compaction.c 54.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
10
#include <linux/cpu.h>
11 12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
16
#include <linux/sysctl.h>
17
#include <linux/sysfs.h>
18
#include <linux/balloon_compaction.h>
19
#include <linux/page-isolation.h>
20
#include <linux/kasan.h>
21 22
#include <linux/kthread.h>
#include <linux/freezer.h>
23 24
#include "internal.h"

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

40 41
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

42 43 44
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

45 46 47 48 49
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

50 51 52
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
53
	unsigned long high_pfn = 0;
54 55

	list_for_each_entry_safe(page, next, freelist, lru) {
56
		unsigned long pfn = page_to_pfn(page);
57 58
		list_del(&page->lru);
		__free_page(page);
59 60
		if (pfn > high_pfn)
			high_pfn = pfn;
61 62
	}

63
	return high_pfn;
64 65
}

66 67 68 69 70 71 72
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
73
		kasan_alloc_pages(page, 0);
74 75 76
	}
}

77 78 79 80 81
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

82
#ifdef CONFIG_COMPACTION
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

154 155 156 157 158 159 160 161 162 163
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

164 165 166 167
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
168
	zone->compact_cached_free_pfn =
169
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
170 171
}

172 173 174 175 176
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
177
static void __reset_isolation_suitable(struct zone *zone)
178 179
{
	unsigned long start_pfn = zone->zone_start_pfn;
180
	unsigned long end_pfn = zone_end_pfn(zone);
181 182
	unsigned long pfn;

183
	zone->compact_blockskip_flush = false;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
200 201

	reset_cached_positions(zone);
202 203
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

219 220
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
221
 * future. The information is later cleared by __reset_isolation_suitable().
222
 */
223 224
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
225
			bool migrate_scanner)
226
{
227
	struct zone *zone = cc->zone;
228
	unsigned long pfn;
229 230 231 232

	if (cc->ignore_skip_hint)
		return;

233 234 235
	if (!page)
		return;

236 237 238
	if (nr_isolated)
		return;

239
	set_pageblock_skip(page);
240

241 242 243 244 245 246
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
247 248
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
249 250 251 252
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
253
	}
254 255 256 257 258 259 260 261
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

262 263
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
264
			bool migrate_scanner)
265 266 267 268
{
}
#endif /* CONFIG_COMPACTION */

269 270 271 272 273 274 275 276 277 278
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
279
{
280 281 282 283 284 285 286 287
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
288

289
	return true;
290 291
}

292 293
/*
 * Compaction requires the taking of some coarse locks that are potentially
294 295 296 297 298 299 300
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
301
 *
302 303 304 305
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
306
 */
307 308
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
309
{
310 311 312 313
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
314

315 316 317 318
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
319

320
	if (need_resched()) {
321
		if (cc->mode == MIGRATE_ASYNC) {
322 323
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
324 325 326 327
		}
		cond_resched();
	}

328
	return false;
329 330
}

331 332 333
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
334
 * compaction. This is similar to what compact_unlock_should_abort() does, but
335 336 337 338 339 340 341 342 343 344
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
345
			cc->contended = COMPACT_CONTENDED_SCHED;
346 347 348 349 350 351 352 353 354
			return true;
		}

		cond_resched();
	}

	return false;
}

355
/*
356 357 358
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
359
 */
360
static unsigned long isolate_freepages_block(struct compact_control *cc,
361
				unsigned long *start_pfn,
362 363 364
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
365
{
366
	int nr_scanned = 0, total_isolated = 0;
367
	struct page *cursor, *valid_page = NULL;
368
	unsigned long flags = 0;
369
	bool locked = false;
370
	unsigned long blockpfn = *start_pfn;
371 372 373

	cursor = pfn_to_page(blockpfn);

374
	/* Isolate free pages. */
375 376 377 378
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

379 380 381 382 383 384 385 386 387 388
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

389
		nr_scanned++;
390
		if (!pfn_valid_within(blockpfn))
391 392
			goto isolate_fail;

393 394
		if (!valid_page)
			valid_page = page;
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER)) {
				blockpfn += (1UL << comp_order) - 1;
				cursor += (1UL << comp_order) - 1;
			}

			goto isolate_fail;
		}

413
		if (!PageBuddy(page))
414
			goto isolate_fail;
415 416

		/*
417 418 419 420 421
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
422
		 */
423 424 425 426 427 428 429 430 431
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
432 433
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
434 435
			if (!locked)
				break;
436

437 438 439 440
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
441 442 443 444 445 446 447 448 449 450 451

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
452 453 454 455 456 457 458
			cc->nr_freepages += isolated;
			if (!strict &&
				cc->nr_migratepages <= cc->nr_freepages) {
				blockpfn += isolated;
				break;
			}

459 460
			blockpfn += isolated - 1;
			cursor += isolated - 1;
461
			continue;
462
		}
463 464 465 466 467 468 469

isolate_fail:
		if (strict)
			break;
		else
			continue;

470 471
	}

472 473 474 475 476 477 478
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

479 480 481
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

482 483 484
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

485 486 487 488 489
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
490
	if (strict && blockpfn < end_pfn)
491 492 493 494 495
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

496 497
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
498
		update_pageblock_skip(cc, valid_page, total_isolated, false);
499

500
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
501
	if (total_isolated)
502
		count_compact_events(COMPACTISOLATED, total_isolated);
503 504 505
	return total_isolated;
}

506 507 508 509 510 511 512 513 514 515 516 517 518
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
519
unsigned long
520 521
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
522
{
523
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
524 525
	LIST_HEAD(freelist);

526
	pfn = start_pfn;
527
	block_start_pfn = pageblock_start_pfn(pfn);
528 529
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
530
	block_end_pfn = pageblock_end_pfn(pfn);
531 532

	for (; pfn < end_pfn; pfn += isolated,
533
				block_start_pfn = block_end_pfn,
534
				block_end_pfn += pageblock_nr_pages) {
535 536
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
537 538 539

		block_end_pfn = min(block_end_pfn, end_pfn);

540 541 542 543 544 545
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
546 547
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
548 549 550
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

551 552
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
553 554
			break;

555 556
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

586
/* Update the number of anon and file isolated pages in the zone */
587
static void acct_isolated(struct zone *zone, struct compact_control *cc)
588 589
{
	struct page *page;
590
	unsigned int count[2] = { 0, };
591

592 593 594
	if (list_empty(&cc->migratepages))
		return;

595 596
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
597

598 599
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
600 601 602 603 604
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
605
	unsigned long active, inactive, isolated;
606 607 608

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
609 610
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
611 612 613
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

614
	return isolated > (inactive + active) / 2;
615 616
}

617
/**
618 619
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
620
 * @cc:		Compaction control structure.
621 622 623
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
624 625
 *
 * Isolate all pages that can be migrated from the range specified by
626 627 628 629
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
630
 *
631 632 633
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
634
 */
635 636 637
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
638
{
639
	struct zone *zone = cc->zone;
640
	unsigned long nr_scanned = 0, nr_isolated = 0;
641
	struct lruvec *lruvec;
642
	unsigned long flags = 0;
643
	bool locked = false;
644
	struct page *page = NULL, *valid_page = NULL;
645
	unsigned long start_pfn = low_pfn;
646 647
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
648 649 650 651 652 653 654

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
655
		/* async migration should just abort */
656
		if (cc->mode == MIGRATE_ASYNC)
657
			return 0;
658

659 660 661
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
662
			return 0;
663 664
	}

665 666
	if (compact_should_abort(cc))
		return 0;
667

668 669 670 671 672
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

673 674
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
675 676
		bool is_lru;

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

699 700 701 702 703 704 705 706 707
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
708

709
		if (!pfn_valid_within(low_pfn))
710
			goto isolate_fail;
711
		nr_scanned++;
712 713

		page = pfn_to_page(low_pfn);
714

715 716 717
		if (!valid_page)
			valid_page = page;

718
		/*
719 720 721 722
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
723
		 */
724 725 726 727 728 729 730 731 732 733
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
734
			continue;
735
		}
736

737 738 739 740 741
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
742 743
		is_lru = PageLRU(page);
		if (!is_lru) {
744
			if (unlikely(balloon_page_movable(page))) {
745
				if (balloon_page_isolate(page)) {
746
					/* Successfully isolated */
747
					goto isolate_success;
748 749 750
				}
			}
		}
751 752

		/*
753 754 755 756 757
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
758
		 */
759 760 761 762 763
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER))
				low_pfn += (1UL << comp_order) - 1;
764

765
			goto isolate_fail;
766 767
		}

768
		if (!is_lru)
769
			goto isolate_fail;
770

771 772 773 774 775 776 777
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
778
			goto isolate_fail;
779

780 781
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
782 783
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
784 785
			if (!locked)
				break;
786

787
			/* Recheck PageLRU and PageCompound under lock */
788
			if (!PageLRU(page))
789
				goto isolate_fail;
790 791 792 793 794 795 796 797

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
				low_pfn += (1UL << compound_order(page)) - 1;
798
				goto isolate_fail;
799
			}
800 801
		}

802 803
		lruvec = mem_cgroup_page_lruvec(page, zone);

804
		/* Try isolate the page */
805
		if (__isolate_lru_page(page, isolate_mode) != 0)
806
			goto isolate_fail;
807

808
		VM_BUG_ON_PAGE(PageCompound(page), page);
809

810
		/* Successfully isolated */
811
		del_page_from_lru_list(page, lruvec, page_lru(page));
812 813

isolate_success:
814
		list_add(&page->lru, &cc->migratepages);
815
		cc->nr_migratepages++;
816
		nr_isolated++;
817

818 819 820 821 822 823 824 825 826
		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator.
		 * - this is the lowest page that was isolated and likely be
		 * then freed by migration.
		 */
		if (!cc->last_migrated_pfn)
			cc->last_migrated_pfn = low_pfn;

827
		/* Avoid isolating too much */
828 829
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
830
			break;
831
		}
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
				spin_unlock_irqrestore(&zone->lru_lock,	flags);
				locked = false;
			}
			acct_isolated(zone, cc);
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			cc->last_migrated_pfn = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
863 864
	}

865 866 867 868 869 870 871
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

872 873
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
874

875 876 877 878
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
879
	if (low_pfn == end_pfn)
880
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
881

882 883
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
884

885
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
886
	if (nr_isolated)
887
		count_compact_events(COMPACTISOLATED, nr_isolated);
888

889 890 891
	return low_pfn;
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
906
	unsigned long pfn, block_start_pfn, block_end_pfn;
907 908 909

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
910
	block_start_pfn = pageblock_start_pfn(pfn);
911 912
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
913
	block_end_pfn = pageblock_end_pfn(pfn);
914 915

	for (; pfn < end_pfn; pfn = block_end_pfn,
916
				block_start_pfn = block_end_pfn,
917 918 919 920
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

921 922
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
923 924 925 926 927
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

928
		if (!pfn)
929
			break;
930 931 932

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
933 934 935 936 937 938
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

939 940
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
		return true;

	/* Otherwise skip the block */
	return false;
}

964 965 966 967 968 969 970 971 972 973
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

974
/*
975 976
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
977
 */
978
static void isolate_freepages(struct compact_control *cc)
979
{
980
	struct zone *zone = cc->zone;
981
	struct page *page;
982
	unsigned long block_start_pfn;	/* start of current pageblock */
983
	unsigned long isolate_start_pfn; /* exact pfn we start at */
984 985
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
986
	struct list_head *freelist = &cc->freepages;
987

988 989
	/*
	 * Initialise the free scanner. The starting point is where we last
990
	 * successfully isolated from, zone-cached value, or the end of the
991 992
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
993 994 995
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
996 997
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
998
	 */
999
	isolate_start_pfn = cc->free_pfn;
1000
	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1001 1002
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1003
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1004

1005 1006 1007 1008 1009
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1010
	for (; block_start_pfn >= low_pfn;
1011
				block_end_pfn = block_start_pfn,
1012 1013
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1014

1015 1016 1017
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
1018
		 * to schedule, or even abort async compaction.
1019
		 */
1020 1021 1022
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1023

1024 1025 1026
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1027 1028 1029
			continue;

		/* Check the block is suitable for migration */
1030
		if (!suitable_migration_target(page))
1031
			continue;
1032

1033 1034 1035 1036
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1037
		/* Found a block suitable for isolating free pages from. */
1038
		isolate_freepages_block(cc, &isolate_start_pfn,
1039
					block_end_pfn, freelist, false);
1040

1041
		/*
1042 1043
		 * If we isolated enough freepages, or aborted due to async
		 * compaction being contended, terminate the loop.
1044 1045 1046 1047 1048 1049 1050 1051
		 * Remember where the free scanner should restart next time,
		 * which is where isolate_freepages_block() left off.
		 * But if it scanned the whole pageblock, isolate_start_pfn
		 * now points at block_end_pfn, which is the start of the next
		 * pageblock.
		 * In that case we will however want to restart at the start
		 * of the previous pageblock.
		 */
1052 1053 1054 1055 1056
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
			if (isolate_start_pfn >= block_end_pfn)
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1057
			break;
1058 1059 1060 1061 1062 1063 1064
		} else {
			/*
			 * isolate_freepages_block() should not terminate
			 * prematurely unless contended, or isolated enough
			 */
			VM_BUG_ON(isolate_start_pfn < block_end_pfn);
		}
1065 1066 1067 1068 1069
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

1070
	/*
1071 1072 1073 1074
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1075
	 */
1076
	cc->free_pfn = isolate_start_pfn;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1090 1091 1092 1093
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1094
	if (list_empty(&cc->freepages)) {
1095
		if (!cc->contended)
1096
			isolate_freepages(cc);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1122 1123 1124 1125 1126 1127 1128
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1129 1130 1131 1132 1133 1134
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1135
/*
1136 1137 1138
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1139 1140 1141 1142
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1143 1144 1145
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1146 1147
	struct page *page;
	const isolate_mode_t isolate_mode =
1148
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1149
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1150

1151 1152 1153 1154 1155
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1156
	block_start_pfn = pageblock_start_pfn(low_pfn);
1157 1158
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1159 1160

	/* Only scan within a pageblock boundary */
1161
	block_end_pfn = pageblock_end_pfn(low_pfn);
1162

1163 1164 1165 1166
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1167 1168 1169 1170
	for (; block_end_pfn <= cc->free_pfn;
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1171

1172 1173 1174 1175 1176 1177 1178 1179
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1180

1181 1182
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1183
		if (!page)
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
1200 1201
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1202

1203 1204
		if (!low_pfn || cc->contended) {
			acct_isolated(zone, cc);
1205
			return ISOLATE_ABORT;
1206
		}
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1217 1218
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1219

1220
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1221 1222
}

1223 1224 1225 1226 1227 1228 1229 1230 1231
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1232
static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1233
			    const int migratetype)
1234
{
1235
	unsigned int order;
1236
	unsigned long watermark;
1237

1238
	if (cc->contended || fatal_signal_pending(current))
1239
		return COMPACT_CONTENDED;
1240

1241
	/* Compaction run completes if the migrate and free scanner meet */
1242
	if (compact_scanners_met(cc)) {
1243
		/* Let the next compaction start anew. */
1244
		reset_cached_positions(zone);
1245

1246 1247
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1248
		 * by kswapd when it goes to sleep. kcompactd does not set the
1249 1250 1251
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1252
		if (cc->direct_compaction)
1253 1254
			zone->compact_blockskip_flush = true;

1255
		return COMPACT_COMPLETE;
1256
	}
1257

1258
	if (is_via_compact_memory(cc->order))
1259 1260
		return COMPACT_CONTINUE;

1261 1262 1263
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1264 1265
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1266 1267
		return COMPACT_CONTINUE;

1268
	/* Direct compactor: Is a suitable page free? */
1269 1270
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1271
		bool can_steal;
1272 1273

		/* Job done if page is free of the right migratetype */
1274
		if (!list_empty(&area->free_list[migratetype]))
1275 1276
			return COMPACT_PARTIAL;

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
			return COMPACT_PARTIAL;
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
						true, &can_steal) != -1)
1289 1290 1291
			return COMPACT_PARTIAL;
	}

1292 1293 1294
	return COMPACT_NO_SUITABLE_PAGE;
}

1295 1296 1297
static enum compact_result compact_finished(struct zone *zone,
			struct compact_control *cc,
			const int migratetype)
1298 1299 1300 1301 1302 1303 1304 1305 1306
{
	int ret;

	ret = __compact_finished(zone, cc, migratetype);
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1307 1308
}

1309 1310 1311 1312 1313 1314 1315
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1316
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1317 1318
					unsigned int alloc_flags,
					int classzone_idx)
1319 1320 1321 1322
{
	int fragindex;
	unsigned long watermark;

1323
	if (is_via_compact_memory(order))
1324 1325
		return COMPACT_CONTINUE;

1326 1327 1328 1329 1330 1331 1332 1333 1334
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1335 1336 1337 1338 1339
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1340 1341
	watermark += (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1342 1343 1344 1345 1346 1347
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1348 1349
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1350 1351 1352 1353 1354 1355 1356
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1357
		return COMPACT_NOT_SUITABLE_ZONE;
1358 1359 1360 1361

	return COMPACT_CONTINUE;
}

1362
enum compact_result compaction_suitable(struct zone *zone, int order,
1363 1364
					unsigned int alloc_flags,
					int classzone_idx)
1365
{
1366
	enum compact_result ret;
1367 1368 1369 1370 1371 1372 1373 1374 1375

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1376
static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1377
{
1378
	enum compact_result ret;
1379
	unsigned long start_pfn = zone->zone_start_pfn;
1380
	unsigned long end_pfn = zone_end_pfn(zone);
1381
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1382
	const bool sync = cc->mode != MIGRATE_ASYNC;
1383

1384 1385
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1396 1397
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1398
	 * is about to be retried after being deferred.
1399
	 */
1400
	if (compaction_restarting(zone, cc->order))
1401 1402
		__reset_isolation_suitable(zone);

1403 1404 1405 1406 1407
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1408
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1409
	cc->free_pfn = zone->compact_cached_free_pfn;
1410
	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1411
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1412 1413
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
1414
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1415
		cc->migrate_pfn = start_pfn;
1416 1417
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1418
	}
1419
	cc->last_migrated_pfn = 0;
1420

1421 1422
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1423

1424 1425
	migrate_prep_local();

1426 1427
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1428
		int err;
1429

1430 1431
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
1432
			ret = COMPACT_CONTENDED;
1433
			putback_movable_pages(&cc->migratepages);
1434
			cc->nr_migratepages = 0;
1435 1436
			goto out;
		case ISOLATE_NONE:
1437 1438 1439 1440 1441 1442
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1443 1444 1445
		case ISOLATE_SUCCESS:
			;
		}
1446

1447
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1448
				compaction_free, (unsigned long)cc, cc->mode,
1449
				MR_COMPACTION);
1450

1451 1452
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1453

1454 1455
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1456
		if (err) {
1457
			putback_movable_pages(&cc->migratepages);
1458 1459 1460 1461
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1462
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1463
				ret = COMPACT_CONTENDED;
1464 1465
				goto out;
			}
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
				cc->last_migrated_pfn = 0;

			}
1478
		}
1479 1480 1481 1482 1483 1484 1485 1486 1487

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
1488
		if (cc->order > 0 && cc->last_migrated_pfn) {
1489 1490
			int cpu;
			unsigned long current_block_start =
1491
				block_start_pfn(cc->migrate_pfn, cc->order);
1492

1493
			if (cc->last_migrated_pfn < current_block_start) {
1494 1495 1496 1497 1498
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
1499
				cc->last_migrated_pfn = 0;
1500 1501 1502
			}
		}

1503 1504
	}

1505
out:
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
1516
		free_pfn = pageblock_start_pfn(free_pfn);
1517 1518 1519 1520 1521 1522 1523
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1524

1525 1526
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1527

1528 1529 1530
	if (ret == COMPACT_CONTENDED)
		ret = COMPACT_PARTIAL;

1531 1532
	return ret;
}
1533

1534
static enum compact_result compact_zone_order(struct zone *zone, int order,
1535
		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1536
		unsigned int alloc_flags, int classzone_idx)
1537
{
1538
	enum compact_result ret;
1539 1540 1541 1542
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1543
		.gfp_mask = gfp_mask,
1544
		.zone = zone,
1545
		.mode = mode,
1546 1547
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1548
		.direct_compaction = true,
1549 1550 1551 1552
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1553 1554 1555 1556 1557 1558 1559
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1560 1561
}

1562 1563
int sysctl_extfrag_threshold = 500;

1564 1565 1566
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1567 1568 1569
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1570
 * @mode: The migration mode for async, sync light, or sync migration
1571 1572
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1573 1574 1575
 *
 * This is the main entry point for direct page compaction.
 */
1576
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1577 1578
		unsigned int alloc_flags, const struct alloc_context *ac,
		enum migrate_mode mode, int *contended)
1579 1580 1581 1582 1583
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1584
	enum compact_result rc = COMPACT_DEFERRED;
1585 1586 1587
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1588

1589
	/* Check if the GFP flags allow compaction */
1590
	if (!order || !may_enter_fs || !may_perform_io)
1591
		return COMPACT_SKIPPED;
1592

1593 1594
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);

1595
	/* Compact each zone in the list */
1596 1597
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1598
		enum compact_result status;
1599
		int zone_contended;
1600

1601 1602 1603
		if (compaction_deferred(zone, order))
			continue;

1604
		status = compact_zone_order(zone, order, gfp_mask, mode,
1605
				&zone_contended, alloc_flags,
1606
				ac_classzone_idx(ac));
1607
		rc = max(status, rc);
1608 1609 1610 1611 1612
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1613

1614
		/* If a normal allocation would succeed, stop compacting */
1615
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1616
					ac_classzone_idx(ac), alloc_flags)) {
1617 1618 1619 1620 1621 1622 1623
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

1638
		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1639 1640 1641 1642 1643 1644 1645
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1667 1668
	}

1669 1670 1671 1672 1673 1674 1675
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1676 1677 1678 1679
	return rc;
}


1680
/* Compact all zones within a node */
1681
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1692 1693 1694 1695 1696
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1697

1698 1699 1700 1701 1702
		/*
		 * When called via /proc/sys/vm/compact_memory
		 * this makes sure we compact the whole zone regardless of
		 * cached scanner positions.
		 */
1703
		if (is_via_compact_memory(cc->order))
1704 1705
			__reset_isolation_suitable(zone);

1706 1707
		if (is_via_compact_memory(cc->order) ||
				!compaction_deferred(zone, cc->order))
1708
			compact_zone(zone, cc);
1709

1710 1711
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1712 1713 1714 1715 1716 1717 1718

		if (is_via_compact_memory(cc->order))
			continue;

		if (zone_watermark_ok(zone, cc->order,
				low_wmark_pages(zone), 0, 0))
			compaction_defer_reset(zone, cc->order, false);
1719 1720 1721
	}
}

1722
void compact_pgdat(pg_data_t *pgdat, int order)
1723 1724 1725
{
	struct compact_control cc = {
		.order = order,
1726
		.mode = MIGRATE_ASYNC,
1727 1728
	};

1729 1730 1731
	if (!order)
		return;

1732
	__compact_pgdat(pgdat, &cc);
1733 1734
}

1735
static void compact_node(int nid)
1736 1737 1738
{
	struct compact_control cc = {
		.order = -1,
1739
		.mode = MIGRATE_SYNC,
1740
		.ignore_skip_hint = true,
1741 1742
	};

1743
	__compact_pgdat(NODE_DATA(nid), &cc);
1744 1745
}

1746
/* Compact all nodes in the system */
1747
static void compact_nodes(void)
1748 1749 1750
{
	int nid;

1751 1752 1753
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1754 1755 1756 1757 1758 1759 1760
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

1761 1762 1763 1764
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
1765 1766 1767 1768
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1769
		compact_nodes();
1770 1771 1772

	return 0;
}
1773

1774 1775 1776 1777 1778 1779 1780 1781
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1782
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1783
static ssize_t sysfs_compact_node(struct device *dev,
1784
			struct device_attribute *attr,
1785 1786
			const char *buf, size_t count)
{
1787 1788 1789 1790 1791 1792 1793 1794
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1795 1796 1797

	return count;
}
1798
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1799 1800 1801

int compaction_register_node(struct node *node)
{
1802
	return device_create_file(&node->dev, &dev_attr_compact);
1803 1804 1805 1806
}

void compaction_unregister_node(struct node *node)
{
1807
	return device_remove_file(&node->dev, &dev_attr_compact);
1808 1809
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1810

1811 1812
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
1813
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

	for (zoneid = 0; zoneid < classzone_idx; zoneid++) {
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
		.ignore_skip_hint = true,

	};
	bool success = false;

	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
	count_vm_event(KCOMPACTD_WAKE);

	for (zoneid = 0; zoneid < cc.classzone_idx; zoneid++) {
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

1877 1878
		if (kthread_should_stop())
			return;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		status = compact_zone(zone, &cc);

		if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
						cc.classzone_idx, 0)) {
			success = true;
			compaction_defer_reset(zone, cc.order, false);
		} else if (status == COMPACT_COMPLETE) {
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

	if (!waitqueue_active(&pgdat->kcompactd_wait))
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

		kcompactd_do_work(pgdat);
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
{
	int nid;

	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
		for_each_node_state(nid, N_MEMORY) {
			pg_data_t *pgdat = NODE_DATA(nid);
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);

			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
				/* One of our CPUs online: restore mask */
				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
		}
	}
	return NOTIFY_OK;
}

static int __init kcompactd_init(void)
{
	int nid;

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}
subsys_initcall(kcompactd_init)

2032
#endif /* CONFIG_COMPACTION */