compaction.c 57.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
10
#include <linux/cpu.h>
11 12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
16
#include <linux/sysctl.h>
17
#include <linux/sysfs.h>
18
#include <linux/page-isolation.h>
19
#include <linux/kasan.h>
20 21
#include <linux/kthread.h>
#include <linux/freezer.h>
22
#include <linux/page_owner.h>
23 24
#include "internal.h"

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

40 41
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

42 43 44
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

45 46 47 48 49
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

50 51 52
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
53
	unsigned long high_pfn = 0;
54 55

	list_for_each_entry_safe(page, next, freelist, lru) {
56
		unsigned long pfn = page_to_pfn(page);
57 58
		list_del(&page->lru);
		__free_page(page);
59 60
		if (pfn > high_pfn)
			high_pfn = pfn;
61 62
	}

63
	return high_pfn;
64 65
}

66 67
static void map_pages(struct list_head *list)
{
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;
		set_page_private(page, 0);
		set_page_refcounted(page);

		arch_alloc_page(page, order);
		kernel_map_pages(page, nr_pages, 1);
		kasan_alloc_pages(page, order);
83 84

		set_page_owner(page, order, __GFP_MOVABLE);
85 86
		if (order)
			split_page(page, order);
87

88 89 90 91
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
92
	}
93 94

	list_splice(&tmp_list, list);
95 96
}

97 98 99 100 101
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

102
#ifdef CONFIG_COMPACTION
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

212 213 214 215 216 217 218 219 220 221
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

222 223 224 225
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
226
	zone->compact_cached_free_pfn =
227
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
228 229
}

230 231 232 233 234
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
235
static void __reset_isolation_suitable(struct zone *zone)
236 237
{
	unsigned long start_pfn = zone->zone_start_pfn;
238
	unsigned long end_pfn = zone_end_pfn(zone);
239 240
	unsigned long pfn;

241
	zone->compact_blockskip_flush = false;
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
258 259

	reset_cached_positions(zone);
260 261
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

277 278
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
279
 * future. The information is later cleared by __reset_isolation_suitable().
280
 */
281 282
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
283
			bool migrate_scanner)
284
{
285
	struct zone *zone = cc->zone;
286
	unsigned long pfn;
287 288 289 290

	if (cc->ignore_skip_hint)
		return;

291 292 293
	if (!page)
		return;

294 295 296
	if (nr_isolated)
		return;

297
	set_pageblock_skip(page);
298

299 300 301 302 303 304
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
305 306
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
307 308 309 310
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
311
	}
312 313 314 315 316 317 318 319
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

320 321
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
322
			bool migrate_scanner)
323 324 325 326
{
}
#endif /* CONFIG_COMPACTION */

327 328 329 330 331 332 333 334 335 336
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
337
{
338 339 340 341 342 343 344 345
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
346

347
	return true;
348 349
}

350 351
/*
 * Compaction requires the taking of some coarse locks that are potentially
352 353 354 355 356 357 358
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
359
 *
360 361 362 363
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
364
 */
365 366
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
367
{
368 369 370 371
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
372

373 374 375 376
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
377

378
	if (need_resched()) {
379
		if (cc->mode == MIGRATE_ASYNC) {
380 381
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
382 383 384 385
		}
		cond_resched();
	}

386
	return false;
387 388
}

389 390 391
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
392
 * compaction. This is similar to what compact_unlock_should_abort() does, but
393 394 395 396 397 398 399 400 401 402
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
403
			cc->contended = COMPACT_CONTENDED_SCHED;
404 405 406 407 408 409 410 411 412
			return true;
		}

		cond_resched();
	}

	return false;
}

413
/*
414 415 416
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
417
 */
418
static unsigned long isolate_freepages_block(struct compact_control *cc,
419
				unsigned long *start_pfn,
420 421 422
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
423
{
424
	int nr_scanned = 0, total_isolated = 0;
425
	struct page *cursor, *valid_page = NULL;
426
	unsigned long flags = 0;
427
	bool locked = false;
428
	unsigned long blockpfn = *start_pfn;
429
	unsigned int order;
430 431 432

	cursor = pfn_to_page(blockpfn);

433
	/* Isolate free pages. */
434
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
435
		int isolated;
436 437
		struct page *page = cursor;

438 439 440 441 442 443 444 445 446 447
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

448
		nr_scanned++;
449
		if (!pfn_valid_within(blockpfn))
450 451
			goto isolate_fail;

452 453
		if (!valid_page)
			valid_page = page;
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER)) {
				blockpfn += (1UL << comp_order) - 1;
				cursor += (1UL << comp_order) - 1;
			}

			goto isolate_fail;
		}

472
		if (!PageBuddy(page))
473
			goto isolate_fail;
474 475

		/*
476 477 478 479 480
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
481
		 */
482 483 484 485 486 487 488 489 490
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
491 492
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
493 494
			if (!locked)
				break;
495

496 497 498 499
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
500

501 502 503
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
504 505
		if (!isolated)
			break;
506
		set_page_private(page, order);
507

508
		total_isolated += isolated;
509
		cc->nr_freepages += isolated;
510 511
		list_add_tail(&page->lru, freelist);

512 513 514
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
515
		}
516 517 518 519
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
520 521 522 523 524 525 526

isolate_fail:
		if (strict)
			break;
		else
			continue;

527 528
	}

529 530 531
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

532 533 534 535 536 537 538
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

539 540 541
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

542 543 544
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

545 546 547 548 549
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
550
	if (strict && blockpfn < end_pfn)
551 552
		total_isolated = 0;

553 554
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
555
		update_pageblock_skip(cc, valid_page, total_isolated, false);
556

557
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
558
	if (total_isolated)
559
		count_compact_events(COMPACTISOLATED, total_isolated);
560 561 562
	return total_isolated;
}

563 564 565 566 567 568 569 570 571 572 573 574 575
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
576
unsigned long
577 578
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
579
{
580
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
581 582
	LIST_HEAD(freelist);

583
	pfn = start_pfn;
584
	block_start_pfn = pageblock_start_pfn(pfn);
585 586
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
587
	block_end_pfn = pageblock_end_pfn(pfn);
588 589

	for (; pfn < end_pfn; pfn += isolated,
590
				block_start_pfn = block_end_pfn,
591
				block_end_pfn += pageblock_nr_pages) {
592 593
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
594 595 596

		block_end_pfn = min(block_end_pfn, end_pfn);

597 598 599 600 601 602
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
603 604
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
605 606 607
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

608 609
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
610 611
			break;

612 613
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

630
	/* __isolate_free_page() does not map the pages */
631 632 633 634 635 636 637 638 639 640 641 642
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

643
/* Update the number of anon and file isolated pages in the zone */
644
static void acct_isolated(struct zone *zone, struct compact_control *cc)
645 646
{
	struct page *page;
647
	unsigned int count[2] = { 0, };
648

649 650 651
	if (list_empty(&cc->migratepages))
		return;

652 653
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
654

655 656
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
657 658 659 660 661
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
662
	unsigned long active, inactive, isolated;
663 664 665

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
666 667
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
668 669 670
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

671
	return isolated > (inactive + active) / 2;
672 673
}

674
/**
675 676
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
677
 * @cc:		Compaction control structure.
678 679 680
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
681 682
 *
 * Isolate all pages that can be migrated from the range specified by
683 684 685 686
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
687
 *
688 689 690
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
691
 */
692 693 694
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
695
{
696
	struct zone *zone = cc->zone;
697
	unsigned long nr_scanned = 0, nr_isolated = 0;
698
	struct lruvec *lruvec;
699
	unsigned long flags = 0;
700
	bool locked = false;
701
	struct page *page = NULL, *valid_page = NULL;
702
	unsigned long start_pfn = low_pfn;
703 704
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
705 706 707 708 709 710 711

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
712
		/* async migration should just abort */
713
		if (cc->mode == MIGRATE_ASYNC)
714
			return 0;
715

716 717 718
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
719
			return 0;
720 721
	}

722 723
	if (compact_should_abort(cc))
		return 0;
724

725 726 727 728 729
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

730 731
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

755 756 757 758 759 760 761 762 763
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
764

765
		if (!pfn_valid_within(low_pfn))
766
			goto isolate_fail;
767
		nr_scanned++;
768 769

		page = pfn_to_page(low_pfn);
770

771 772 773
		if (!valid_page)
			valid_page = page;

774
		/*
775 776 777 778
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
779
		 */
780 781 782 783 784 785 786 787 788 789
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
790
			continue;
791
		}
792

793
		/*
794 795 796 797 798
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
799
		 */
800 801 802 803 804
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER))
				low_pfn += (1UL << comp_order) - 1;
805

806
			goto isolate_fail;
807 808
		}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
					spin_unlock_irqrestore(&zone->lru_lock,
									flags);
					locked = false;
				}

				if (isolate_movable_page(page, isolate_mode))
					goto isolate_success;
			}

831
			goto isolate_fail;
832
		}
833

834 835 836 837 838 839 840
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
841
			goto isolate_fail;
842

843 844
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
845 846
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
847 848
			if (!locked)
				break;
849

850
			/* Recheck PageLRU and PageCompound under lock */
851
			if (!PageLRU(page))
852
				goto isolate_fail;
853 854 855 856 857 858 859 860

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
				low_pfn += (1UL << compound_order(page)) - 1;
861
				goto isolate_fail;
862
			}
863 864
		}

865 866
		lruvec = mem_cgroup_page_lruvec(page, zone);

867
		/* Try isolate the page */
868
		if (__isolate_lru_page(page, isolate_mode) != 0)
869
			goto isolate_fail;
870

871
		VM_BUG_ON_PAGE(PageCompound(page), page);
872

873
		/* Successfully isolated */
874
		del_page_from_lru_list(page, lruvec, page_lru(page));
875 876

isolate_success:
877
		list_add(&page->lru, &cc->migratepages);
878
		cc->nr_migratepages++;
879
		nr_isolated++;
880

881 882 883 884 885 886 887 888 889
		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator.
		 * - this is the lowest page that was isolated and likely be
		 * then freed by migration.
		 */
		if (!cc->last_migrated_pfn)
			cc->last_migrated_pfn = low_pfn;

890
		/* Avoid isolating too much */
891 892
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
893
			break;
894
		}
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
				spin_unlock_irqrestore(&zone->lru_lock,	flags);
				locked = false;
			}
			acct_isolated(zone, cc);
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			cc->last_migrated_pfn = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
926 927
	}

928 929 930 931 932 933 934
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

935 936
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
937

938 939 940 941
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
942
	if (low_pfn == end_pfn)
943
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
944

945 946
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
947

948
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
949
	if (nr_isolated)
950
		count_compact_events(COMPACTISOLATED, nr_isolated);
951

952 953 954
	return low_pfn;
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
969
	unsigned long pfn, block_start_pfn, block_end_pfn;
970 971 972

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
973
	block_start_pfn = pageblock_start_pfn(pfn);
974 975
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
976
	block_end_pfn = pageblock_end_pfn(pfn);
977 978

	for (; pfn < end_pfn; pfn = block_end_pfn,
979
				block_start_pfn = block_end_pfn,
980 981 982 983
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

984 985
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
986 987 988 989 990
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

991
		if (!pfn)
992
			break;
993 994 995

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
996 997 998 999 1000 1001
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

1002 1003
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
		return true;

	/* Otherwise skip the block */
	return false;
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1037
/*
1038 1039
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1040
 */
1041
static void isolate_freepages(struct compact_control *cc)
1042
{
1043
	struct zone *zone = cc->zone;
1044
	struct page *page;
1045
	unsigned long block_start_pfn;	/* start of current pageblock */
1046
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1047 1048
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1049
	struct list_head *freelist = &cc->freepages;
1050

1051 1052
	/*
	 * Initialise the free scanner. The starting point is where we last
1053
	 * successfully isolated from, zone-cached value, or the end of the
1054 1055
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1056 1057 1058
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1059 1060
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1061
	 */
1062
	isolate_start_pfn = cc->free_pfn;
1063
	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1064 1065
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1066
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1067

1068 1069 1070 1071 1072
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1073
	for (; block_start_pfn >= low_pfn;
1074
				block_end_pfn = block_start_pfn,
1075 1076
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1077 1078 1079
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
1080
		 * to schedule, or even abort async compaction.
1081
		 */
1082 1083 1084
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1085

1086 1087 1088
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1089 1090 1091
			continue;

		/* Check the block is suitable for migration */
1092
		if (!suitable_migration_target(page))
1093
			continue;
1094

1095 1096 1097 1098
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1099
		/* Found a block suitable for isolating free pages from. */
1100 1101
		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
					freelist, false);
1102

1103
		/*
1104 1105
		 * If we isolated enough freepages, or aborted due to lock
		 * contention, terminate.
1106
		 */
1107 1108
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
1109 1110 1111 1112 1113
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1114 1115
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1116
			}
1117
			break;
1118
		} else if (isolate_start_pfn < block_end_pfn) {
1119
			/*
1120 1121
			 * If isolation failed early, do not continue
			 * needlessly.
1122
			 */
1123
			break;
1124
		}
1125 1126
	}

1127
	/* __isolate_free_page() does not map the pages */
1128 1129
	map_pages(freelist);

1130
	/*
1131 1132 1133 1134
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1135
	 */
1136
	cc->free_pfn = isolate_start_pfn;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1150 1151 1152 1153
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1154
	if (list_empty(&cc->freepages)) {
1155
		if (!cc->contended)
1156
			isolate_freepages(cc);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1182 1183 1184 1185 1186 1187 1188
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1189 1190 1191 1192 1193 1194
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1195
/*
1196 1197 1198
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1199 1200 1201 1202
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1203 1204 1205
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1206 1207
	struct page *page;
	const isolate_mode_t isolate_mode =
1208
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1209
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1210

1211 1212 1213 1214 1215
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1216
	block_start_pfn = pageblock_start_pfn(low_pfn);
1217 1218
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1219 1220

	/* Only scan within a pageblock boundary */
1221
	block_end_pfn = pageblock_end_pfn(low_pfn);
1222

1223 1224 1225 1226
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1227 1228 1229 1230
	for (; block_end_pfn <= cc->free_pfn;
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1231

1232 1233 1234 1235 1236 1237 1238 1239
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1240

1241 1242
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1243
		if (!page)
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
1260 1261
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1262

1263 1264
		if (!low_pfn || cc->contended) {
			acct_isolated(zone, cc);
1265
			return ISOLATE_ABORT;
1266
		}
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1277 1278
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1279

1280
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1281 1282
}

1283 1284 1285 1286 1287 1288 1289 1290 1291
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1292
static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1293
			    const int migratetype)
1294
{
1295
	unsigned int order;
1296
	unsigned long watermark;
1297

1298
	if (cc->contended || fatal_signal_pending(current))
1299
		return COMPACT_CONTENDED;
1300

1301
	/* Compaction run completes if the migrate and free scanner meet */
1302
	if (compact_scanners_met(cc)) {
1303
		/* Let the next compaction start anew. */
1304
		reset_cached_positions(zone);
1305

1306 1307
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1308
		 * by kswapd when it goes to sleep. kcompactd does not set the
1309 1310 1311
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1312
		if (cc->direct_compaction)
1313 1314
			zone->compact_blockskip_flush = true;

1315 1316 1317 1318
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1319
	}
1320

1321
	if (is_via_compact_memory(cc->order))
1322 1323
		return COMPACT_CONTINUE;

1324 1325 1326
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1327 1328
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1329 1330
		return COMPACT_CONTINUE;

1331
	/* Direct compactor: Is a suitable page free? */
1332 1333
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1334
		bool can_steal;
1335 1336

		/* Job done if page is free of the right migratetype */
1337
		if (!list_empty(&area->free_list[migratetype]))
1338 1339
			return COMPACT_PARTIAL;

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
			return COMPACT_PARTIAL;
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
						true, &can_steal) != -1)
1352 1353 1354
			return COMPACT_PARTIAL;
	}

1355 1356 1357
	return COMPACT_NO_SUITABLE_PAGE;
}

1358 1359 1360
static enum compact_result compact_finished(struct zone *zone,
			struct compact_control *cc,
			const int migratetype)
1361 1362 1363 1364 1365 1366 1367 1368 1369
{
	int ret;

	ret = __compact_finished(zone, cc, migratetype);
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1370 1371
}

1372 1373 1374 1375 1376 1377 1378
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1379
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1380
					unsigned int alloc_flags,
1381 1382
					int classzone_idx,
					unsigned long wmark_target)
1383 1384 1385 1386
{
	int fragindex;
	unsigned long watermark;

1387
	if (is_via_compact_memory(order))
1388 1389
		return COMPACT_CONTINUE;

1390 1391 1392 1393 1394 1395 1396 1397 1398
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1399 1400 1401 1402 1403
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1404
	watermark += (2UL << order);
1405 1406
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
				 alloc_flags, wmark_target))
1407 1408 1409 1410 1411 1412
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1413 1414
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1415 1416 1417 1418 1419 1420 1421
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1422
		return COMPACT_NOT_SUITABLE_ZONE;
1423 1424 1425 1426

	return COMPACT_CONTINUE;
}

1427
enum compact_result compaction_suitable(struct zone *zone, int order,
1428 1429
					unsigned int alloc_flags,
					int classzone_idx)
1430
{
1431
	enum compact_result ret;
1432

1433 1434
	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1435 1436 1437 1438 1439 1440 1441
	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
		available = zone_reclaimable_pages(zone) / order;
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
		if (compact_result != COMPACT_SKIPPED &&
				compact_result != COMPACT_NOT_SUITABLE_ZONE)
			return true;
	}

	return false;
}

1475
static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1476
{
1477
	enum compact_result ret;
1478
	unsigned long start_pfn = zone->zone_start_pfn;
1479
	unsigned long end_pfn = zone_end_pfn(zone);
1480
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1481
	const bool sync = cc->mode != MIGRATE_ASYNC;
1482

1483 1484
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1485 1486
	/* Compaction is likely to fail */
	if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
1487
		return ret;
1488 1489 1490

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
1491

1492 1493
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1494
	 * is about to be retried after being deferred.
1495
	 */
1496
	if (compaction_restarting(zone, cc->order))
1497 1498
		__reset_isolation_suitable(zone);

1499 1500 1501 1502 1503
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1504
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1505
	cc->free_pfn = zone->compact_cached_free_pfn;
1506
	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1507
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1508 1509
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
1510
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1511
		cc->migrate_pfn = start_pfn;
1512 1513
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1514
	}
1515 1516 1517 1518

	if (cc->migrate_pfn == start_pfn)
		cc->whole_zone = true;

1519
	cc->last_migrated_pfn = 0;
1520

1521 1522
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1523

1524 1525
	migrate_prep_local();

1526 1527
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1528
		int err;
1529

1530 1531
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
1532
			ret = COMPACT_CONTENDED;
1533
			putback_movable_pages(&cc->migratepages);
1534
			cc->nr_migratepages = 0;
1535 1536
			goto out;
		case ISOLATE_NONE:
1537 1538 1539 1540 1541 1542
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1543 1544 1545
		case ISOLATE_SUCCESS:
			;
		}
1546

1547
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1548
				compaction_free, (unsigned long)cc, cc->mode,
1549
				MR_COMPACTION);
1550

1551 1552
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1553

1554 1555
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1556
		if (err) {
1557
			putback_movable_pages(&cc->migratepages);
1558 1559 1560 1561
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1562
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1563
				ret = COMPACT_CONTENDED;
1564 1565
				goto out;
			}
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
				cc->last_migrated_pfn = 0;

			}
1578
		}
1579 1580 1581 1582 1583 1584 1585 1586 1587

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
1588
		if (cc->order > 0 && cc->last_migrated_pfn) {
1589 1590
			int cpu;
			unsigned long current_block_start =
1591
				block_start_pfn(cc->migrate_pfn, cc->order);
1592

1593
			if (cc->last_migrated_pfn < current_block_start) {
1594 1595 1596 1597 1598
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
1599
				cc->last_migrated_pfn = 0;
1600 1601 1602
			}
		}

1603 1604
	}

1605
out:
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
1616
		free_pfn = pageblock_start_pfn(free_pfn);
1617 1618 1619 1620 1621 1622 1623
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1624

1625 1626
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1627

1628 1629 1630
	if (ret == COMPACT_CONTENDED)
		ret = COMPACT_PARTIAL;

1631 1632
	return ret;
}
1633

1634
static enum compact_result compact_zone_order(struct zone *zone, int order,
1635
		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1636
		unsigned int alloc_flags, int classzone_idx)
1637
{
1638
	enum compact_result ret;
1639 1640 1641 1642
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1643
		.gfp_mask = gfp_mask,
1644
		.zone = zone,
1645
		.mode = mode,
1646 1647
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1648
		.direct_compaction = true,
1649 1650 1651 1652
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1653 1654 1655 1656 1657 1658 1659
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1660 1661
}

1662 1663
int sysctl_extfrag_threshold = 500;

1664 1665 1666
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1667 1668 1669
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1670
 * @mode: The migration mode for async, sync light, or sync migration
1671 1672
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1673 1674 1675
 *
 * This is the main entry point for direct page compaction.
 */
1676
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1677 1678
		unsigned int alloc_flags, const struct alloc_context *ac,
		enum migrate_mode mode, int *contended)
1679 1680 1681 1682 1683
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1684
	enum compact_result rc = COMPACT_SKIPPED;
1685 1686 1687
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1688

1689
	/* Check if the GFP flags allow compaction */
1690
	if (!order || !may_enter_fs || !may_perform_io)
1691
		return COMPACT_SKIPPED;
1692

1693 1694
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);

1695
	/* Compact each zone in the list */
1696 1697
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1698
		enum compact_result status;
1699
		int zone_contended;
1700

1701 1702
		if (compaction_deferred(zone, order)) {
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1703
			continue;
1704
		}
1705

1706
		status = compact_zone_order(zone, order, gfp_mask, mode,
1707
				&zone_contended, alloc_flags,
1708
				ac_classzone_idx(ac));
1709
		rc = max(status, rc);
1710 1711 1712 1713 1714
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1715

1716
		/* If a normal allocation would succeed, stop compacting */
1717
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1718
					ac_classzone_idx(ac), alloc_flags)) {
1719 1720 1721 1722 1723 1724 1725
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

1740 1741
		if (mode != MIGRATE_ASYNC && (status == COMPACT_COMPLETE ||
					status == COMPACT_PARTIAL_SKIPPED)) {
1742 1743 1744 1745 1746 1747 1748
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1770 1771
	}

1772 1773 1774 1775
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
1776
	if (rc > COMPACT_INACTIVE && all_zones_contended)
1777 1778
		*contended = COMPACT_CONTENDED_LOCK;

1779 1780 1781 1782
	return rc;
}


1783
/* Compact all zones within a node */
1784
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1795 1796 1797 1798 1799
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1800

1801 1802 1803 1804 1805
		/*
		 * When called via /proc/sys/vm/compact_memory
		 * this makes sure we compact the whole zone regardless of
		 * cached scanner positions.
		 */
1806
		if (is_via_compact_memory(cc->order))
1807 1808
			__reset_isolation_suitable(zone);

1809 1810
		if (is_via_compact_memory(cc->order) ||
				!compaction_deferred(zone, cc->order))
1811
			compact_zone(zone, cc);
1812

1813 1814
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1815 1816 1817 1818 1819 1820 1821

		if (is_via_compact_memory(cc->order))
			continue;

		if (zone_watermark_ok(zone, cc->order,
				low_wmark_pages(zone), 0, 0))
			compaction_defer_reset(zone, cc->order, false);
1822 1823 1824
	}
}

1825
void compact_pgdat(pg_data_t *pgdat, int order)
1826 1827 1828
{
	struct compact_control cc = {
		.order = order,
1829
		.mode = MIGRATE_ASYNC,
1830 1831
	};

1832 1833 1834
	if (!order)
		return;

1835
	__compact_pgdat(pgdat, &cc);
1836 1837
}

1838
static void compact_node(int nid)
1839 1840 1841
{
	struct compact_control cc = {
		.order = -1,
1842
		.mode = MIGRATE_SYNC,
1843
		.ignore_skip_hint = true,
1844 1845
	};

1846
	__compact_pgdat(NODE_DATA(nid), &cc);
1847 1848
}

1849
/* Compact all nodes in the system */
1850
static void compact_nodes(void)
1851 1852 1853
{
	int nid;

1854 1855 1856
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1857 1858 1859 1860 1861 1862 1863
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

1864 1865 1866 1867
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
1868 1869 1870 1871
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1872
		compact_nodes();
1873 1874 1875

	return 0;
}
1876

1877 1878 1879 1880 1881 1882 1883 1884
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1885
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1886
static ssize_t sysfs_compact_node(struct device *dev,
1887
			struct device_attribute *attr,
1888 1889
			const char *buf, size_t count)
{
1890 1891 1892 1893 1894 1895 1896 1897
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1898 1899 1900

	return count;
}
1901
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1902 1903 1904

int compaction_register_node(struct node *node)
{
1905
	return device_create_file(&node->dev, &dev_attr_compact);
1906 1907 1908 1909
}

void compaction_unregister_node(struct node *node)
{
1910
	return device_remove_file(&node->dev, &dev_attr_compact);
1911 1912
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1913

1914 1915
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
1916
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1917 1918 1919 1920 1921 1922 1923 1924
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

1925
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
		.ignore_skip_hint = true,

	};
	bool success = false;

	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
	count_vm_event(KCOMPACTD_WAKE);

1960
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

1980 1981
		if (kthread_should_stop())
			return;
1982 1983 1984 1985 1986 1987
		status = compact_zone(zone, &cc);

		if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
						cc.classzone_idx, 0)) {
			success = true;
			compaction_defer_reset(zone, cc.order, false);
1988
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

	if (!waitqueue_active(&pgdat->kcompactd_wait))
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

		kcompactd_do_work(pgdat);
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
{
	int nid;

	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
		for_each_node_state(nid, N_MEMORY) {
			pg_data_t *pgdat = NODE_DATA(nid);
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);

			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
				/* One of our CPUs online: restore mask */
				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
		}
	}
	return NOTIFY_OK;
}

static int __init kcompactd_init(void)
{
	int nid;

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}
subsys_initcall(kcompactd_init)

2135
#endif /* CONFIG_COMPACTION */