totalcpuusage;
}

7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

7974 7975
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
7976 7977 7978 7979 7980

out:
	return err;
}

7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8015 8016 8017
static struct cftype files[] = {
	{
		.name = "usage",
8018 8019
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8020
	},
8021 8022 8023 8024
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8025 8026 8027 8028
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8029 8030
};

8031
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8032
{
8033
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8034 8035 8036 8037 8038 8039 8040
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8041
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8042 8043
{
	struct cpuacct *ca;
8044
	int cpu;
8045

L
Li Zefan 已提交
8046
	if (unlikely(!cpuacct_subsys.active))
8047 8048
		return;

8049
	cpu = task_cpu(tsk);
8050 8051 8052

	rcu_read_lock();

8053 8054
	ca = task_ca(tsk);

8055
	for (; ca; ca = ca->parent) {
8056
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8057 8058
		*cpuusage += cputime;
	}
8059 8060

	rcu_read_unlock();
8061 8062
}

8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8080 8081 8082
/*
 * Charge the system/user time to the task's accounting group.
 */
8083
void cpuacct_update_stats(struct task_struct *tsk,
8084 8085 8086
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8087
	int batch = CPUACCT_BATCH;
8088 8089 8090 8091 8092 8093 8094 8095

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8096
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8097 8098 8099 8100 8101
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8102 8103 8104 8105 8106 8107 8108 8109
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */