compaction.c 57.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
10
#include <linux/cpu.h>
11 12 13 14
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
15
#include <linux/sched/signal.h>
16
#include <linux/backing-dev.h>
17
#include <linux/sysctl.h>
18
#include <linux/sysfs.h>
19
#include <linux/page-isolation.h>
20
#include <linux/kasan.h>
21 22
#include <linux/kthread.h>
#include <linux/freezer.h>
23
#include <linux/page_owner.h>
24 25
#include "internal.h"

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

41 42
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

43 44 45
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

46 47 48 49 50
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

51 52 53
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
54
	unsigned long high_pfn = 0;
55 56

	list_for_each_entry_safe(page, next, freelist, lru) {
57
		unsigned long pfn = page_to_pfn(page);
58 59
		list_del(&page->lru);
		__free_page(page);
60 61
		if (pfn > high_pfn)
			high_pfn = pfn;
62 63
	}

64
	return high_pfn;
65 66
}

67 68
static void map_pages(struct list_head *list)
{
69 70 71 72 73 74 75 76 77 78
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;

79
		post_alloc_hook(page, order, __GFP_MOVABLE);
80 81
		if (order)
			split_page(page, order);
82

83 84 85 86
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
87
	}
88 89

	list_splice(&tmp_list, list);
90 91
}

92
#ifdef CONFIG_COMPACTION
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

202 203 204 205 206 207 208 209 210 211
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

212 213 214 215
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
216
	zone->compact_cached_free_pfn =
217
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
218 219
}

220 221 222 223 224
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
225
static void __reset_isolation_suitable(struct zone *zone)
226 227
{
	unsigned long start_pfn = zone->zone_start_pfn;
228
	unsigned long end_pfn = zone_end_pfn(zone);
229 230
	unsigned long pfn;

231
	zone->compact_blockskip_flush = false;
232 233 234 235 236 237 238

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

239 240
		page = pfn_to_online_page(pfn);
		if (!page)
241 242 243 244 245 246
			continue;
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
247 248

	reset_cached_positions(zone);
249 250
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

266 267
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
268
 * future. The information is later cleared by __reset_isolation_suitable().
269
 */
270 271
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
272
			bool migrate_scanner)
273
{
274
	struct zone *zone = cc->zone;
275
	unsigned long pfn;
276 277 278 279

	if (cc->ignore_skip_hint)
		return;

280 281 282
	if (!page)
		return;

283 284 285
	if (nr_isolated)
		return;

286
	set_pageblock_skip(page);
287

288 289 290 291 292 293
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
294 295
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
296 297 298 299
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
300
	}
301 302 303 304 305 306 307 308
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

309 310
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
311
			bool migrate_scanner)
312 313 314 315
{
}
#endif /* CONFIG_COMPACTION */

316 317 318 319 320 321 322 323 324 325
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
326
{
327 328
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
329
			cc->contended = true;
330 331 332 333 334
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
335

336
	return true;
337 338
}

339 340
/*
 * Compaction requires the taking of some coarse locks that are potentially
341 342 343 344 345 346 347
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
348
 *
349 350 351 352
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
353
 */
354 355
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
356
{
357 358 359 360
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
361

362
	if (fatal_signal_pending(current)) {
363
		cc->contended = true;
364 365
		return true;
	}
366

367
	if (need_resched()) {
368
		if (cc->mode == MIGRATE_ASYNC) {
369
			cc->contended = true;
370
			return true;
371 372 373 374
		}
		cond_resched();
	}

375
	return false;
376 377
}

378 379 380
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
381
 * compaction. This is similar to what compact_unlock_should_abort() does, but
382 383 384 385 386 387 388 389 390 391
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
392
			cc->contended = true;
393 394 395 396 397 398 399 400 401
			return true;
		}

		cond_resched();
	}

	return false;
}

402
/*
403 404 405
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
406
 */
407
static unsigned long isolate_freepages_block(struct compact_control *cc,
408
				unsigned long *start_pfn,
409 410 411
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
412
{
413
	int nr_scanned = 0, total_isolated = 0;
414
	struct page *cursor, *valid_page = NULL;
415
	unsigned long flags = 0;
416
	bool locked = false;
417
	unsigned long blockpfn = *start_pfn;
418
	unsigned int order;
419 420 421

	cursor = pfn_to_page(blockpfn);

422
	/* Isolate free pages. */
423
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
424
		int isolated;
425 426
		struct page *page = cursor;

427 428 429 430 431 432 433 434 435 436
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

437
		nr_scanned++;
438
		if (!pfn_valid_within(blockpfn))
439 440
			goto isolate_fail;

441 442
		if (!valid_page)
			valid_page = page;
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER)) {
				blockpfn += (1UL << comp_order) - 1;
				cursor += (1UL << comp_order) - 1;
			}

			goto isolate_fail;
		}

461
		if (!PageBuddy(page))
462
			goto isolate_fail;
463 464

		/*
465 466 467 468 469
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
470
		 */
471 472 473 474 475 476 477 478 479
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
480 481
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
482 483
			if (!locked)
				break;
484

485 486 487 488
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
489

490 491 492
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
493 494
		if (!isolated)
			break;
495
		set_page_private(page, order);
496

497
		total_isolated += isolated;
498
		cc->nr_freepages += isolated;
499 500
		list_add_tail(&page->lru, freelist);

501 502 503
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
504
		}
505 506 507 508
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
509 510 511 512 513 514 515

isolate_fail:
		if (strict)
			break;
		else
			continue;

516 517
	}

518 519 520
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

521 522 523 524 525 526 527
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

528 529 530
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

531 532 533
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

534 535 536 537 538
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
539
	if (strict && blockpfn < end_pfn)
540 541
		total_isolated = 0;

542 543
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
544
		update_pageblock_skip(cc, valid_page, total_isolated, false);
545

546
	cc->total_free_scanned += nr_scanned;
547
	if (total_isolated)
548
		count_compact_events(COMPACTISOLATED, total_isolated);
549 550 551
	return total_isolated;
}

552 553 554 555 556 557 558 559 560 561 562 563 564
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
565
unsigned long
566 567
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
568
{
569
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
570 571
	LIST_HEAD(freelist);

572
	pfn = start_pfn;
573
	block_start_pfn = pageblock_start_pfn(pfn);
574 575
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
576
	block_end_pfn = pageblock_end_pfn(pfn);
577 578

	for (; pfn < end_pfn; pfn += isolated,
579
				block_start_pfn = block_end_pfn,
580
				block_end_pfn += pageblock_nr_pages) {
581 582
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
583 584 585

		block_end_pfn = min(block_end_pfn, end_pfn);

586 587 588 589 590 591
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
592 593
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
594 595 596
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

597 598
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
599 600
			break;

601 602
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

619
	/* __isolate_free_page() does not map the pages */
620 621 622 623 624 625 626 627 628 629 630 631
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

632 633 634
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
635
	unsigned long active, inactive, isolated;
636

M
Mel Gorman 已提交
637 638 639 640 641 642
	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
643

644
	return isolated > (inactive + active) / 2;
645 646
}

647
/**
648 649
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
650
 * @cc:		Compaction control structure.
651 652 653
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
654 655
 *
 * Isolate all pages that can be migrated from the range specified by
656 657 658 659
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
660
 *
661 662 663
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
664
 */
665 666 667
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
668
{
669
	struct zone *zone = cc->zone;
670
	unsigned long nr_scanned = 0, nr_isolated = 0;
671
	struct lruvec *lruvec;
672
	unsigned long flags = 0;
673
	bool locked = false;
674
	struct page *page = NULL, *valid_page = NULL;
675
	unsigned long start_pfn = low_pfn;
676 677
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
678 679 680 681 682 683 684

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
685
		/* async migration should just abort */
686
		if (cc->mode == MIGRATE_ASYNC)
687
			return 0;
688

689 690 691
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
692
			return 0;
693 694
	}

695 696
	if (compact_should_abort(cc))
		return 0;
697

698 699 700 701 702
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

703 704
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
705

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

728 729 730 731 732 733
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
734
		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
735 736
								&locked, cc))
			break;
737

738
		if (!pfn_valid_within(low_pfn))
739
			goto isolate_fail;
740
		nr_scanned++;
741 742

		page = pfn_to_page(low_pfn);
743

744 745 746
		if (!valid_page)
			valid_page = page;

747
		/*
748 749 750 751
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
752
		 */
753 754 755 756 757 758 759 760 761 762
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
763
			continue;
764
		}
765

766
		/*
767 768 769 770 771
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
772
		 */
773 774 775 776 777
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER))
				low_pfn += (1UL << comp_order) - 1;
778

779
			goto isolate_fail;
780 781
		}

782 783 784 785 786 787 788 789 790 791 792 793 794
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
795
					spin_unlock_irqrestore(zone_lru_lock(zone),
796 797 798 799
									flags);
					locked = false;
				}

800
				if (!isolate_movable_page(page, isolate_mode))
801 802 803
					goto isolate_success;
			}

804
			goto isolate_fail;
805
		}
806

807 808 809 810 811 812 813
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
814
			goto isolate_fail;
815

816 817 818 819 820 821 822
		/*
		 * Only allow to migrate anonymous pages in GFP_NOFS context
		 * because those do not depend on fs locks.
		 */
		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
			goto isolate_fail;

823 824
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
825
			locked = compact_trylock_irqsave(zone_lru_lock(zone),
826
								&flags, cc);
827 828
			if (!locked)
				break;
829

830
			/* Recheck PageLRU and PageCompound under lock */
831
			if (!PageLRU(page))
832
				goto isolate_fail;
833 834 835 836 837 838 839 840

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
				low_pfn += (1UL << compound_order(page)) - 1;
841
				goto isolate_fail;
842
			}
843 844
		}

M
Mel Gorman 已提交
845
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
846

847
		/* Try isolate the page */
848
		if (__isolate_lru_page(page, isolate_mode) != 0)
849
			goto isolate_fail;
850

851
		VM_BUG_ON_PAGE(PageCompound(page), page);
852

853
		/* Successfully isolated */
854
		del_page_from_lru_list(page, lruvec, page_lru(page));
855 856
		inc_node_page_state(page,
				NR_ISOLATED_ANON + page_is_file_cache(page));
857 858

isolate_success:
859
		list_add(&page->lru, &cc->migratepages);
860
		cc->nr_migratepages++;
861
		nr_isolated++;
862

863 864 865 866 867 868 869 870 871
		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator.
		 * - this is the lowest page that was isolated and likely be
		 * then freed by migration.
		 */
		if (!cc->last_migrated_pfn)
			cc->last_migrated_pfn = low_pfn;

872
		/* Avoid isolating too much */
873 874
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
875
			break;
876
		}
877 878 879 880 881 882 883 884 885 886 887 888 889

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
890
				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
				locked = false;
			}
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			cc->last_migrated_pfn = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
907 908
	}

909 910 911 912 913 914 915
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

916
	if (locked)
917
		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
918

919 920 921 922
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
923
	if (low_pfn == end_pfn)
924
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
925

926 927
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
928

929
	cc->total_migrate_scanned += nr_scanned;
930
	if (nr_isolated)
931
		count_compact_events(COMPACTISOLATED, nr_isolated);
932

933 934 935
	return low_pfn;
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
950
	unsigned long pfn, block_start_pfn, block_end_pfn;
951 952 953

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
954
	block_start_pfn = pageblock_start_pfn(pfn);
955 956
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
957
	block_end_pfn = pageblock_end_pfn(pfn);
958 959

	for (; pfn < end_pfn; pfn = block_end_pfn,
960
				block_start_pfn = block_end_pfn,
961 962 963 964
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

965 966
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
967 968 969 970 971
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

972
		if (!pfn)
973
			break;
974 975 976

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
977 978 979 980 981
	}

	return pfn;
}

982 983
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
984

985 986 987
static bool suitable_migration_source(struct compact_control *cc,
							struct page *page)
{
988 989 990
	int block_mt;

	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
991 992
		return true;

993 994 995 996 997 998
	block_mt = get_pageblock_migratetype(page);

	if (cc->migratetype == MIGRATE_MOVABLE)
		return is_migrate_movable(block_mt);
	else
		return block_mt == cc->migratetype;
999 1000
}

1001
/* Returns true if the page is within a block suitable for migration to */
1002 1003
static bool suitable_migration_target(struct compact_control *cc,
							struct page *page)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

1016 1017 1018
	if (cc->ignore_block_suitable)
		return true;

1019
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1020
	if (is_migrate_movable(get_pageblock_migratetype(page)))
1021 1022 1023 1024 1025 1026
		return true;

	/* Otherwise skip the block */
	return false;
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1037
/*
1038 1039
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1040
 */
1041
static void isolate_freepages(struct compact_control *cc)
1042
{
1043
	struct zone *zone = cc->zone;
1044
	struct page *page;
1045
	unsigned long block_start_pfn;	/* start of current pageblock */
1046
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1047 1048
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1049
	struct list_head *freelist = &cc->freepages;
1050

1051 1052
	/*
	 * Initialise the free scanner. The starting point is where we last
1053
	 * successfully isolated from, zone-cached value, or the end of the
1054 1055
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1056 1057 1058
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1059 1060
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1061
	 */
1062
	isolate_start_pfn = cc->free_pfn;
1063
	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1064 1065
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1066
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1067

1068 1069 1070 1071 1072
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1073
	for (; block_start_pfn >= low_pfn;
1074
				block_end_pfn = block_start_pfn,
1075 1076
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1077 1078 1079
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
1080
		 * to schedule, or even abort async compaction.
1081
		 */
1082 1083 1084
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1085

1086 1087 1088
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1089 1090 1091
			continue;

		/* Check the block is suitable for migration */
1092
		if (!suitable_migration_target(cc, page))
1093
			continue;
1094

1095 1096 1097 1098
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1099
		/* Found a block suitable for isolating free pages from. */
1100 1101
		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
					freelist, false);
1102

1103
		/*
1104 1105
		 * If we isolated enough freepages, or aborted due to lock
		 * contention, terminate.
1106
		 */
1107 1108
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
1109 1110 1111 1112 1113
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1114 1115
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1116
			}
1117
			break;
1118
		} else if (isolate_start_pfn < block_end_pfn) {
1119
			/*
1120 1121
			 * If isolation failed early, do not continue
			 * needlessly.
1122
			 */
1123
			break;
1124
		}
1125 1126
	}

1127
	/* __isolate_free_page() does not map the pages */
1128 1129
	map_pages(freelist);

1130
	/*
1131 1132 1133 1134
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1135
	 */
1136
	cc->free_pfn = isolate_start_pfn;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1150 1151 1152 1153
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1154
	if (list_empty(&cc->freepages)) {
1155
		if (!cc->contended)
1156
			isolate_freepages(cc);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1182 1183 1184 1185 1186 1187 1188
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1189 1190 1191 1192 1193 1194
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1195
/*
1196 1197 1198
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1199 1200 1201 1202
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1203 1204 1205
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1206 1207
	struct page *page;
	const isolate_mode_t isolate_mode =
1208
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1209
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1210

1211 1212 1213 1214 1215
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1216
	block_start_pfn = pageblock_start_pfn(low_pfn);
1217 1218
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1219 1220

	/* Only scan within a pageblock boundary */
1221
	block_end_pfn = pageblock_end_pfn(low_pfn);
1222

1223 1224 1225 1226
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1227 1228 1229 1230
	for (; block_end_pfn <= cc->free_pfn;
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1231

1232 1233 1234 1235 1236 1237 1238 1239
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1240

1241 1242
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1243
		if (!page)
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
1255
		if (!suitable_migration_source(cc, page))
1256 1257 1258
			continue;

		/* Perform the isolation */
1259 1260
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1261

1262
		if (!low_pfn || cc->contended)
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

1273 1274
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1275

1276
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1277 1278
}

1279 1280 1281 1282 1283 1284 1285 1286 1287
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1288 1289
static enum compact_result __compact_finished(struct zone *zone,
						struct compact_control *cc)
1290
{
1291
	unsigned int order;
1292
	const int migratetype = cc->migratetype;
1293

1294
	if (cc->contended || fatal_signal_pending(current))
1295
		return COMPACT_CONTENDED;
1296

1297
	/* Compaction run completes if the migrate and free scanner meet */
1298
	if (compact_scanners_met(cc)) {
1299
		/* Let the next compaction start anew. */
1300
		reset_cached_positions(zone);
1301

1302 1303
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1304
		 * by kswapd when it goes to sleep. kcompactd does not set the
1305 1306 1307
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1308
		if (cc->direct_compaction)
1309 1310
			zone->compact_blockskip_flush = true;

1311 1312 1313 1314
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1315
	}
1316

1317
	if (is_via_compact_memory(cc->order))
1318 1319
		return COMPACT_CONTINUE;

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	if (cc->finishing_block) {
		/*
		 * We have finished the pageblock, but better check again that
		 * we really succeeded.
		 */
		if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
			cc->finishing_block = false;
		else
			return COMPACT_CONTINUE;
	}

1331
	/* Direct compactor: Is a suitable page free? */
1332 1333
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1334
		bool can_steal;
1335 1336

		/* Job done if page is free of the right migratetype */
1337
		if (!list_empty(&area->free_list[migratetype]))
1338
			return COMPACT_SUCCESS;
1339

1340 1341 1342 1343
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
1344
			return COMPACT_SUCCESS;
1345 1346 1347 1348 1349 1350
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
						true, &can_steal) != -1) {

			/* movable pages are OK in any pageblock */
			if (migratetype == MIGRATE_MOVABLE)
				return COMPACT_SUCCESS;

			/*
			 * We are stealing for a non-movable allocation. Make
			 * sure we finish compacting the current pageblock
			 * first so it is as free as possible and we won't
			 * have to steal another one soon. This only applies
			 * to sync compaction, as async compaction operates
			 * on pageblocks of the same migratetype.
			 */
			if (cc->mode == MIGRATE_ASYNC ||
					IS_ALIGNED(cc->migrate_pfn,
							pageblock_nr_pages)) {
				return COMPACT_SUCCESS;
			}

			cc->finishing_block = true;
			return COMPACT_CONTINUE;
		}
1374 1375
	}

1376 1377 1378
	return COMPACT_NO_SUITABLE_PAGE;
}

1379
static enum compact_result compact_finished(struct zone *zone,
1380
			struct compact_control *cc)
1381 1382 1383
{
	int ret;

1384
	ret = __compact_finished(zone, cc);
1385 1386 1387 1388 1389
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1390 1391
}

1392 1393 1394 1395
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1396
 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1397 1398
 *   COMPACT_CONTINUE - If compaction should run now
 */
1399
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1400
					unsigned int alloc_flags,
1401 1402
					int classzone_idx,
					unsigned long wmark_target)
1403 1404 1405
{
	unsigned long watermark;

1406
	if (is_via_compact_memory(order))
1407 1408
		return COMPACT_CONTINUE;

1409
	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1410 1411 1412 1413 1414 1415
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
1416
		return COMPACT_SUCCESS;
1417

1418
	/*
1419
	 * Watermarks for order-0 must be met for compaction to be able to
1420 1421 1422 1423 1424 1425 1426
	 * isolate free pages for migration targets. This means that the
	 * watermark and alloc_flags have to match, or be more pessimistic than
	 * the check in __isolate_free_page(). We don't use the direct
	 * compactor's alloc_flags, as they are not relevant for freepage
	 * isolation. We however do use the direct compactor's classzone_idx to
	 * skip over zones where lowmem reserves would prevent allocation even
	 * if compaction succeeds.
1427 1428
	 * For costly orders, we require low watermark instead of min for
	 * compaction to proceed to increase its chances.
1429 1430
	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
	 * suitable migration targets
1431
	 */
1432 1433 1434
	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
				low_wmark_pages(zone) : min_wmark_pages(zone);
	watermark += compact_gap(order);
1435
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1436
						ALLOC_CMA, wmark_target))
1437 1438
		return COMPACT_SKIPPED;

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	return COMPACT_CONTINUE;
}

enum compact_result compaction_suitable(struct zone *zone, int order,
					unsigned int alloc_flags,
					int classzone_idx)
{
	enum compact_result ret;
	int fragindex;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1451 1452 1453 1454
	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1455 1456
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1457 1458 1459
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
1460 1461 1462 1463 1464 1465
	 * Only compact if a failure would be due to fragmentation. Also
	 * ignore fragindex for non-costly orders where the alternative to
	 * a successful reclaim/compaction is OOM. Fragindex and the
	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
	 * excessive compaction for costly orders, but it should not be at the
	 * expense of system stability.
1466
	 */
1467
	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1468 1469 1470 1471
		fragindex = fragmentation_index(zone, order);
		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
			ret = COMPACT_NOT_SUITABLE_ZONE;
	}
1472 1473 1474 1475 1476 1477 1478 1479

	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
1501
		available = zone_reclaimable_pages(zone) / order;
1502 1503 1504
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
1505
		if (compact_result != COMPACT_SKIPPED)
1506 1507 1508 1509 1510 1511
			return true;
	}

	return false;
}

1512
static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1513
{
1514
	enum compact_result ret;
1515
	unsigned long start_pfn = zone->zone_start_pfn;
1516
	unsigned long end_pfn = zone_end_pfn(zone);
1517
	const bool sync = cc->mode != MIGRATE_ASYNC;
1518

1519
	cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1520 1521
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1522
	/* Compaction is likely to fail */
1523
	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1524
		return ret;
1525 1526 1527

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
1528

1529 1530
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1531
	 * is about to be retried after being deferred.
1532
	 */
1533
	if (compaction_restarting(zone, cc->order))
1534 1535
		__reset_isolation_suitable(zone);

1536 1537
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
1538 1539 1540
	 * information on where the scanners should start (unless we explicitly
	 * want to compact the whole zone), but check that it is initialised
	 * by ensuring the values are within zone boundaries.
1541
	 */
1542
	if (cc->whole_zone) {
1543
		cc->migrate_pfn = start_pfn;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
	} else {
		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
		cc->free_pfn = zone->compact_cached_free_pfn;
		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
			zone->compact_cached_free_pfn = cc->free_pfn;
		}
		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
			cc->migrate_pfn = start_pfn;
			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
		}
1557

1558 1559 1560
		if (cc->migrate_pfn == start_pfn)
			cc->whole_zone = true;
	}
1561

1562
	cc->last_migrated_pfn = 0;
1563

1564 1565
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1566

1567 1568
	migrate_prep_local();

1569
	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1570
		int err;
1571

1572 1573
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
1574
			ret = COMPACT_CONTENDED;
1575
			putback_movable_pages(&cc->migratepages);
1576
			cc->nr_migratepages = 0;
1577 1578
			goto out;
		case ISOLATE_NONE:
1579 1580 1581 1582 1583 1584
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1585 1586 1587
		case ISOLATE_SUCCESS:
			;
		}
1588

1589
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1590
				compaction_free, (unsigned long)cc, cc->mode,
1591
				MR_COMPACTION);
1592

1593 1594
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1595

1596 1597
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1598
		if (err) {
1599
			putback_movable_pages(&cc->migratepages);
1600 1601 1602 1603
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1604
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1605
				ret = COMPACT_CONTENDED;
1606 1607
				goto out;
			}
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
				cc->last_migrated_pfn = 0;

			}
1620
		}
1621 1622 1623 1624 1625 1626 1627 1628 1629

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
1630
		if (cc->order > 0 && cc->last_migrated_pfn) {
1631 1632
			int cpu;
			unsigned long current_block_start =
1633
				block_start_pfn(cc->migrate_pfn, cc->order);
1634

1635
			if (cc->last_migrated_pfn < current_block_start) {
1636 1637 1638 1639 1640
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
1641
				cc->last_migrated_pfn = 0;
1642 1643 1644
			}
		}

1645 1646
	}

1647
out:
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
1658
		free_pfn = pageblock_start_pfn(free_pfn);
1659 1660 1661 1662 1663 1664 1665
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1666

1667 1668 1669
	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);

1670 1671
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1672

1673 1674
	return ret;
}
1675

1676
static enum compact_result compact_zone_order(struct zone *zone, int order,
1677
		gfp_t gfp_mask, enum compact_priority prio,
1678
		unsigned int alloc_flags, int classzone_idx)
1679
{
1680
	enum compact_result ret;
1681 1682 1683
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
1684 1685
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1686
		.order = order,
1687
		.gfp_mask = gfp_mask,
1688
		.zone = zone,
1689 1690
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1691 1692
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1693
		.direct_compaction = true,
1694
		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1695 1696
		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1697 1698 1699 1700
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1701 1702 1703 1704 1705 1706
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	return ret;
1707 1708
}

1709 1710
int sysctl_extfrag_threshold = 500;

1711 1712 1713
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1714 1715 1716
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1717
 * @mode: The migration mode for async, sync light, or sync migration
1718 1719 1720
 *
 * This is the main entry point for direct page compaction.
 */
1721
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1722
		unsigned int alloc_flags, const struct alloc_context *ac,
1723
		enum compact_priority prio)
1724 1725 1726 1727
{
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1728
	enum compact_result rc = COMPACT_SKIPPED;
1729

1730 1731 1732 1733 1734
	/*
	 * Check if the GFP flags allow compaction - GFP_NOIO is really
	 * tricky context because the migration might require IO
	 */
	if (!may_perform_io)
1735
		return COMPACT_SKIPPED;
1736

1737
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1738

1739
	/* Compact each zone in the list */
1740 1741
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1742
		enum compact_result status;
1743

1744 1745
		if (prio > MIN_COMPACT_PRIORITY
					&& compaction_deferred(zone, order)) {
1746
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1747
			continue;
1748
		}
1749

1750
		status = compact_zone_order(zone, order, gfp_mask, prio,
1751
					alloc_flags, ac_classzone_idx(ac));
1752 1753
		rc = max(status, rc);

1754 1755
		/* The allocation should succeed, stop compacting */
		if (status == COMPACT_SUCCESS) {
1756 1757 1758 1759 1760 1761 1762
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1763

1764
			break;
1765 1766
		}

1767
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1768
					status == COMPACT_PARTIAL_SKIPPED))
1769 1770 1771 1772 1773 1774
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
1775 1776 1777 1778

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
1779
		 * case do not try further zones
1780
		 */
1781 1782 1783
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
					|| fatal_signal_pending(current))
			break;
1784 1785 1786 1787 1788 1789
	}

	return rc;
}


1790
/* Compact all zones within a node */
1791
static void compact_node(int nid)
1792
{
1793
	pg_data_t *pgdat = NODE_DATA(nid);
1794 1795
	int zoneid;
	struct zone *zone;
1796 1797
	struct compact_control cc = {
		.order = -1,
1798 1799
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1800 1801 1802
		.mode = MIGRATE_SYNC,
		.ignore_skip_hint = true,
		.whole_zone = true,
1803
		.gfp_mask = GFP_KERNEL,
1804 1805
	};

1806 1807 1808 1809 1810 1811 1812

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1813 1814 1815 1816 1817
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);
1818

1819
		compact_zone(zone, &cc);
1820

1821 1822
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
1823 1824 1825 1826
	}
}

/* Compact all nodes in the system */
1827
static void compact_nodes(void)
1828 1829 1830
{
	int nid;

1831 1832 1833
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1834 1835 1836 1837 1838 1839 1840
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

1841 1842 1843 1844
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
1845 1846 1847 1848
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1849
		compact_nodes();
1850 1851 1852

	return 0;
}
1853

1854 1855 1856 1857 1858 1859 1860 1861
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1862
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1863
static ssize_t sysfs_compact_node(struct device *dev,
1864
			struct device_attribute *attr,
1865 1866
			const char *buf, size_t count)
{
1867 1868 1869 1870 1871 1872 1873 1874
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1875 1876 1877

	return count;
}
1878
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1879 1880 1881

int compaction_register_node(struct node *node)
{
1882
	return device_create_file(&node->dev, &dev_attr_compact);
1883 1884 1885 1886
}

void compaction_unregister_node(struct node *node)
{
1887
	return device_remove_file(&node->dev, &dev_attr_compact);
1888 1889
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1890

1891 1892
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
1893
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1894 1895 1896 1897 1898 1899 1900 1901
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

1902
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
1926 1927
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1928 1929 1930
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
		.ignore_skip_hint = true,
1931
		.gfp_mask = GFP_KERNEL,
1932 1933 1934 1935

	};
	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
1936
	count_compact_event(KCOMPACTD_WAKE);
1937

1938
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
1954 1955
		cc.total_migrate_scanned = 0;
		cc.total_free_scanned = 0;
1956 1957 1958 1959
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

1960 1961
		if (kthread_should_stop())
			return;
1962 1963
		status = compact_zone(zone, &cc);

1964
		if (status == COMPACT_SUCCESS) {
1965
			compaction_defer_reset(zone, cc.order, false);
1966
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1967 1968 1969 1970 1971 1972 1973
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

1974 1975 1976 1977 1978
		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
				     cc.total_migrate_scanned);
		count_compact_events(KCOMPACTD_FREE_SCANNED,
				     cc.total_free_scanned);

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

2002 2003 2004 2005 2006 2007 2008
	/*
	 * Pairs with implicit barrier in wait_event_freezable()
	 * such that wakeups are not missed in the lockless
	 * waitqueue_active() call.
	 */
	smp_acquire__after_ctrl_dep();

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

	if (!waitqueue_active(&pgdat->kcompactd_wait))
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

		kcompactd_do_work(pgdat);
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
2094
static int kcompactd_cpu_online(unsigned int cpu)
2095 2096 2097
{
	int nid;

2098 2099 2100
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
2101

2102
		mask = cpumask_of_node(pgdat->node_id);
2103

2104 2105 2106
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2107
	}
2108
	return 0;
2109 2110 2111 2112 2113
}

static int __init kcompactd_init(void)
{
	int nid;
2114 2115 2116 2117 2118 2119 2120 2121 2122
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/compaction:online",
					kcompactd_cpu_online, NULL);
	if (ret < 0) {
		pr_err("kcompactd: failed to register hotplug callbacks.\n");
		return ret;
	}
2123 2124 2125 2126 2127 2128 2129

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	return 0;
}
subsys_initcall(kcompactd_init)

2130
#endif /* CONFIG_COMPACTION */