compaction.c 33.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36 37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

38 39 40
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

55 56 57 58 59 60 61 62 63 64
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

65 66 67 68 69
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
86
static void __reset_isolation_suitable(struct zone *zone)
87 88
{
	unsigned long start_pfn = zone->zone_start_pfn;
89
	unsigned long end_pfn = zone_end_pfn(zone);
90 91
	unsigned long pfn;

92 93
	zone->compact_cached_migrate_pfn = start_pfn;
	zone->compact_cached_free_pfn = end_pfn;
94
	zone->compact_blockskip_flush = false;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

128 129
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
130
 * future. The information is later cleared by __reset_isolation_suitable().
131
 */
132 133 134
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
135
{
136
	struct zone *zone = cc->zone;
137 138 139 140

	if (cc->ignore_skip_hint)
		return;

141 142 143
	if (!page)
		return;

144 145
	if (!nr_isolated) {
		unsigned long pfn = page_to_pfn(page);
146
		set_pageblock_skip(page);
147 148 149 150 151 152 153 154 155 156 157 158

		/* Update where compaction should restart */
		if (migrate_scanner) {
			if (!cc->finished_update_migrate &&
			    pfn > zone->compact_cached_migrate_pfn)
				zone->compact_cached_migrate_pfn = pfn;
		} else {
			if (!cc->finished_update_free &&
			    pfn < zone->compact_cached_free_pfn)
				zone->compact_cached_free_pfn = pfn;
		}
	}
159 160 161 162 163 164 165 166
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

167 168 169
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
170 171 172 173
{
}
#endif /* CONFIG_COMPACTION */

174 175 176 177 178
static inline bool should_release_lock(spinlock_t *lock)
{
	return need_resched() || spin_is_contended(lock);
}

179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
191
	if (should_release_lock(lock)) {
192 193 194 195 196 197 198
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
199
			cc->contended = true;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

static inline bool compact_trylock_irqsave(spinlock_t *lock,
			unsigned long *flags, struct compact_control *cc)
{
	return compact_checklock_irqsave(lock, flags, false, cc);
}

217 218 219 220 221 222
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
223 224 225 226
	if (migratetype == MIGRATE_RESERVE)
		return false;

	if (is_migrate_isolate(migratetype))
227 228 229 230 231 232 233 234 235 236 237 238 239 240
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(migratetype))
		return true;

	/* Otherwise skip the block */
	return false;
}

241
/*
242 243 244
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
245
 */
246 247
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
248 249 250
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
251
{
252
	int nr_scanned = 0, total_isolated = 0;
253
	struct page *cursor, *valid_page = NULL;
254 255 256
	unsigned long nr_strict_required = end_pfn - blockpfn;
	unsigned long flags;
	bool locked = false;
257 258 259

	cursor = pfn_to_page(blockpfn);

260
	/* Isolate free pages. */
261 262 263 264
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

265
		nr_scanned++;
266 267
		if (!pfn_valid_within(blockpfn))
			continue;
268 269
		if (!valid_page)
			valid_page = page;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
		if (!PageBuddy(page))
			continue;

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a suitable migration target under lock */
		if (!strict && !suitable_migration_target(page))
			break;
289

290 291
		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
292 293 294 295
			continue;

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
296
		if (!isolated && strict)
297
			break;
298 299 300 301 302 303 304 305 306 307 308 309 310
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

311
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
312 313 314 315 316 317

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
318
	if (strict && nr_strict_required > total_isolated)
319 320 321 322 323
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

324 325
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
326
		update_pageblock_skip(cc, valid_page, total_isolated, false);
327

328
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
329
	if (total_isolated)
330
		count_compact_events(COMPACTISOLATED, total_isolated);
331 332 333
	return total_isolated;
}

334 335 336 337 338 339 340 341 342 343 344 345 346
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
347
unsigned long
348 349
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
350
{
351
	unsigned long isolated, pfn, block_end_pfn;
352 353 354
	LIST_HEAD(freelist);

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
355
		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
356 357 358 359 360 361 362 363 364
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

365
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

396
/* Update the number of anon and file isolated pages in the zone */
397
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
398 399
{
	struct page *page;
400
	unsigned int count[2] = { 0, };
401

402 403
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
404

405 406 407 408 409 410 411 412
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
413 414 415 416 417
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
418
	unsigned long active, inactive, isolated;
419 420 421

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
422 423
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
424 425 426
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

427
	return isolated > (inactive + active) / 2;
428 429
}

430 431 432 433 434 435
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
M
Minchan Kim 已提交
436
 * @unevictable: true if it allows to isolate unevictable pages
437 438 439 440 441 442 443 444 445 446 447 448
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
449
 */
450
unsigned long
451
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
M
Minchan Kim 已提交
452
		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
453
{
454
	unsigned long last_pageblock_nr = 0, pageblock_nr;
455
	unsigned long nr_scanned = 0, nr_isolated = 0;
456
	struct list_head *migratelist = &cc->migratepages;
457
	isolate_mode_t mode = 0;
458
	struct lruvec *lruvec;
459
	unsigned long flags;
460
	bool locked = false;
461
	struct page *page = NULL, *valid_page = NULL;
462
	bool skipped_async_unsuitable = false;
463 464 465 466 467 468 469

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
470
		/* async migration should just abort */
471
		if (!cc->sync)
472
			return 0;
473

474 475 476
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
477
			return 0;
478 479 480
	}

	/* Time to isolate some pages for migration */
481
	cond_resched();
482
	for (; low_pfn < end_pfn; low_pfn++) {
483
		/* give a chance to irqs before checking need_resched() */
484 485 486 487 488
		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
489
		}
490

491 492 493 494 495 496 497 498 499 500 501 502 503
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

504 505
		if (!pfn_valid_within(low_pfn))
			continue;
506
		nr_scanned++;
507

508 509 510 511 512 513
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
514
		page = pfn_to_page(low_pfn);
515 516 517
		if (page_zone(page) != zone)
			continue;

518 519 520 521 522 523 524 525
		if (!valid_page)
			valid_page = page;

		/* If isolation recently failed, do not retry */
		pageblock_nr = low_pfn >> pageblock_order;
		if (!isolation_suitable(cc, page))
			goto next_pageblock;

526
		/* Skip if free */
527 528 529
		if (PageBuddy(page))
			continue;

530 531 532 533 534
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
535
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
536
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
537
			cc->finished_update_migrate = true;
538
			skipped_async_unsuitable = true;
539
			goto next_pageblock;
540 541
		}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
					cc->finished_update_migrate = true;
					list_add(&page->lru, migratelist);
					cc->nr_migratepages++;
					nr_isolated++;
					goto check_compact_cluster;
				}
			}
558
			continue;
559
		}
560 561

		/*
562 563 564 565 566 567 568 569
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
570
		 */
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
		if (PageTransHuge(page)) {
			if (!locked)
				goto next_pageblock;
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
587 588 589 590 591
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

592
		if (!cc->sync)
593 594
			mode |= ISOLATE_ASYNC_MIGRATE;

M
Minchan Kim 已提交
595 596 597
		if (unevictable)
			mode |= ISOLATE_UNEVICTABLE;

598 599
		lruvec = mem_cgroup_page_lruvec(page, zone);

600
		/* Try isolate the page */
601
		if (__isolate_lru_page(page, mode) != 0)
602 603
			continue;

604
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
605

606
		/* Successfully isolated */
607
		cc->finished_update_migrate = true;
608
		del_page_from_lru_list(page, lruvec, page_lru(page));
609 610
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
611
		nr_isolated++;
612

613
check_compact_cluster:
614
		/* Avoid isolating too much */
615 616
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
617
			break;
618
		}
619 620 621 622

		continue;

next_pageblock:
623
		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
624
		last_pageblock_nr = pageblock_nr;
625 626
	}

627
	acct_isolated(zone, locked, cc);
628

629 630
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
631

632 633 634 635 636 637 638
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 * This is not done when pageblock was skipped due to being unsuitable
	 * for async compaction, so that eventual sync compaction can try.
	 */
	if (low_pfn == end_pfn && !skipped_async_unsuitable)
639
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
640

641 642
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

643
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
644
	if (nr_isolated)
645
		count_compact_events(COMPACTISOLATED, nr_isolated);
646

647 648 649
	return low_pfn;
}

650 651
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
652
/*
653 654
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
655
 */
656 657
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
658
{
659
	struct page *page;
660
	unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
661 662
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
663

664 665 666 667 668 669
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
670
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
671

672 673 674 675 676 677
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
678

679
	z_end_pfn = zone_end_pfn(zone);
680

681 682 683 684 685
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
686
	for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
687 688
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
689

690 691 692 693 694 695 696
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
		 * to schedule.
		 */
		cond_resched();

697 698
		if (!pfn_valid(pfn))
			continue;
699

700 701 702 703 704 705 706 707 708 709 710 711
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
712
		if (!suitable_migration_target(page))
713
			continue;
714

715 716 717 718
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

719
		/* Found a block suitable for isolating free pages from */
720
		isolated = 0;
721 722 723 724 725 726 727 728

		/*
		 * As pfn may not start aligned, pfn+pageblock_nr_page
		 * may cross a MAX_ORDER_NR_PAGES boundary and miss
		 * a pfn_valid check. Ensure isolate_freepages_block()
		 * only scans within a pageblock
		 */
		end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
729
		end_pfn = min(end_pfn, z_end_pfn);
730 731 732
		isolated = isolate_freepages_block(cc, pfn, end_pfn,
						   freelist, false);
		nr_freepages += isolated;
733 734 735 736 737 738

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
739 740
		if (isolated) {
			cc->finished_update_free = true;
741
			high_pfn = max(high_pfn, pfn);
742
		}
743 744 745 746 747
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

748 749 750 751 752 753 754 755
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
	if (pfn < low_pfn)
		cc->free_pfn = max(pfn, zone->zone_start_pfn);
	else
		cc->free_pfn = high_pfn;
756
	cc->nr_freepages = nr_freepages;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
825
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
826 827 828 829 830 831 832 833

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
M
Minchan Kim 已提交
834
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
835
	if (!low_pfn || cc->contended)
836 837 838 839 840 841 842
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

843
static int compact_finished(struct zone *zone,
844
			    struct compact_control *cc)
845
{
846
	unsigned int order;
847
	unsigned long watermark;
848

849 850 851
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

852
	/* Compaction run completes if the migrate and free scanner meet */
853
	if (cc->free_pfn <= cc->migrate_pfn) {
854 855 856 857
		/* Let the next compaction start anew. */
		zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

858 859 860 861 862 863 864 865 866
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

867
		return COMPACT_COMPLETE;
868
	}
869

870 871 872 873
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
874 875 876
	if (cc->order == -1)
		return COMPACT_CONTINUE;

877 878 879 880 881 882 883
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

884
	/* Direct compactor: Is a suitable page free? */
885 886 887 888 889 890 891 892 893
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
		if (!list_empty(&area->free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
894 895 896
			return COMPACT_PARTIAL;
	}

897 898 899
	return COMPACT_CONTINUE;
}

900 901 902 903 904 905 906 907 908 909 910 911
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

912 913 914 915 916 917 918
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

919 920 921 922 923 924 925 926 927 928 929 930 931
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
932 933
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
934 935 936 937 938 939 940 941 942
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

943 944
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
945 946 947 948 949
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

950 951 952
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
953
	unsigned long start_pfn = zone->zone_start_pfn;
954
	unsigned long end_pfn = zone_end_pfn(zone);
955

956 957 958 959 960 961 962 963 964 965 966
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

967 968 969 970 971 972 973 974
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
	}
990

991 992
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);

993 994 995 996
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
997
		int err;
998

999 1000 1001
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1002
			putback_movable_pages(&cc->migratepages);
1003
			cc->nr_migratepages = 0;
1004 1005
			goto out;
		case ISOLATE_NONE:
1006
			continue;
1007 1008 1009
		case ISOLATE_SUCCESS:
			;
		}
1010 1011

		nr_migrate = cc->nr_migratepages;
1012
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1013
				(unsigned long)cc,
1014 1015
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
				MR_COMPACTION);
1016 1017 1018
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

1019 1020
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
1021

1022
		/* Release isolated pages not migrated */
1023
		if (err) {
1024
			putback_movable_pages(&cc->migratepages);
1025
			cc->nr_migratepages = 0;
1026 1027 1028 1029 1030
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1031 1032 1033
				ret = COMPACT_PARTIAL;
				goto out;
			}
1034 1035 1036
		}
	}

1037
out:
1038 1039 1040 1041
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

1042 1043
	trace_mm_compaction_end(ret);

1044 1045
	return ret;
}
1046

1047
static unsigned long compact_zone_order(struct zone *zone,
1048
				 int order, gfp_t gfp_mask,
1049
				 bool sync, bool *contended)
1050
{
1051
	unsigned long ret;
1052 1053 1054 1055 1056 1057
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1058
		.sync = sync,
1059 1060 1061 1062
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1063 1064 1065 1066 1067 1068 1069
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1070 1071
}

1072 1073
int sysctl_extfrag_threshold = 500;

1074 1075 1076 1077 1078 1079
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1080
 * @sync: Whether migration is synchronous or not
1081 1082
 * @contended: Return value that is true if compaction was aborted due to lock contention
 * @page: Optionally capture a free page of the requested order during compaction
1083 1084 1085 1086
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1087
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1088
			bool sync, bool *contended)
1089 1090 1091 1092 1093 1094 1095
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;
1096
	int alloc_flags = 0;
1097

1098
	/* Check if the GFP flags allow compaction */
1099
	if (!order || !may_enter_fs || !may_perform_io)
1100 1101
		return rc;

1102
	count_compact_event(COMPACTSTALL);
1103

1104 1105 1106 1107
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1108 1109 1110 1111 1112
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

1113
		status = compact_zone_order(zone, order, gfp_mask, sync,
1114
						contended);
1115 1116
		rc = max(status, rc);

1117
		/* If a normal allocation would succeed, stop compacting */
1118 1119
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
				      alloc_flags))
1120 1121 1122 1123 1124 1125 1126
			break;
	}

	return rc;
}


1127
/* Compact all zones within a node */
1128
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1139 1140 1141 1142 1143
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1144

1145
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1146
			compact_zone(zone, cc);
1147

1148
		if (cc->order > 0) {
1149 1150 1151
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1152
			/* Currently async compaction is never deferred. */
1153
			else if (cc->sync)
1154 1155 1156
				defer_compaction(zone, cc->order);
		}

1157 1158
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1159 1160 1161
	}
}

1162
void compact_pgdat(pg_data_t *pgdat, int order)
1163 1164 1165
{
	struct compact_control cc = {
		.order = order,
1166
		.sync = false,
1167 1168
	};

1169 1170 1171
	if (!order)
		return;

1172
	__compact_pgdat(pgdat, &cc);
1173 1174
}

1175
static void compact_node(int nid)
1176 1177 1178
{
	struct compact_control cc = {
		.order = -1,
1179
		.sync = true,
1180 1181
	};

1182
	__compact_pgdat(NODE_DATA(nid), &cc);
1183 1184
}

1185
/* Compact all nodes in the system */
1186
static void compact_nodes(void)
1187 1188 1189
{
	int nid;

1190 1191 1192
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1205
		compact_nodes();
1206 1207 1208

	return 0;
}
1209

1210 1211 1212 1213 1214 1215 1216 1217
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1218
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1219 1220
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
1221 1222
			const char *buf, size_t count)
{
1223 1224 1225 1226 1227 1228 1229 1230
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1231 1232 1233

	return count;
}
1234
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1235 1236 1237

int compaction_register_node(struct node *node)
{
1238
	return device_create_file(&node->dev, &dev_attr_compact);
1239 1240 1241 1242
}

void compaction_unregister_node(struct node *node)
{
1243
	return device_remove_file(&node->dev, &dev_attr_compact);
1244 1245
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1246 1247

#endif /* CONFIG_COMPACTION */