compaction.c 57.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
10
#include <linux/cpu.h>
11 12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
16
#include <linux/sysctl.h>
17
#include <linux/sysfs.h>
18
#include <linux/page-isolation.h>
19
#include <linux/kasan.h>
20 21
#include <linux/kthread.h>
#include <linux/freezer.h>
22 23
#include "internal.h"

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

39 40
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

41 42 43
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

44 45 46 47 48
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

49 50 51
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
52
	unsigned long high_pfn = 0;
53 54

	list_for_each_entry_safe(page, next, freelist, lru) {
55
		unsigned long pfn = page_to_pfn(page);
56 57
		list_del(&page->lru);
		__free_page(page);
58 59
		if (pfn > high_pfn)
			high_pfn = pfn;
60 61
	}

62
	return high_pfn;
63 64
}

65 66 67 68 69 70 71
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
72
		kasan_alloc_pages(page, 0);
73 74 75
	}
}

76 77 78 79 80
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

81
#ifdef CONFIG_COMPACTION
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

191 192 193 194 195 196 197 198 199 200
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

201 202 203 204
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
205
	zone->compact_cached_free_pfn =
206
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
207 208
}

209 210 211 212 213
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
214
static void __reset_isolation_suitable(struct zone *zone)
215 216
{
	unsigned long start_pfn = zone->zone_start_pfn;
217
	unsigned long end_pfn = zone_end_pfn(zone);
218 219
	unsigned long pfn;

220
	zone->compact_blockskip_flush = false;
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
237 238

	reset_cached_positions(zone);
239 240
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

256 257
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
258
 * future. The information is later cleared by __reset_isolation_suitable().
259
 */
260 261
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
262
			bool migrate_scanner)
263
{
264
	struct zone *zone = cc->zone;
265
	unsigned long pfn;
266 267 268 269

	if (cc->ignore_skip_hint)
		return;

270 271 272
	if (!page)
		return;

273 274 275
	if (nr_isolated)
		return;

276
	set_pageblock_skip(page);
277

278 279 280 281 282 283
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
284 285
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
286 287 288 289
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
290
	}
291 292 293 294 295 296 297 298
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

299 300
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
301
			bool migrate_scanner)
302 303 304 305
{
}
#endif /* CONFIG_COMPACTION */

306 307 308 309 310 311 312 313 314 315
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
316
{
317 318 319 320 321 322 323 324
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
325

326
	return true;
327 328
}

329 330
/*
 * Compaction requires the taking of some coarse locks that are potentially
331 332 333 334 335 336 337
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
338
 *
339 340 341 342
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
343
 */
344 345
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
346
{
347 348 349 350
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
351

352 353 354 355
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
356

357
	if (need_resched()) {
358
		if (cc->mode == MIGRATE_ASYNC) {
359 360
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
361 362 363 364
		}
		cond_resched();
	}

365
	return false;
366 367
}

368 369 370
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
371
 * compaction. This is similar to what compact_unlock_should_abort() does, but
372 373 374 375 376 377 378 379 380 381
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
382
			cc->contended = COMPACT_CONTENDED_SCHED;
383 384 385 386 387 388 389 390 391
			return true;
		}

		cond_resched();
	}

	return false;
}

392
/*
393 394 395
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
396
 */
397
static unsigned long isolate_freepages_block(struct compact_control *cc,
398
				unsigned long *start_pfn,
399 400 401
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
402
{
403
	int nr_scanned = 0, total_isolated = 0;
404
	struct page *cursor, *valid_page = NULL;
405
	unsigned long flags = 0;
406
	bool locked = false;
407
	unsigned long blockpfn = *start_pfn;
408 409 410

	cursor = pfn_to_page(blockpfn);

411
	/* Isolate free pages. */
412 413 414 415
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

416 417 418 419 420 421 422 423 424 425
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

426
		nr_scanned++;
427
		if (!pfn_valid_within(blockpfn))
428 429
			goto isolate_fail;

430 431
		if (!valid_page)
			valid_page = page;
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER)) {
				blockpfn += (1UL << comp_order) - 1;
				cursor += (1UL << comp_order) - 1;
			}

			goto isolate_fail;
		}

450
		if (!PageBuddy(page))
451
			goto isolate_fail;
452 453

		/*
454 455 456 457 458
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
459
		 */
460 461 462 463 464 465 466 467 468
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
469 470
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
471 472
			if (!locked)
				break;
473

474 475 476 477
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
478 479 480

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
481 482 483
		if (!isolated)
			break;

484
		total_isolated += isolated;
485
		cc->nr_freepages += isolated;
486 487 488 489
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}
490 491 492
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
493
		}
494 495 496 497
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
498 499 500 501 502 503 504

isolate_fail:
		if (strict)
			break;
		else
			continue;

505 506
	}

507 508 509
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

510 511 512 513 514 515 516
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

517 518 519
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

520 521 522
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

523 524 525 526 527
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
528
	if (strict && blockpfn < end_pfn)
529 530
		total_isolated = 0;

531 532
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
533
		update_pageblock_skip(cc, valid_page, total_isolated, false);
534

535
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
536
	if (total_isolated)
537
		count_compact_events(COMPACTISOLATED, total_isolated);
538 539 540
	return total_isolated;
}

541 542 543 544 545 546 547 548 549 550 551 552 553
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
554
unsigned long
555 556
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
557
{
558
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
559 560
	LIST_HEAD(freelist);

561
	pfn = start_pfn;
562
	block_start_pfn = pageblock_start_pfn(pfn);
563 564
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
565
	block_end_pfn = pageblock_end_pfn(pfn);
566 567

	for (; pfn < end_pfn; pfn += isolated,
568
				block_start_pfn = block_end_pfn,
569
				block_end_pfn += pageblock_nr_pages) {
570 571
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
572 573 574

		block_end_pfn = min(block_end_pfn, end_pfn);

575 576 577 578 579 580
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
581 582
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
583 584 585
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

586 587
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
588 589
			break;

590 591
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

621
/* Update the number of anon and file isolated pages in the zone */
622
static void acct_isolated(struct zone *zone, struct compact_control *cc)
623 624
{
	struct page *page;
625
	unsigned int count[2] = { 0, };
626

627 628 629
	if (list_empty(&cc->migratepages))
		return;

630 631
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
632

633 634
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
635 636 637 638 639
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
640
	unsigned long active, inactive, isolated;
641 642 643

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
644 645
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
646 647 648
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

649
	return isolated > (inactive + active) / 2;
650 651
}

652
/**
653 654
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
655
 * @cc:		Compaction control structure.
656 657 658
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
659 660
 *
 * Isolate all pages that can be migrated from the range specified by
661 662 663 664
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
665
 *
666 667 668
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
669
 */
670 671 672
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
673
{
674
	struct zone *zone = cc->zone;
675
	unsigned long nr_scanned = 0, nr_isolated = 0;
676
	struct lruvec *lruvec;
677
	unsigned long flags = 0;
678
	bool locked = false;
679
	struct page *page = NULL, *valid_page = NULL;
680
	unsigned long start_pfn = low_pfn;
681 682
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
683 684 685 686 687 688 689

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
690
		/* async migration should just abort */
691
		if (cc->mode == MIGRATE_ASYNC)
692
			return 0;
693

694 695 696
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
697
			return 0;
698 699
	}

700 701
	if (compact_should_abort(cc))
		return 0;
702

703 704 705 706 707
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

708 709
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
710

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

733 734 735 736 737 738 739 740 741
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
742

743
		if (!pfn_valid_within(low_pfn))
744
			goto isolate_fail;
745
		nr_scanned++;
746 747

		page = pfn_to_page(low_pfn);
748

749 750 751
		if (!valid_page)
			valid_page = page;

752
		/*
753 754 755 756
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
757
		 */
758 759 760 761 762 763 764 765 766 767
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
768
			continue;
769
		}
770

771
		/*
772 773 774 775 776
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
777
		 */
778 779 780 781 782
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER))
				low_pfn += (1UL << comp_order) - 1;
783

784
			goto isolate_fail;
785 786
		}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
					spin_unlock_irqrestore(&zone->lru_lock,
									flags);
					locked = false;
				}

				if (isolate_movable_page(page, isolate_mode))
					goto isolate_success;
			}

809
			goto isolate_fail;
810
		}
811

812 813 814 815 816 817 818
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
819
			goto isolate_fail;
820

821 822
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
823 824
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
825 826
			if (!locked)
				break;
827

828
			/* Recheck PageLRU and PageCompound under lock */
829
			if (!PageLRU(page))
830
				goto isolate_fail;
831 832 833 834 835 836 837 838

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
				low_pfn += (1UL << compound_order(page)) - 1;
839
				goto isolate_fail;
840
			}
841 842
		}

843 844
		lruvec = mem_cgroup_page_lruvec(page, zone);

845
		/* Try isolate the page */
846
		if (__isolate_lru_page(page, isolate_mode) != 0)
847
			goto isolate_fail;
848

849
		VM_BUG_ON_PAGE(PageCompound(page), page);
850

851
		/* Successfully isolated */
852
		del_page_from_lru_list(page, lruvec, page_lru(page));
853 854

isolate_success:
855
		list_add(&page->lru, &cc->migratepages);
856
		cc->nr_migratepages++;
857
		nr_isolated++;
858

859 860 861 862 863 864 865 866 867
		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator.
		 * - this is the lowest page that was isolated and likely be
		 * then freed by migration.
		 */
		if (!cc->last_migrated_pfn)
			cc->last_migrated_pfn = low_pfn;

868
		/* Avoid isolating too much */
869 870
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
871
			break;
872
		}
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
				spin_unlock_irqrestore(&zone->lru_lock,	flags);
				locked = false;
			}
			acct_isolated(zone, cc);
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			cc->last_migrated_pfn = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
904 905
	}

906 907 908 909 910 911 912
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

913 914
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
915

916 917 918 919
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
920
	if (low_pfn == end_pfn)
921
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
922

923 924
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
925

926
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
927
	if (nr_isolated)
928
		count_compact_events(COMPACTISOLATED, nr_isolated);
929

930 931 932
	return low_pfn;
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
947
	unsigned long pfn, block_start_pfn, block_end_pfn;
948 949 950

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
951
	block_start_pfn = pageblock_start_pfn(pfn);
952 953
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
954
	block_end_pfn = pageblock_end_pfn(pfn);
955 956

	for (; pfn < end_pfn; pfn = block_end_pfn,
957
				block_start_pfn = block_end_pfn,
958 959 960 961
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

962 963
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
964 965 966 967 968
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

969
		if (!pfn)
970
			break;
971 972 973

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
974 975 976 977 978 979
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

980 981
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
		return true;

	/* Otherwise skip the block */
	return false;
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1015
/*
1016 1017
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1018
 */
1019
static void isolate_freepages(struct compact_control *cc)
1020
{
1021
	struct zone *zone = cc->zone;
1022
	struct page *page;
1023
	unsigned long block_start_pfn;	/* start of current pageblock */
1024
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1025 1026
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1027
	struct list_head *freelist = &cc->freepages;
1028

1029 1030
	/*
	 * Initialise the free scanner. The starting point is where we last
1031
	 * successfully isolated from, zone-cached value, or the end of the
1032 1033
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1034 1035 1036
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1037 1038
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1039
	 */
1040
	isolate_start_pfn = cc->free_pfn;
1041
	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1042 1043
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1044
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1045

1046 1047 1048 1049 1050
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1051
	for (; block_start_pfn >= low_pfn;
1052
				block_end_pfn = block_start_pfn,
1053 1054
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1055 1056 1057
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
1058
		 * to schedule, or even abort async compaction.
1059
		 */
1060 1061 1062
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1063

1064 1065 1066
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1067 1068 1069
			continue;

		/* Check the block is suitable for migration */
1070
		if (!suitable_migration_target(page))
1071
			continue;
1072

1073 1074 1075 1076
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1077
		/* Found a block suitable for isolating free pages from. */
1078 1079
		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
					freelist, false);
1080

1081
		/*
1082 1083
		 * If we isolated enough freepages, or aborted due to lock
		 * contention, terminate.
1084
		 */
1085 1086
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
1087 1088 1089 1090 1091
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1092 1093
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1094
			}
1095
			break;
1096
		} else if (isolate_start_pfn < block_end_pfn) {
1097
			/*
1098 1099
			 * If isolation failed early, do not continue
			 * needlessly.
1100
			 */
1101
			break;
1102
		}
1103 1104 1105 1106 1107
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

1108
	/*
1109 1110 1111 1112
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1113
	 */
1114
	cc->free_pfn = isolate_start_pfn;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1128 1129 1130 1131
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1132
	if (list_empty(&cc->freepages)) {
1133
		if (!cc->contended)
1134
			isolate_freepages(cc);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1160 1161 1162 1163 1164 1165 1166
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1167 1168 1169 1170 1171 1172
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1173
/*
1174 1175 1176
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1177 1178 1179 1180
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1181 1182 1183
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1184 1185
	struct page *page;
	const isolate_mode_t isolate_mode =
1186
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1187
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1188

1189 1190 1191 1192 1193
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1194
	block_start_pfn = pageblock_start_pfn(low_pfn);
1195 1196
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1197 1198

	/* Only scan within a pageblock boundary */
1199
	block_end_pfn = pageblock_end_pfn(low_pfn);
1200

1201 1202 1203 1204
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1205 1206 1207 1208
	for (; block_end_pfn <= cc->free_pfn;
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1209

1210 1211 1212 1213 1214 1215 1216 1217
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1218

1219 1220
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1221
		if (!page)
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
1238 1239
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1240

1241 1242
		if (!low_pfn || cc->contended) {
			acct_isolated(zone, cc);
1243
			return ISOLATE_ABORT;
1244
		}
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1255 1256
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1257

1258
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1259 1260
}

1261 1262 1263 1264 1265 1266 1267 1268 1269
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1270
static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1271
			    const int migratetype)
1272
{
1273
	unsigned int order;
1274
	unsigned long watermark;
1275

1276
	if (cc->contended || fatal_signal_pending(current))
1277
		return COMPACT_CONTENDED;
1278

1279
	/* Compaction run completes if the migrate and free scanner meet */
1280
	if (compact_scanners_met(cc)) {
1281
		/* Let the next compaction start anew. */
1282
		reset_cached_positions(zone);
1283

1284 1285
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1286
		 * by kswapd when it goes to sleep. kcompactd does not set the
1287 1288 1289
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1290
		if (cc->direct_compaction)
1291 1292
			zone->compact_blockskip_flush = true;

1293 1294 1295 1296
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1297
	}
1298

1299
	if (is_via_compact_memory(cc->order))
1300 1301
		return COMPACT_CONTINUE;

1302 1303 1304
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1305 1306
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1307 1308
		return COMPACT_CONTINUE;

1309
	/* Direct compactor: Is a suitable page free? */
1310 1311
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1312
		bool can_steal;
1313 1314

		/* Job done if page is free of the right migratetype */
1315
		if (!list_empty(&area->free_list[migratetype]))
1316 1317
			return COMPACT_PARTIAL;

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
			return COMPACT_PARTIAL;
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
						true, &can_steal) != -1)
1330 1331 1332
			return COMPACT_PARTIAL;
	}

1333 1334 1335
	return COMPACT_NO_SUITABLE_PAGE;
}

1336 1337 1338
static enum compact_result compact_finished(struct zone *zone,
			struct compact_control *cc,
			const int migratetype)
1339 1340 1341 1342 1343 1344 1345 1346 1347
{
	int ret;

	ret = __compact_finished(zone, cc, migratetype);
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1348 1349
}

1350 1351 1352 1353 1354 1355 1356
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1357
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1358
					unsigned int alloc_flags,
1359 1360
					int classzone_idx,
					unsigned long wmark_target)
1361 1362 1363 1364
{
	int fragindex;
	unsigned long watermark;

1365
	if (is_via_compact_memory(order))
1366 1367
		return COMPACT_CONTINUE;

1368 1369 1370 1371 1372 1373 1374 1375 1376
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1377 1378 1379 1380 1381
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1382
	watermark += (2UL << order);
1383 1384
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
				 alloc_flags, wmark_target))
1385 1386 1387 1388 1389 1390
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1391 1392
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1393 1394 1395 1396 1397 1398 1399
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1400
		return COMPACT_NOT_SUITABLE_ZONE;
1401 1402 1403 1404

	return COMPACT_CONTINUE;
}

1405
enum compact_result compaction_suitable(struct zone *zone, int order,
1406 1407
					unsigned int alloc_flags,
					int classzone_idx)
1408
{
1409
	enum compact_result ret;
1410

1411 1412
	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1413 1414 1415 1416 1417 1418 1419
	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
		available = zone_reclaimable_pages(zone) / order;
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
		if (compact_result != COMPACT_SKIPPED &&
				compact_result != COMPACT_NOT_SUITABLE_ZONE)
			return true;
	}

	return false;
}

1453
static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1454
{
1455
	enum compact_result ret;
1456
	unsigned long start_pfn = zone->zone_start_pfn;
1457
	unsigned long end_pfn = zone_end_pfn(zone);
1458
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1459
	const bool sync = cc->mode != MIGRATE_ASYNC;
1460

1461 1462
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1463 1464
	/* Compaction is likely to fail */
	if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
1465
		return ret;
1466 1467 1468

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
1469

1470 1471
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1472
	 * is about to be retried after being deferred.
1473
	 */
1474
	if (compaction_restarting(zone, cc->order))
1475 1476
		__reset_isolation_suitable(zone);

1477 1478 1479 1480 1481
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1482
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1483
	cc->free_pfn = zone->compact_cached_free_pfn;
1484
	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1485
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1486 1487
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
1488
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1489
		cc->migrate_pfn = start_pfn;
1490 1491
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1492
	}
1493 1494 1495 1496

	if (cc->migrate_pfn == start_pfn)
		cc->whole_zone = true;

1497
	cc->last_migrated_pfn = 0;
1498

1499 1500
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1501

1502 1503
	migrate_prep_local();

1504 1505
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1506
		int err;
1507

1508 1509
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
1510
			ret = COMPACT_CONTENDED;
1511
			putback_movable_pages(&cc->migratepages);
1512
			cc->nr_migratepages = 0;
1513 1514
			goto out;
		case ISOLATE_NONE:
1515 1516 1517 1518 1519 1520
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1521 1522 1523
		case ISOLATE_SUCCESS:
			;
		}
1524

1525
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1526
				compaction_free, (unsigned long)cc, cc->mode,
1527
				MR_COMPACTION);
1528

1529 1530
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1531

1532 1533
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1534
		if (err) {
1535
			putback_movable_pages(&cc->migratepages);
1536 1537 1538 1539
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1540
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1541
				ret = COMPACT_CONTENDED;
1542 1543
				goto out;
			}
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
				cc->last_migrated_pfn = 0;

			}
1556
		}
1557 1558 1559 1560 1561 1562 1563 1564 1565

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
1566
		if (cc->order > 0 && cc->last_migrated_pfn) {
1567 1568
			int cpu;
			unsigned long current_block_start =
1569
				block_start_pfn(cc->migrate_pfn, cc->order);
1570

1571
			if (cc->last_migrated_pfn < current_block_start) {
1572 1573 1574 1575 1576
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
1577
				cc->last_migrated_pfn = 0;
1578 1579 1580
			}
		}

1581 1582
	}

1583
out:
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
1594
		free_pfn = pageblock_start_pfn(free_pfn);
1595 1596 1597 1598 1599 1600 1601
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1602

1603 1604
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1605

1606 1607 1608
	if (ret == COMPACT_CONTENDED)
		ret = COMPACT_PARTIAL;

1609 1610
	return ret;
}
1611

1612
static enum compact_result compact_zone_order(struct zone *zone, int order,
1613
		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1614
		unsigned int alloc_flags, int classzone_idx)
1615
{
1616
	enum compact_result ret;
1617 1618 1619 1620
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1621
		.gfp_mask = gfp_mask,
1622
		.zone = zone,
1623
		.mode = mode,
1624 1625
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1626
		.direct_compaction = true,
1627 1628 1629 1630
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1631 1632 1633 1634 1635 1636 1637
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1638 1639
}

1640 1641
int sysctl_extfrag_threshold = 500;

1642 1643 1644
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1645 1646 1647
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1648
 * @mode: The migration mode for async, sync light, or sync migration
1649 1650
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1651 1652 1653
 *
 * This is the main entry point for direct page compaction.
 */
1654
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1655 1656
		unsigned int alloc_flags, const struct alloc_context *ac,
		enum migrate_mode mode, int *contended)
1657 1658 1659 1660 1661
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1662
	enum compact_result rc = COMPACT_SKIPPED;
1663 1664 1665
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1666

1667
	/* Check if the GFP flags allow compaction */
1668
	if (!order || !may_enter_fs || !may_perform_io)
1669
		return COMPACT_SKIPPED;
1670

1671 1672
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);

1673
	/* Compact each zone in the list */
1674 1675
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1676
		enum compact_result status;
1677
		int zone_contended;
1678

1679 1680
		if (compaction_deferred(zone, order)) {
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1681
			continue;
1682
		}
1683

1684
		status = compact_zone_order(zone, order, gfp_mask, mode,
1685
				&zone_contended, alloc_flags,
1686
				ac_classzone_idx(ac));
1687
		rc = max(status, rc);
1688 1689 1690 1691 1692
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1693

1694
		/* If a normal allocation would succeed, stop compacting */
1695
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1696
					ac_classzone_idx(ac), alloc_flags)) {
1697 1698 1699 1700 1701 1702 1703
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

1718 1719
		if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
					status == COMPACT_PARTIAL_SKIPPED)) {
1720 1721 1722 1723 1724 1725 1726
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1748 1749
	}

1750 1751 1752 1753
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
1754
	if (rc > COMPACT_INACTIVE && all_zones_contended)
1755 1756
		*contended = COMPACT_CONTENDED_LOCK;

1757 1758 1759 1760
	return rc;
}


1761
/* Compact all zones within a node */
1762
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1773 1774 1775 1776 1777
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1778

1779 1780 1781 1782 1783
		/*
		 * When called via /proc/sys/vm/compact_memory
		 * this makes sure we compact the whole zone regardless of
		 * cached scanner positions.
		 */
1784
		if (is_via_compact_memory(cc->order))
1785 1786
			__reset_isolation_suitable(zone);

1787 1788
		if (is_via_compact_memory(cc->order) ||
				!compaction_deferred(zone, cc->order))
1789
			compact_zone(zone, cc);
1790

1791 1792
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1793 1794 1795 1796 1797 1798 1799

		if (is_via_compact_memory(cc->order))
			continue;

		if (zone_watermark_ok(zone, cc->order,
				low_wmark_pages(zone), 0, 0))
			compaction_defer_reset(zone, cc->order, false);
1800 1801 1802
	}
}

1803
void compact_pgdat(pg_data_t *pgdat, int order)
1804 1805 1806
{
	struct compact_control cc = {
		.order = order,
1807
		.mode = MIGRATE_ASYNC,
1808 1809
	};

1810 1811 1812
	if (!order)
		return;

1813
	__compact_pgdat(pgdat, &cc);
1814 1815
}

1816
static void compact_node(int nid)
1817 1818 1819
{
	struct compact_control cc = {
		.order = -1,
1820
		.mode = MIGRATE_SYNC,
1821
		.ignore_skip_hint = true,
1822 1823
	};

1824
	__compact_pgdat(NODE_DATA(nid), &cc);
1825 1826
}

1827
/* Compact all nodes in the system */
1828
static void compact_nodes(void)
1829 1830 1831
{
	int nid;

1832 1833 1834
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1835 1836 1837 1838 1839 1840 1841
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

1842 1843 1844 1845
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
1846 1847 1848 1849
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1850
		compact_nodes();
1851 1852 1853

	return 0;
}
1854

1855 1856 1857 1858 1859 1860 1861 1862
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1863
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1864
static ssize_t sysfs_compact_node(struct device *dev,
1865
			struct device_attribute *attr,
1866 1867
			const char *buf, size_t count)
{
1868 1869 1870 1871 1872 1873 1874 1875
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1876 1877 1878

	return count;
}
1879
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1880 1881 1882

int compaction_register_node(struct node *node)
{
1883
	return device_create_file(&node->dev, &dev_attr_compact);
1884 1885 1886 1887
}

void compaction_unregister_node(struct node *node)
{
1888
	return device_remove_file(&node->dev, &dev_attr_compact);
1889 1890
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1891

1892 1893
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
1894
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1895 1896 1897 1898 1899 1900 1901 1902
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

1903
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
		.ignore_skip_hint = true,

	};
	bool success = false;

	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
	count_vm_event(KCOMPACTD_WAKE);

1938
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

1958 1959
		if (kthread_should_stop())
			return;
1960 1961 1962 1963 1964 1965
		status = compact_zone(zone, &cc);

		if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
						cc.classzone_idx, 0)) {
			success = true;
			compaction_defer_reset(zone, cc.order, false);
1966
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

	if (!waitqueue_active(&pgdat->kcompactd_wait))
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

		kcompactd_do_work(pgdat);
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
{
	int nid;

	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
		for_each_node_state(nid, N_MEMORY) {
			pg_data_t *pgdat = NODE_DATA(nid);
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);

			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
				/* One of our CPUs online: restore mask */
				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
		}
	}
	return NOTIFY_OK;
}

static int __init kcompactd_init(void)
{
	int nid;

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}
subsys_initcall(kcompactd_init)

2113
#endif /* CONFIG_COMPACTION */