compaction.c 48.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19
#include <linux/kasan.h>
20 21
#include "internal.h"

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 39 40 41 42 43 44
#ifdef CONFIG_TRACEPOINTS
static const char *const compaction_status_string[] = {
	"deferred",
	"skipped",
	"continue",
	"partial",
	"complete",
45 46
	"no_suitable_page",
	"not_suitable_zone",
47 48
};
#endif
49

50 51 52
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

53 54 55
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
56
	unsigned long high_pfn = 0;
57 58

	list_for_each_entry_safe(page, next, freelist, lru) {
59
		unsigned long pfn = page_to_pfn(page);
60 61
		list_del(&page->lru);
		__free_page(page);
62 63
		if (pfn > high_pfn)
			high_pfn = pfn;
64 65
	}

66
	return high_pfn;
67 68
}

69 70 71 72 73 74 75
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
76
		kasan_alloc_pages(page, 0);
77 78 79
	}
}

80 81 82 83 84
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

128
#ifdef CONFIG_COMPACTION
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

200 201 202 203 204 205 206 207 208 209
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

210 211 212 213 214 215 216
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
	zone->compact_cached_free_pfn = zone_end_pfn(zone);
}

217 218 219 220 221
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
222
static void __reset_isolation_suitable(struct zone *zone)
223 224
{
	unsigned long start_pfn = zone->zone_start_pfn;
225
	unsigned long end_pfn = zone_end_pfn(zone);
226 227
	unsigned long pfn;

228
	zone->compact_blockskip_flush = false;
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
245 246

	reset_cached_positions(zone);
247 248
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

264 265
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
266
 * future. The information is later cleared by __reset_isolation_suitable().
267
 */
268 269
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
270
			bool migrate_scanner)
271
{
272
	struct zone *zone = cc->zone;
273
	unsigned long pfn;
274 275 276 277

	if (cc->ignore_skip_hint)
		return;

278 279 280
	if (!page)
		return;

281 282 283
	if (nr_isolated)
		return;

284
	set_pageblock_skip(page);
285

286 287 288 289 290 291
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
292 293
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
294 295 296 297
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
298
	}
299 300 301 302 303 304 305 306
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

307 308
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
309
			bool migrate_scanner)
310 311 312 313
{
}
#endif /* CONFIG_COMPACTION */

314 315 316 317 318 319 320 321 322 323
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
324
{
325 326 327 328 329 330 331 332
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
333

334
	return true;
335 336
}

337 338
/*
 * Compaction requires the taking of some coarse locks that are potentially
339 340 341 342 343 344 345
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
346
 *
347 348 349 350
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
351
 */
352 353
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
354
{
355 356 357 358
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
359

360 361 362 363
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
364

365
	if (need_resched()) {
366
		if (cc->mode == MIGRATE_ASYNC) {
367 368
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
369 370 371 372
		}
		cond_resched();
	}

373
	return false;
374 375
}

376 377 378
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
379
 * compaction. This is similar to what compact_unlock_should_abort() does, but
380 381 382 383 384 385 386 387 388 389
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
390
			cc->contended = COMPACT_CONTENDED_SCHED;
391 392 393 394 395 396 397 398 399
			return true;
		}

		cond_resched();
	}

	return false;
}

400
/*
401 402 403
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
404
 */
405
static unsigned long isolate_freepages_block(struct compact_control *cc,
406
				unsigned long *start_pfn,
407 408 409
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
410
{
411
	int nr_scanned = 0, total_isolated = 0;
412
	struct page *cursor, *valid_page = NULL;
413
	unsigned long flags = 0;
414
	bool locked = false;
415
	unsigned long blockpfn = *start_pfn;
416 417 418

	cursor = pfn_to_page(blockpfn);

419
	/* Isolate free pages. */
420 421 422 423
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

424 425 426 427 428 429 430 431 432 433
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

434
		nr_scanned++;
435
		if (!pfn_valid_within(blockpfn))
436 437
			goto isolate_fail;

438 439
		if (!valid_page)
			valid_page = page;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER)) {
				blockpfn += (1UL << comp_order) - 1;
				cursor += (1UL << comp_order) - 1;
			}

			goto isolate_fail;
		}

458
		if (!PageBuddy(page))
459
			goto isolate_fail;
460 461

		/*
462 463 464 465 466
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
467
		 */
468 469 470 471 472 473 474 475 476
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
477 478
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
479 480
			if (!locked)
				break;
481

482 483 484 485
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
486 487 488 489 490 491 492 493 494 495 496

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
497 498 499 500 501 502 503
			cc->nr_freepages += isolated;
			if (!strict &&
				cc->nr_migratepages <= cc->nr_freepages) {
				blockpfn += isolated;
				break;
			}

504 505
			blockpfn += isolated - 1;
			cursor += isolated - 1;
506
			continue;
507
		}
508 509 510 511 512 513 514

isolate_fail:
		if (strict)
			break;
		else
			continue;

515 516
	}

517 518 519 520 521 522 523
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

524 525 526
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

527 528 529
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

530 531 532 533 534
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
535
	if (strict && blockpfn < end_pfn)
536 537 538 539 540
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

541 542
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
543
		update_pageblock_skip(cc, valid_page, total_isolated, false);
544

545
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
546
	if (total_isolated)
547
		count_compact_events(COMPACTISOLATED, total_isolated);
548 549 550
	return total_isolated;
}

551 552 553 554 555 556 557 558 559 560 561 562 563
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
564
unsigned long
565 566
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
567
{
568
	unsigned long isolated, pfn, block_end_pfn;
569 570
	LIST_HEAD(freelist);

571 572 573 574 575
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn += isolated,
				block_end_pfn += pageblock_nr_pages) {
576 577
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
578 579 580

		block_end_pfn = min(block_end_pfn, end_pfn);

581 582 583 584 585 586 587 588 589 590
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

591 592 593
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
			break;

594 595
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

625
/* Update the number of anon and file isolated pages in the zone */
626
static void acct_isolated(struct zone *zone, struct compact_control *cc)
627 628
{
	struct page *page;
629
	unsigned int count[2] = { 0, };
630

631 632 633
	if (list_empty(&cc->migratepages))
		return;

634 635
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
636

637 638
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
639 640 641 642 643
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
644
	unsigned long active, inactive, isolated;
645 646 647

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
648 649
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
650 651 652
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

653
	return isolated > (inactive + active) / 2;
654 655
}

656
/**
657 658
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
659
 * @cc:		Compaction control structure.
660 661 662
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
663 664
 *
 * Isolate all pages that can be migrated from the range specified by
665 666 667 668
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
669
 *
670 671 672
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
673
 */
674 675 676
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
677
{
678
	struct zone *zone = cc->zone;
679
	unsigned long nr_scanned = 0, nr_isolated = 0;
680
	struct list_head *migratelist = &cc->migratepages;
681
	struct lruvec *lruvec;
682
	unsigned long flags = 0;
683
	bool locked = false;
684
	struct page *page = NULL, *valid_page = NULL;
685
	unsigned long start_pfn = low_pfn;
686 687 688 689 690 691 692

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
693
		/* async migration should just abort */
694
		if (cc->mode == MIGRATE_ASYNC)
695
			return 0;
696

697 698 699
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
700
			return 0;
701 702
	}

703 704
	if (compact_should_abort(cc))
		return 0;
705

706 707
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
708 709
		bool is_lru;

710 711 712 713 714 715 716 717 718
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
719

720 721
		if (!pfn_valid_within(low_pfn))
			continue;
722
		nr_scanned++;
723 724

		page = pfn_to_page(low_pfn);
725

726 727 728
		if (!valid_page)
			valid_page = page;

729
		/*
730 731 732 733
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
734
		 */
735 736 737 738 739 740 741 742 743 744
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
745
			continue;
746
		}
747

748 749 750 751 752
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
753 754
		is_lru = PageLRU(page);
		if (!is_lru) {
755
			if (unlikely(balloon_page_movable(page))) {
756
				if (balloon_page_isolate(page)) {
757
					/* Successfully isolated */
758
					goto isolate_success;
759 760 761
				}
			}
		}
762 763

		/*
764 765 766 767 768
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
769
		 */
770 771 772 773 774
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER))
				low_pfn += (1UL << comp_order) - 1;
775

776 777 778
			continue;
		}

779 780 781
		if (!is_lru)
			continue;

782 783 784 785 786 787 788 789 790
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

791 792
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
793 794
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
795 796
			if (!locked)
				break;
797

798
			/* Recheck PageLRU and PageCompound under lock */
799 800
			if (!PageLRU(page))
				continue;
801 802 803 804 805 806 807 808

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
				low_pfn += (1UL << compound_order(page)) - 1;
809 810
				continue;
			}
811 812
		}

813 814
		lruvec = mem_cgroup_page_lruvec(page, zone);

815
		/* Try isolate the page */
816
		if (__isolate_lru_page(page, isolate_mode) != 0)
817 818
			continue;

819
		VM_BUG_ON_PAGE(PageCompound(page), page);
820

821
		/* Successfully isolated */
822
		del_page_from_lru_list(page, lruvec, page_lru(page));
823 824

isolate_success:
825 826
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
827
		nr_isolated++;
828 829

		/* Avoid isolating too much */
830 831
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
832
			break;
833
		}
834 835
	}

836 837 838 839 840 841 842
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

843 844
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
845

846 847 848 849
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
850
	if (low_pfn == end_pfn)
851
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
852

853 854
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
855

856
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
857
	if (nr_isolated)
858
		count_compact_events(COMPACTISOLATED, nr_isolated);
859

860 861 862
	return low_pfn;
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
	unsigned long pfn, block_end_pfn;

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn = block_end_pfn,
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

888
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

		/*
		 * In case of fatal failure, release everything that might
		 * have been isolated in the previous iteration, and signal
		 * the failure back to caller.
		 */
		if (!pfn) {
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			break;
		}
904 905 906

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
907 908 909 910 911 912
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

913 914
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
		return true;

	/* Otherwise skip the block */
	return false;
}

938 939 940 941 942 943 944 945 946 947
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

948
/*
949 950
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
951
 */
952
static void isolate_freepages(struct compact_control *cc)
953
{
954
	struct zone *zone = cc->zone;
955
	struct page *page;
956
	unsigned long block_start_pfn;	/* start of current pageblock */
957
	unsigned long isolate_start_pfn; /* exact pfn we start at */
958 959
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
960
	struct list_head *freelist = &cc->freepages;
961

962 963
	/*
	 * Initialise the free scanner. The starting point is where we last
964
	 * successfully isolated from, zone-cached value, or the end of the
965 966
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
967 968 969
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
970 971
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
972
	 */
973
	isolate_start_pfn = cc->free_pfn;
974 975 976
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
977
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
978

979 980 981 982 983
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
984
	for (; block_start_pfn >= low_pfn;
985
				block_end_pfn = block_start_pfn,
986 987
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
988

989 990 991
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
992
		 * to schedule, or even abort async compaction.
993
		 */
994 995 996
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
997

998 999 1000
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1001 1002 1003
			continue;

		/* Check the block is suitable for migration */
1004
		if (!suitable_migration_target(page))
1005
			continue;
1006

1007 1008 1009 1010
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1011
		/* Found a block suitable for isolating free pages from. */
1012
		isolate_freepages_block(cc, &isolate_start_pfn,
1013
					block_end_pfn, freelist, false);
1014

1015
		/*
1016 1017
		 * If we isolated enough freepages, or aborted due to async
		 * compaction being contended, terminate the loop.
1018 1019 1020 1021 1022 1023 1024 1025
		 * Remember where the free scanner should restart next time,
		 * which is where isolate_freepages_block() left off.
		 * But if it scanned the whole pageblock, isolate_start_pfn
		 * now points at block_end_pfn, which is the start of the next
		 * pageblock.
		 * In that case we will however want to restart at the start
		 * of the previous pageblock.
		 */
1026 1027 1028 1029 1030
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
			if (isolate_start_pfn >= block_end_pfn)
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1031
			break;
1032 1033 1034 1035 1036 1037 1038
		} else {
			/*
			 * isolate_freepages_block() should not terminate
			 * prematurely unless contended, or isolated enough
			 */
			VM_BUG_ON(isolate_start_pfn < block_end_pfn);
		}
1039 1040 1041 1042 1043
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

1044
	/*
1045 1046 1047 1048
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1049
	 */
1050
	cc->free_pfn = isolate_start_pfn;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1064 1065 1066 1067
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1068
	if (list_empty(&cc->freepages)) {
1069
		if (!cc->contended)
1070
			isolate_freepages(cc);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1096 1097 1098 1099 1100 1101 1102
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1103 1104 1105 1106 1107 1108
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1109
/*
1110 1111 1112
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1113 1114 1115 1116 1117
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
1118 1119
	struct page *page;
	const isolate_mode_t isolate_mode =
1120
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1121
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1122

1123 1124 1125 1126 1127
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1128 1129

	/* Only scan within a pageblock boundary */
1130
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1131

1132 1133 1134 1135 1136 1137
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
	for (; end_pfn <= cc->free_pfn;
			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1138

1139 1140 1141 1142 1143 1144 1145 1146
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1147

1148 1149
		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
		if (!page)
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
								isolate_mode);

1169 1170
		if (!low_pfn || cc->contended) {
			acct_isolated(zone, cc);
1171
			return ISOLATE_ABORT;
1172
		}
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1183 1184
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1185

1186
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1187 1188
}

1189
static int __compact_finished(struct zone *zone, struct compact_control *cc,
1190
			    const int migratetype)
1191
{
1192
	unsigned int order;
1193
	unsigned long watermark;
1194

1195
	if (cc->contended || fatal_signal_pending(current))
1196 1197
		return COMPACT_PARTIAL;

1198
	/* Compaction run completes if the migrate and free scanner meet */
1199
	if (compact_scanners_met(cc)) {
1200
		/* Let the next compaction start anew. */
1201
		reset_cached_positions(zone);
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

1212
		return COMPACT_COMPLETE;
1213
	}
1214

1215 1216 1217 1218
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
1219 1220 1221
	if (cc->order == -1)
		return COMPACT_CONTINUE;

1222 1223 1224
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1225 1226
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1227 1228
		return COMPACT_CONTINUE;

1229
	/* Direct compactor: Is a suitable page free? */
1230 1231
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1232
		bool can_steal;
1233 1234

		/* Job done if page is free of the right migratetype */
1235
		if (!list_empty(&area->free_list[migratetype]))
1236 1237
			return COMPACT_PARTIAL;

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
			return COMPACT_PARTIAL;
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
						true, &can_steal) != -1)
1250 1251 1252
			return COMPACT_PARTIAL;
	}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	return COMPACT_NO_SUITABLE_PAGE;
}

static int compact_finished(struct zone *zone, struct compact_control *cc,
			    const int migratetype)
{
	int ret;

	ret = __compact_finished(zone, cc, migratetype);
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1267 1268
}

1269 1270 1271 1272 1273 1274 1275
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1276
static unsigned long __compaction_suitable(struct zone *zone, int order,
1277
					int alloc_flags, int classzone_idx)
1278 1279 1280 1281
{
	int fragindex;
	unsigned long watermark;

1282 1283 1284 1285 1286 1287 1288
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

1289 1290 1291 1292 1293 1294 1295 1296 1297
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1298 1299 1300 1301 1302
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1303 1304
	watermark += (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1305 1306 1307 1308 1309 1310
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1311 1312
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1313 1314 1315 1316 1317 1318 1319
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1320
		return COMPACT_NOT_SUITABLE_ZONE;
1321 1322 1323 1324

	return COMPACT_CONTINUE;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
unsigned long compaction_suitable(struct zone *zone, int order,
					int alloc_flags, int classzone_idx)
{
	unsigned long ret;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1338 1339 1340
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
1341
	unsigned long start_pfn = zone->zone_start_pfn;
1342
	unsigned long end_pfn = zone_end_pfn(zone);
1343
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1344
	const bool sync = cc->mode != MIGRATE_ASYNC;
1345
	unsigned long last_migrated_pfn = 0;
1346

1347 1348
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1359 1360 1361 1362 1363 1364 1365 1366
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1367 1368 1369 1370 1371
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1372
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1373 1374 1375 1376 1377 1378 1379
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
1380 1381
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1382
	}
1383

1384 1385
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1386

1387 1388
	migrate_prep_local();

1389 1390
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1391
		int err;
1392
		unsigned long isolate_start_pfn = cc->migrate_pfn;
1393

1394 1395 1396
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1397
			putback_movable_pages(&cc->migratepages);
1398
			cc->nr_migratepages = 0;
1399 1400
			goto out;
		case ISOLATE_NONE:
1401 1402 1403 1404 1405 1406
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1407 1408 1409
		case ISOLATE_SUCCESS:
			;
		}
1410

1411
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1412
				compaction_free, (unsigned long)cc, cc->mode,
1413
				MR_COMPACTION);
1414

1415 1416
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1417

1418 1419
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1420
		if (err) {
1421
			putback_movable_pages(&cc->migratepages);
1422 1423 1424 1425
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1426
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1427 1428 1429
				ret = COMPACT_PARTIAL;
				goto out;
			}
1430
		}
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator. We use the pfn that
		 * isolate_migratepages() started from in this loop iteration
		 * - this is the lowest page that could have been isolated and
		 * then freed by migration.
		 */
		if (!last_migrated_pfn)
			last_migrated_pfn = isolate_start_pfn;

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
		if (cc->order > 0 && last_migrated_pfn) {
			int cpu;
			unsigned long current_block_start =
				cc->migrate_pfn & ~((1UL << cc->order) - 1);

			if (last_migrated_pfn < current_block_start) {
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
				last_migrated_pfn = 0;
			}
		}

1465 1466
	}

1467
out:
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
		free_pfn &= ~(pageblock_nr_pages-1);
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1486

1487 1488
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1489

1490 1491
	return ret;
}
1492

1493
static unsigned long compact_zone_order(struct zone *zone, int order,
1494 1495
		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
		int alloc_flags, int classzone_idx)
1496
{
1497
	unsigned long ret;
1498 1499 1500 1501
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1502
		.gfp_mask = gfp_mask,
1503
		.zone = zone,
1504
		.mode = mode,
1505 1506
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1507 1508 1509 1510
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1511 1512 1513 1514 1515 1516 1517
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1518 1519
}

1520 1521
int sysctl_extfrag_threshold = 500;

1522 1523 1524
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1525 1526 1527
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1528
 * @mode: The migration mode for async, sync light, or sync migration
1529 1530
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1531 1532 1533
 *
 * This is the main entry point for direct page compaction.
 */
1534 1535 1536
unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
			int alloc_flags, const struct alloc_context *ac,
			enum migrate_mode mode, int *contended)
1537 1538 1539 1540 1541
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1542
	int rc = COMPACT_DEFERRED;
1543 1544 1545
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1546

1547
	/* Check if the GFP flags allow compaction */
1548
	if (!order || !may_enter_fs || !may_perform_io)
1549
		return COMPACT_SKIPPED;
1550

1551 1552
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);

1553
	/* Compact each zone in the list */
1554 1555
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1556
		int status;
1557
		int zone_contended;
1558

1559 1560 1561
		if (compaction_deferred(zone, order))
			continue;

1562
		status = compact_zone_order(zone, order, gfp_mask, mode,
1563 1564
				&zone_contended, alloc_flags,
				ac->classzone_idx);
1565
		rc = max(status, rc);
1566 1567 1568 1569 1570
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1571

1572
		/* If a normal allocation would succeed, stop compacting */
1573
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1574
					ac->classzone_idx, alloc_flags)) {
1575 1576 1577 1578 1579 1580 1581
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

1596
		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1597 1598 1599 1600 1601 1602 1603
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1625 1626
	}

1627 1628 1629 1630 1631 1632 1633
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1634 1635 1636 1637
	return rc;
}


1638
/* Compact all zones within a node */
1639
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1650 1651 1652 1653 1654
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1655

1656 1657 1658 1659 1660 1661 1662 1663
		/*
		 * When called via /proc/sys/vm/compact_memory
		 * this makes sure we compact the whole zone regardless of
		 * cached scanner positions.
		 */
		if (cc->order == -1)
			__reset_isolation_suitable(zone);

1664
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1665
			compact_zone(zone, cc);
1666

1667
		if (cc->order > 0) {
1668 1669 1670
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1671 1672
		}

1673 1674
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1675 1676 1677
	}
}

1678
void compact_pgdat(pg_data_t *pgdat, int order)
1679 1680 1681
{
	struct compact_control cc = {
		.order = order,
1682
		.mode = MIGRATE_ASYNC,
1683 1684
	};

1685 1686 1687
	if (!order)
		return;

1688
	__compact_pgdat(pgdat, &cc);
1689 1690
}

1691
static void compact_node(int nid)
1692 1693 1694
{
	struct compact_control cc = {
		.order = -1,
1695
		.mode = MIGRATE_SYNC,
1696
		.ignore_skip_hint = true,
1697 1698
	};

1699
	__compact_pgdat(NODE_DATA(nid), &cc);
1700 1701
}

1702
/* Compact all nodes in the system */
1703
static void compact_nodes(void)
1704 1705 1706
{
	int nid;

1707 1708 1709
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1722
		compact_nodes();
1723 1724 1725

	return 0;
}
1726

1727 1728 1729 1730 1731 1732 1733 1734
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1735
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1736
static ssize_t sysfs_compact_node(struct device *dev,
1737
			struct device_attribute *attr,
1738 1739
			const char *buf, size_t count)
{
1740 1741 1742 1743 1744 1745 1746 1747
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1748 1749 1750

	return count;
}
1751
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1752 1753 1754

int compaction_register_node(struct node *node)
{
1755
	return device_create_file(&node->dev, &dev_attr_compact);
1756 1757 1758 1759
}

void compaction_unregister_node(struct node *node)
{
1760
	return device_remove_file(&node->dev, &dev_attr_compact);
1761 1762
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1763 1764

#endif /* CONFIG_COMPACTION */