compaction.c 43.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 38 39 40 41 42 43 44 45
#ifdef CONFIG_TRACEPOINTS
static const char *const compaction_status_string[] = {
	"deferred",
	"skipped",
	"continue",
	"partial",
	"complete",
};
#endif
46

47 48 49
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

50 51 52
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
53
	unsigned long high_pfn = 0;
54 55

	list_for_each_entry_safe(page, next, freelist, lru) {
56
		unsigned long pfn = page_to_pfn(page);
57 58
		list_del(&page->lru);
		__free_page(page);
59 60
		if (pfn > high_pfn)
			high_pfn = pfn;
61 62
	}

63
	return high_pfn;
64 65
}

66 67 68 69 70 71 72 73 74 75
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

76 77 78 79 80
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
140
static void __reset_isolation_suitable(struct zone *zone)
141 142
{
	unsigned long start_pfn = zone->zone_start_pfn;
143
	unsigned long end_pfn = zone_end_pfn(zone);
144 145
	unsigned long pfn;

146 147
	zone->compact_cached_migrate_pfn[0] = start_pfn;
	zone->compact_cached_migrate_pfn[1] = start_pfn;
148
	zone->compact_cached_free_pfn = end_pfn;
149
	zone->compact_blockskip_flush = false;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

183 184
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
185
 * future. The information is later cleared by __reset_isolation_suitable().
186
 */
187 188
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
189
			bool migrate_scanner)
190
{
191
	struct zone *zone = cc->zone;
192
	unsigned long pfn;
193 194 195 196

	if (cc->ignore_skip_hint)
		return;

197 198 199
	if (!page)
		return;

200 201 202
	if (nr_isolated)
		return;

203
	set_pageblock_skip(page);
204

205 206 207 208 209 210
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
211 212
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
213 214 215 216
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
217
	}
218 219 220 221 222 223 224 225
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

226 227
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
228
			bool migrate_scanner)
229 230 231 232
{
}
#endif /* CONFIG_COMPACTION */

233 234 235 236 237 238 239 240 241 242
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
243
{
244 245 246 247 248 249 250 251
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
252

253
	return true;
254 255
}

256 257
/*
 * Compaction requires the taking of some coarse locks that are potentially
258 259 260 261 262 263 264
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
265
 *
266 267 268 269
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
270
 */
271 272
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
273
{
274 275 276 277
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
278

279 280 281 282
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
283

284
	if (need_resched()) {
285
		if (cc->mode == MIGRATE_ASYNC) {
286 287
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
288 289 290 291
		}
		cond_resched();
	}

292
	return false;
293 294
}

295 296 297
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
298
 * compaction. This is similar to what compact_unlock_should_abort() does, but
299 300 301 302 303 304 305 306 307 308
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
309
			cc->contended = COMPACT_CONTENDED_SCHED;
310 311 312 313 314 315 316 317 318
			return true;
		}

		cond_resched();
	}

	return false;
}

319 320 321
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
322
	/* If the page is a large free page, then disallow migration */
323 324 325 326 327 328 329 330 331
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}
332 333

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
334
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
335 336 337 338 339 340
		return true;

	/* Otherwise skip the block */
	return false;
}

341
/*
342 343 344
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
345
 */
346
static unsigned long isolate_freepages_block(struct compact_control *cc,
347
				unsigned long *start_pfn,
348 349 350
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
351
{
352
	int nr_scanned = 0, total_isolated = 0;
353
	struct page *cursor, *valid_page = NULL;
354
	unsigned long flags = 0;
355
	bool locked = false;
356
	unsigned long blockpfn = *start_pfn;
357 358 359

	cursor = pfn_to_page(blockpfn);

360
	/* Isolate free pages. */
361 362 363 364
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

365 366 367 368 369 370 371 372 373 374
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

375
		nr_scanned++;
376
		if (!pfn_valid_within(blockpfn))
377 378
			goto isolate_fail;

379 380
		if (!valid_page)
			valid_page = page;
381
		if (!PageBuddy(page))
382
			goto isolate_fail;
383 384

		/*
385 386 387 388 389
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
390
		 */
391 392 393 394 395 396 397 398 399
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
400 401
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
402 403
			if (!locked)
				break;
404

405 406 407 408
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
409 410 411 412 413 414 415 416 417 418 419 420 421

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
422
			continue;
423
		}
424 425 426 427 428 429 430

isolate_fail:
		if (strict)
			break;
		else
			continue;

431 432
	}

433 434 435
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

436
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
437 438 439 440 441 442

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
443
	if (strict && blockpfn < end_pfn)
444 445 446 447 448
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

449 450
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
451
		update_pageblock_skip(cc, valid_page, total_isolated, false);
452

453
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
454
	if (total_isolated)
455
		count_compact_events(COMPACTISOLATED, total_isolated);
456 457 458
	return total_isolated;
}

459 460 461 462 463 464 465 466 467 468 469 470 471
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
472
unsigned long
473 474
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
475
{
476
	unsigned long isolated, pfn, block_end_pfn;
477 478
	LIST_HEAD(freelist);

479 480 481 482 483
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn += isolated,
				block_end_pfn += pageblock_nr_pages) {
484 485
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
486 487 488

		block_end_pfn = min(block_end_pfn, end_pfn);

489 490 491 492 493 494 495 496 497 498
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

499 500 501
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
			break;

502 503
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

533
/* Update the number of anon and file isolated pages in the zone */
534
static void acct_isolated(struct zone *zone, struct compact_control *cc)
535 536
{
	struct page *page;
537
	unsigned int count[2] = { 0, };
538

539 540 541
	if (list_empty(&cc->migratepages))
		return;

542 543
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
544

545 546
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
547 548 549 550 551
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
552
	unsigned long active, inactive, isolated;
553 554 555

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
556 557
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
558 559 560
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

561
	return isolated > (inactive + active) / 2;
562 563
}

564
/**
565 566
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
567
 * @cc:		Compaction control structure.
568 569 570
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
571 572
 *
 * Isolate all pages that can be migrated from the range specified by
573 574 575 576
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
577
 *
578 579 580
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
581
 */
582 583 584
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
585
{
586
	struct zone *zone = cc->zone;
587
	unsigned long nr_scanned = 0, nr_isolated = 0;
588
	struct list_head *migratelist = &cc->migratepages;
589
	struct lruvec *lruvec;
590
	unsigned long flags = 0;
591
	bool locked = false;
592
	struct page *page = NULL, *valid_page = NULL;
593 594 595 596 597 598 599

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
600
		/* async migration should just abort */
601
		if (cc->mode == MIGRATE_ASYNC)
602
			return 0;
603

604 605 606
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
607
			return 0;
608 609
	}

610 611
	if (compact_should_abort(cc))
		return 0;
612

613 614
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
615 616 617 618 619 620 621 622 623
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
624

625 626
		if (!pfn_valid_within(low_pfn))
			continue;
627
		nr_scanned++;
628 629

		page = pfn_to_page(low_pfn);
630

631 632 633
		if (!valid_page)
			valid_page = page;

634
		/*
635 636 637 638
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
639
		 */
640 641 642 643 644 645 646 647 648 649
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
650
			continue;
651
		}
652

653 654 655 656 657 658 659
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
660
				if (balloon_page_isolate(page)) {
661
					/* Successfully isolated */
662
					goto isolate_success;
663 664
				}
			}
665
			continue;
666
		}
667 668

		/*
669 670 671 672 673 674 675 676
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
677
		 */
678 679
		if (PageTransHuge(page)) {
			if (!locked)
680 681 682 683 684
				low_pfn = ALIGN(low_pfn + 1,
						pageblock_nr_pages) - 1;
			else
				low_pfn += (1 << compound_order(page)) - 1;

685 686 687
			continue;
		}

688 689 690 691 692 693 694 695 696
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

697 698
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
699 700
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
701 702
			if (!locked)
				break;
703

704 705 706 707 708 709 710
			/* Recheck PageLRU and PageTransHuge under lock */
			if (!PageLRU(page))
				continue;
			if (PageTransHuge(page)) {
				low_pfn += (1 << compound_order(page)) - 1;
				continue;
			}
711 712
		}

713 714
		lruvec = mem_cgroup_page_lruvec(page, zone);

715
		/* Try isolate the page */
716
		if (__isolate_lru_page(page, isolate_mode) != 0)
717 718
			continue;

719
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
720

721
		/* Successfully isolated */
722
		del_page_from_lru_list(page, lruvec, page_lru(page));
723 724

isolate_success:
725 726
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
727
		nr_isolated++;
728 729

		/* Avoid isolating too much */
730 731
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
732
			break;
733
		}
734 735
	}

736 737 738 739 740 741 742
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

743 744
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
745

746 747 748 749
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
750
	if (low_pfn == end_pfn)
751
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
752

753 754
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

755
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
756
	if (nr_isolated)
757
		count_compact_events(COMPACTISOLATED, nr_isolated);
758

759 760 761
	return low_pfn;
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
	unsigned long pfn, block_end_pfn;

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn = block_end_pfn,
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

787
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

		/*
		 * In case of fatal failure, release everything that might
		 * have been isolated in the previous iteration, and signal
		 * the failure back to caller.
		 */
		if (!pfn) {
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			break;
		}
803 804 805

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
806 807 808 809 810 811
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

812 813
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
814
/*
815 816
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
817
 */
818
static void isolate_freepages(struct compact_control *cc)
819
{
820
	struct zone *zone = cc->zone;
821
	struct page *page;
822
	unsigned long block_start_pfn;	/* start of current pageblock */
823
	unsigned long isolate_start_pfn; /* exact pfn we start at */
824 825
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
826 827
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
828

829 830
	/*
	 * Initialise the free scanner. The starting point is where we last
831
	 * successfully isolated from, zone-cached value, or the end of the
832 833
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
834 835 836
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
837 838
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
839
	 */
840
	isolate_start_pfn = cc->free_pfn;
841 842 843
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
844
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
845

846 847 848 849 850
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
851 852
	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
				block_end_pfn = block_start_pfn,
853 854
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
855
		unsigned long isolated;
856

857 858 859
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
860
		 * to schedule, or even abort async compaction.
861
		 */
862 863 864
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
865

866 867 868
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
869 870 871
			continue;

		/* Check the block is suitable for migration */
872
		if (!suitable_migration_target(page))
873
			continue;
874

875 876 877 878
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

879 880
		/* Found a block suitable for isolating free pages from. */
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
881
					block_end_pfn, freelist, false);
882
		nr_freepages += isolated;
883

884 885 886 887 888 889 890 891 892 893 894 895 896
		/*
		 * Remember where the free scanner should restart next time,
		 * which is where isolate_freepages_block() left off.
		 * But if it scanned the whole pageblock, isolate_start_pfn
		 * now points at block_end_pfn, which is the start of the next
		 * pageblock.
		 * In that case we will however want to restart at the start
		 * of the previous pageblock.
		 */
		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
				isolate_start_pfn :
				block_start_pfn - pageblock_nr_pages;

897 898 899 900 901 902
		/*
		 * isolate_freepages_block() might have aborted due to async
		 * compaction being contended
		 */
		if (cc->contended)
			break;
903 904 905 906 907
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

908 909 910 911
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
912
	if (block_start_pfn < low_pfn)
913
		cc->free_pfn = cc->migrate_pfn;
914

915
	cc->nr_freepages = nr_freepages;
916 917 918 919 920 921 922 923 924 925 926 927 928
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

929 930 931 932
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
933
	if (list_empty(&cc->freepages)) {
934
		if (!cc->contended)
935
			isolate_freepages(cc);
936 937 938 939 940 941 942 943 944 945 946 947 948

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
949 950 951 952 953 954 955 956 957 958 959 960
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

961 962 963 964 965 966 967 968
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
969 970 971
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
972 973 974 975 976
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
977 978 979
	struct page *page;
	const isolate_mode_t isolate_mode =
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
980

981 982 983 984 985
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
986 987

	/* Only scan within a pageblock boundary */
988
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
989

990 991 992 993 994 995
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
	for (; end_pfn <= cc->free_pfn;
			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
996

997 998 999 1000 1001 1002 1003 1004
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1005

1006 1007
		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
		if (!page)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
								isolate_mode);

		if (!low_pfn || cc->contended)
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1039 1040 1041 1042 1043 1044
	/*
	 * Record where migration scanner will be restarted. If we end up in
	 * the same pageblock as the free scanner, make the scanners fully
	 * meet so that compact_finished() terminates compaction.
	 */
	cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1045

1046
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1047 1048
}

1049 1050
static int compact_finished(struct zone *zone, struct compact_control *cc,
			    const int migratetype)
1051
{
1052
	unsigned int order;
1053
	unsigned long watermark;
1054

1055
	if (cc->contended || fatal_signal_pending(current))
1056 1057
		return COMPACT_PARTIAL;

1058
	/* Compaction run completes if the migrate and free scanner meet */
1059
	if (cc->free_pfn <= cc->migrate_pfn) {
1060
		/* Let the next compaction start anew. */
1061 1062
		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1063 1064
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

1065 1066 1067 1068 1069 1070 1071 1072 1073
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

1074
		return COMPACT_COMPLETE;
1075
	}
1076

1077 1078 1079 1080
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
1081 1082 1083
	if (cc->order == -1)
		return COMPACT_CONTINUE;

1084 1085 1086
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1087 1088
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1089 1090
		return COMPACT_CONTINUE;

1091
	/* Direct compactor: Is a suitable page free? */
1092 1093 1094 1095
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
1096
		if (!list_empty(&area->free_list[migratetype]))
1097 1098 1099 1100
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
1101 1102 1103
			return COMPACT_PARTIAL;
	}

1104 1105 1106
	return COMPACT_CONTINUE;
}

1107 1108 1109 1110 1111 1112 1113
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1114 1115
unsigned long compaction_suitable(struct zone *zone, int order,
					int alloc_flags, int classzone_idx)
1116 1117 1118 1119
{
	int fragindex;
	unsigned long watermark;

1120 1121 1122 1123 1124 1125 1126
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

1127 1128 1129 1130 1131 1132 1133 1134 1135
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1136 1137 1138 1139 1140
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1141 1142
	watermark += (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1143 1144 1145 1146 1147 1148
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1149 1150
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

	return COMPACT_CONTINUE;
}

1163 1164 1165
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
1166
	unsigned long start_pfn = zone->zone_start_pfn;
1167
	unsigned long end_pfn = zone_end_pfn(zone);
1168
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1169
	const bool sync = cc->mode != MIGRATE_ASYNC;
1170
	unsigned long last_migrated_pfn = 0;
1171

1172 1173
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1184 1185 1186 1187 1188 1189 1190 1191
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1192 1193 1194 1195 1196
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1197
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1198 1199 1200 1201 1202 1203 1204
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
1205 1206
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1207
	}
1208

1209 1210
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1211

1212 1213
	migrate_prep_local();

1214 1215
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1216
		int err;
1217
		unsigned long isolate_start_pfn = cc->migrate_pfn;
1218

1219 1220 1221
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1222
			putback_movable_pages(&cc->migratepages);
1223
			cc->nr_migratepages = 0;
1224 1225
			goto out;
		case ISOLATE_NONE:
1226 1227 1228 1229 1230 1231
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1232 1233 1234
		case ISOLATE_SUCCESS:
			;
		}
1235

1236
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1237
				compaction_free, (unsigned long)cc, cc->mode,
1238
				MR_COMPACTION);
1239

1240 1241
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1242

1243 1244
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1245
		if (err) {
1246
			putback_movable_pages(&cc->migratepages);
1247 1248 1249 1250 1251
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1252 1253 1254
				ret = COMPACT_PARTIAL;
				goto out;
			}
1255
		}
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator. We use the pfn that
		 * isolate_migratepages() started from in this loop iteration
		 * - this is the lowest page that could have been isolated and
		 * then freed by migration.
		 */
		if (!last_migrated_pfn)
			last_migrated_pfn = isolate_start_pfn;

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
		if (cc->order > 0 && last_migrated_pfn) {
			int cpu;
			unsigned long current_block_start =
				cc->migrate_pfn & ~((1UL << cc->order) - 1);

			if (last_migrated_pfn < current_block_start) {
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
				last_migrated_pfn = 0;
			}
		}

1290 1291
	}

1292
out:
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
		free_pfn &= ~(pageblock_nr_pages-1);
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1311

1312 1313
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1314

1315 1316
	return ret;
}
1317

1318
static unsigned long compact_zone_order(struct zone *zone, int order,
1319 1320
		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
		int alloc_flags, int classzone_idx)
1321
{
1322
	unsigned long ret;
1323 1324 1325 1326
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1327
		.gfp_mask = gfp_mask,
1328
		.zone = zone,
1329
		.mode = mode,
1330 1331
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1332 1333 1334 1335
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1336 1337 1338 1339 1340 1341 1342
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1343 1344
}

1345 1346
int sysctl_extfrag_threshold = 500;

1347 1348 1349
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1350 1351 1352
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1353
 * @mode: The migration mode for async, sync light, or sync migration
1354 1355
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1356 1357 1358
 *
 * This is the main entry point for direct page compaction.
 */
1359 1360 1361
unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
			int alloc_flags, const struct alloc_context *ac,
			enum migrate_mode mode, int *contended)
1362 1363 1364 1365 1366
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1367
	int rc = COMPACT_DEFERRED;
1368 1369 1370
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1371

1372
	/* Check if the GFP flags allow compaction */
1373
	if (!order || !may_enter_fs || !may_perform_io)
1374
		return COMPACT_SKIPPED;
1375 1376

	/* Compact each zone in the list */
1377 1378
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1379
		int status;
1380
		int zone_contended;
1381

1382 1383 1384
		if (compaction_deferred(zone, order))
			continue;

1385
		status = compact_zone_order(zone, order, gfp_mask, mode,
1386 1387
				&zone_contended, alloc_flags,
				ac->classzone_idx);
1388
		rc = max(status, rc);
1389 1390 1391 1392 1393
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1394

1395
		/* If a normal allocation would succeed, stop compacting */
1396
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1397
					ac->classzone_idx, alloc_flags)) {
1398 1399 1400 1401 1402 1403 1404
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

1419
		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1420 1421 1422 1423 1424 1425 1426
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1448 1449
	}

1450 1451 1452 1453 1454 1455 1456
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1457 1458 1459 1460
	return rc;
}


1461
/* Compact all zones within a node */
1462
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1473 1474 1475 1476 1477
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1478

1479
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1480
			compact_zone(zone, cc);
1481

1482
		if (cc->order > 0) {
1483 1484 1485
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1486 1487
		}

1488 1489
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1490 1491 1492
	}
}

1493
void compact_pgdat(pg_data_t *pgdat, int order)
1494 1495 1496
{
	struct compact_control cc = {
		.order = order,
1497
		.mode = MIGRATE_ASYNC,
1498 1499
	};

1500 1501 1502
	if (!order)
		return;

1503
	__compact_pgdat(pgdat, &cc);
1504 1505
}

1506
static void compact_node(int nid)
1507 1508 1509
{
	struct compact_control cc = {
		.order = -1,
1510
		.mode = MIGRATE_SYNC,
1511
		.ignore_skip_hint = true,
1512 1513
	};

1514
	__compact_pgdat(NODE_DATA(nid), &cc);
1515 1516
}

1517
/* Compact all nodes in the system */
1518
static void compact_nodes(void)
1519 1520 1521
{
	int nid;

1522 1523 1524
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1537
		compact_nodes();
1538 1539 1540

	return 0;
}
1541

1542 1543 1544 1545 1546 1547 1548 1549
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1550
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1551
static ssize_t sysfs_compact_node(struct device *dev,
1552
			struct device_attribute *attr,
1553 1554
			const char *buf, size_t count)
{
1555 1556 1557 1558 1559 1560 1561 1562
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1563 1564 1565

	return count;
}
1566
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1567 1568 1569

int compaction_register_node(struct node *node)
{
1570
	return device_create_file(&node->dev, &dev_attr_compact);
1571 1572 1573 1574
}

void compaction_unregister_node(struct node *node)
{
1575
	return device_remove_file(&node->dev, &dev_attr_compact);
1576 1577
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1578 1579

#endif /* CONFIG_COMPACTION */