compaction.c 47.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19
#include <linux/kasan.h>
20 21
#include "internal.h"

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 39 40 41 42 43 44
#ifdef CONFIG_TRACEPOINTS
static const char *const compaction_status_string[] = {
	"deferred",
	"skipped",
	"continue",
	"partial",
	"complete",
45 46
	"no_suitable_page",
	"not_suitable_zone",
47 48
};
#endif
49

50 51 52
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

53 54 55
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
56
	unsigned long high_pfn = 0;
57 58

	list_for_each_entry_safe(page, next, freelist, lru) {
59
		unsigned long pfn = page_to_pfn(page);
60 61
		list_del(&page->lru);
		__free_page(page);
62 63
		if (pfn > high_pfn)
			high_pfn = pfn;
64 65
	}

66
	return high_pfn;
67 68
}

69 70 71 72 73 74 75
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
76
		kasan_alloc_pages(page, 0);
77 78 79
	}
}

80 81 82 83 84
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

128
#ifdef CONFIG_COMPACTION
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

200 201 202 203 204 205 206 207 208 209
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

210 211 212 213 214 215 216
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
	zone->compact_cached_free_pfn = zone_end_pfn(zone);
}

217 218 219 220 221
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
222
static void __reset_isolation_suitable(struct zone *zone)
223 224
{
	unsigned long start_pfn = zone->zone_start_pfn;
225
	unsigned long end_pfn = zone_end_pfn(zone);
226 227
	unsigned long pfn;

228
	zone->compact_blockskip_flush = false;
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
245 246

	reset_cached_positions(zone);
247 248
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

264 265
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
266
 * future. The information is later cleared by __reset_isolation_suitable().
267
 */
268 269
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
270
			bool migrate_scanner)
271
{
272
	struct zone *zone = cc->zone;
273
	unsigned long pfn;
274 275 276 277

	if (cc->ignore_skip_hint)
		return;

278 279 280
	if (!page)
		return;

281 282 283
	if (nr_isolated)
		return;

284
	set_pageblock_skip(page);
285

286 287 288 289 290 291
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
292 293
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
294 295 296 297
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
298
	}
299 300 301 302 303 304 305 306
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

307 308
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
309
			bool migrate_scanner)
310 311 312 313
{
}
#endif /* CONFIG_COMPACTION */

314 315 316 317 318 319 320 321 322 323
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
324
{
325 326 327 328 329 330 331 332
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
333

334
	return true;
335 336
}

337 338
/*
 * Compaction requires the taking of some coarse locks that are potentially
339 340 341 342 343 344 345
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
346
 *
347 348 349 350
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
351
 */
352 353
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
354
{
355 356 357 358
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
359

360 361 362 363
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
364

365
	if (need_resched()) {
366
		if (cc->mode == MIGRATE_ASYNC) {
367 368
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
369 370 371 372
		}
		cond_resched();
	}

373
	return false;
374 375
}

376 377 378
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
379
 * compaction. This is similar to what compact_unlock_should_abort() does, but
380 381 382 383 384 385 386 387 388 389
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
390
			cc->contended = COMPACT_CONTENDED_SCHED;
391 392 393 394 395 396 397 398 399
			return true;
		}

		cond_resched();
	}

	return false;
}

400
/*
401 402 403
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
404
 */
405
static unsigned long isolate_freepages_block(struct compact_control *cc,
406
				unsigned long *start_pfn,
407 408 409
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
410
{
411
	int nr_scanned = 0, total_isolated = 0;
412
	struct page *cursor, *valid_page = NULL;
413
	unsigned long flags = 0;
414
	bool locked = false;
415
	unsigned long blockpfn = *start_pfn;
416 417 418

	cursor = pfn_to_page(blockpfn);

419
	/* Isolate free pages. */
420 421 422 423
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

424 425 426 427 428 429 430 431 432 433
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

434
		nr_scanned++;
435
		if (!pfn_valid_within(blockpfn))
436 437
			goto isolate_fail;

438 439
		if (!valid_page)
			valid_page = page;
440
		if (!PageBuddy(page))
441
			goto isolate_fail;
442 443

		/*
444 445 446 447 448
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
449
		 */
450 451 452 453 454 455 456 457 458
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
459 460
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
461 462
			if (!locked)
				break;
463

464 465 466 467
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
468 469 470 471 472 473 474 475 476 477 478

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
479 480 481 482 483 484 485
			cc->nr_freepages += isolated;
			if (!strict &&
				cc->nr_migratepages <= cc->nr_freepages) {
				blockpfn += isolated;
				break;
			}

486 487
			blockpfn += isolated - 1;
			cursor += isolated - 1;
488
			continue;
489
		}
490 491 492 493 494 495 496

isolate_fail:
		if (strict)
			break;
		else
			continue;

497 498
	}

499 500 501
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

502 503 504
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

505 506 507 508 509
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
510
	if (strict && blockpfn < end_pfn)
511 512 513 514 515
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

516 517
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
518
		update_pageblock_skip(cc, valid_page, total_isolated, false);
519

520
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
521
	if (total_isolated)
522
		count_compact_events(COMPACTISOLATED, total_isolated);
523 524 525
	return total_isolated;
}

526 527 528 529 530 531 532 533 534 535 536 537 538
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
539
unsigned long
540 541
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
542
{
543
	unsigned long isolated, pfn, block_end_pfn;
544 545
	LIST_HEAD(freelist);

546 547 548 549 550
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn += isolated,
				block_end_pfn += pageblock_nr_pages) {
551 552
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
553 554 555

		block_end_pfn = min(block_end_pfn, end_pfn);

556 557 558 559 560 561 562 563 564 565
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

566 567 568
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
			break;

569 570
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

600
/* Update the number of anon and file isolated pages in the zone */
601
static void acct_isolated(struct zone *zone, struct compact_control *cc)
602 603
{
	struct page *page;
604
	unsigned int count[2] = { 0, };
605

606 607 608
	if (list_empty(&cc->migratepages))
		return;

609 610
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
611

612 613
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
614 615 616 617 618
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
619
	unsigned long active, inactive, isolated;
620 621 622

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
623 624
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
625 626 627
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

628
	return isolated > (inactive + active) / 2;
629 630
}

631
/**
632 633
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
634
 * @cc:		Compaction control structure.
635 636 637
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
638 639
 *
 * Isolate all pages that can be migrated from the range specified by
640 641 642 643
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
644
 *
645 646 647
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
648
 */
649 650 651
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
652
{
653
	struct zone *zone = cc->zone;
654
	unsigned long nr_scanned = 0, nr_isolated = 0;
655
	struct list_head *migratelist = &cc->migratepages;
656
	struct lruvec *lruvec;
657
	unsigned long flags = 0;
658
	bool locked = false;
659
	struct page *page = NULL, *valid_page = NULL;
660
	unsigned long start_pfn = low_pfn;
661 662 663 664 665 666 667

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
668
		/* async migration should just abort */
669
		if (cc->mode == MIGRATE_ASYNC)
670
			return 0;
671

672 673 674
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
675
			return 0;
676 677
	}

678 679
	if (compact_should_abort(cc))
		return 0;
680

681 682
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
683 684 685 686 687 688 689 690 691
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
692

693 694
		if (!pfn_valid_within(low_pfn))
			continue;
695
		nr_scanned++;
696 697

		page = pfn_to_page(low_pfn);
698

699 700 701
		if (!valid_page)
			valid_page = page;

702
		/*
703 704 705 706
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
707
		 */
708 709 710 711 712 713 714 715 716 717
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
718
			continue;
719
		}
720

721 722 723 724 725 726 727
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
728
				if (balloon_page_isolate(page)) {
729
					/* Successfully isolated */
730
					goto isolate_success;
731 732
				}
			}
733
			continue;
734
		}
735 736

		/*
737 738 739 740 741 742 743 744
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
745
		 */
746 747
		if (PageTransHuge(page)) {
			if (!locked)
748 749 750 751 752
				low_pfn = ALIGN(low_pfn + 1,
						pageblock_nr_pages) - 1;
			else
				low_pfn += (1 << compound_order(page)) - 1;

753 754 755
			continue;
		}

756 757 758 759 760 761 762 763 764
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

765 766
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
767 768
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
769 770
			if (!locked)
				break;
771

772 773 774 775 776 777 778
			/* Recheck PageLRU and PageTransHuge under lock */
			if (!PageLRU(page))
				continue;
			if (PageTransHuge(page)) {
				low_pfn += (1 << compound_order(page)) - 1;
				continue;
			}
779 780
		}

781 782
		lruvec = mem_cgroup_page_lruvec(page, zone);

783
		/* Try isolate the page */
784
		if (__isolate_lru_page(page, isolate_mode) != 0)
785 786
			continue;

787
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
788

789
		/* Successfully isolated */
790
		del_page_from_lru_list(page, lruvec, page_lru(page));
791 792

isolate_success:
793 794
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
795
		nr_isolated++;
796 797

		/* Avoid isolating too much */
798 799
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
800
			break;
801
		}
802 803
	}

804 805 806 807 808 809 810
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

811 812
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
813

814 815 816 817
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
818
	if (low_pfn == end_pfn)
819
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
820

821 822
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
823

824
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
825
	if (nr_isolated)
826
		count_compact_events(COMPACTISOLATED, nr_isolated);
827

828 829 830
	return low_pfn;
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
	unsigned long pfn, block_end_pfn;

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn = block_end_pfn,
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

856
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

		/*
		 * In case of fatal failure, release everything that might
		 * have been isolated in the previous iteration, and signal
		 * the failure back to caller.
		 */
		if (!pfn) {
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			break;
		}
872 873 874

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
875 876 877 878 879 880
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

881 882
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
		return true;

	/* Otherwise skip the block */
	return false;
}

906 907 908 909 910 911 912 913 914 915
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

916
/*
917 918
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
919
 */
920
static void isolate_freepages(struct compact_control *cc)
921
{
922
	struct zone *zone = cc->zone;
923
	struct page *page;
924
	unsigned long block_start_pfn;	/* start of current pageblock */
925
	unsigned long isolate_start_pfn; /* exact pfn we start at */
926 927
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
928
	struct list_head *freelist = &cc->freepages;
929

930 931
	/*
	 * Initialise the free scanner. The starting point is where we last
932
	 * successfully isolated from, zone-cached value, or the end of the
933 934
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
935 936 937
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
938 939
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
940
	 */
941
	isolate_start_pfn = cc->free_pfn;
942 943 944
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
945
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
946

947 948 949 950 951
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
952
	for (; block_start_pfn >= low_pfn;
953
				block_end_pfn = block_start_pfn,
954 955
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
956

957 958 959
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
960
		 * to schedule, or even abort async compaction.
961
		 */
962 963 964
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
965

966 967 968
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
969 970 971
			continue;

		/* Check the block is suitable for migration */
972
		if (!suitable_migration_target(page))
973
			continue;
974

975 976 977 978
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

979
		/* Found a block suitable for isolating free pages from. */
980
		isolate_freepages_block(cc, &isolate_start_pfn,
981
					block_end_pfn, freelist, false);
982

983
		/*
984 985
		 * If we isolated enough freepages, or aborted due to async
		 * compaction being contended, terminate the loop.
986 987 988 989 990 991 992 993
		 * Remember where the free scanner should restart next time,
		 * which is where isolate_freepages_block() left off.
		 * But if it scanned the whole pageblock, isolate_start_pfn
		 * now points at block_end_pfn, which is the start of the next
		 * pageblock.
		 * In that case we will however want to restart at the start
		 * of the previous pageblock.
		 */
994 995 996 997 998
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
			if (isolate_start_pfn >= block_end_pfn)
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
999
			break;
1000 1001 1002 1003 1004 1005 1006
		} else {
			/*
			 * isolate_freepages_block() should not terminate
			 * prematurely unless contended, or isolated enough
			 */
			VM_BUG_ON(isolate_start_pfn < block_end_pfn);
		}
1007 1008 1009 1010 1011
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

1012
	/*
1013 1014 1015 1016
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1017
	 */
1018
	cc->free_pfn = isolate_start_pfn;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1032 1033 1034 1035
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1036
	if (list_empty(&cc->freepages)) {
1037
		if (!cc->contended)
1038
			isolate_freepages(cc);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1064 1065 1066 1067 1068 1069 1070
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1071 1072 1073 1074 1075 1076
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1077
/*
1078 1079 1080
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1081 1082 1083 1084 1085
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
1086 1087
	struct page *page;
	const isolate_mode_t isolate_mode =
1088
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1089
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1090

1091 1092 1093 1094 1095
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1096 1097

	/* Only scan within a pageblock boundary */
1098
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1099

1100 1101 1102 1103 1104 1105
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
	for (; end_pfn <= cc->free_pfn;
			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1106

1107 1108 1109 1110 1111 1112 1113 1114
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1115

1116 1117
		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
		if (!page)
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
								isolate_mode);

1137 1138
		if (!low_pfn || cc->contended) {
			acct_isolated(zone, cc);
1139
			return ISOLATE_ABORT;
1140
		}
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1151 1152
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1153

1154
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1155 1156
}

1157
static int __compact_finished(struct zone *zone, struct compact_control *cc,
1158
			    const int migratetype)
1159
{
1160
	unsigned int order;
1161
	unsigned long watermark;
1162

1163
	if (cc->contended || fatal_signal_pending(current))
1164 1165
		return COMPACT_PARTIAL;

1166
	/* Compaction run completes if the migrate and free scanner meet */
1167
	if (compact_scanners_met(cc)) {
1168
		/* Let the next compaction start anew. */
1169
		reset_cached_positions(zone);
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

1180
		return COMPACT_COMPLETE;
1181
	}
1182

1183 1184 1185 1186
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
1187 1188 1189
	if (cc->order == -1)
		return COMPACT_CONTINUE;

1190 1191 1192
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1193 1194
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1195 1196
		return COMPACT_CONTINUE;

1197
	/* Direct compactor: Is a suitable page free? */
1198 1199
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1200
		bool can_steal;
1201 1202

		/* Job done if page is free of the right migratetype */
1203
		if (!list_empty(&area->free_list[migratetype]))
1204 1205
			return COMPACT_PARTIAL;

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
			return COMPACT_PARTIAL;
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
						true, &can_steal) != -1)
1218 1219 1220
			return COMPACT_PARTIAL;
	}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	return COMPACT_NO_SUITABLE_PAGE;
}

static int compact_finished(struct zone *zone, struct compact_control *cc,
			    const int migratetype)
{
	int ret;

	ret = __compact_finished(zone, cc, migratetype);
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1235 1236
}

1237 1238 1239 1240 1241 1242 1243
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1244
static unsigned long __compaction_suitable(struct zone *zone, int order,
1245
					int alloc_flags, int classzone_idx)
1246 1247 1248 1249
{
	int fragindex;
	unsigned long watermark;

1250 1251 1252 1253 1254 1255 1256
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

1257 1258 1259 1260 1261 1262 1263 1264 1265
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1266 1267 1268 1269 1270
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1271 1272
	watermark += (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1273 1274 1275 1276 1277 1278
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1279 1280
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1281 1282 1283 1284 1285 1286 1287
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1288
		return COMPACT_NOT_SUITABLE_ZONE;
1289 1290 1291 1292

	return COMPACT_CONTINUE;
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
unsigned long compaction_suitable(struct zone *zone, int order,
					int alloc_flags, int classzone_idx)
{
	unsigned long ret;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1306 1307 1308
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
1309
	unsigned long start_pfn = zone->zone_start_pfn;
1310
	unsigned long end_pfn = zone_end_pfn(zone);
1311
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1312
	const bool sync = cc->mode != MIGRATE_ASYNC;
1313
	unsigned long last_migrated_pfn = 0;
1314

1315 1316
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1327 1328 1329 1330 1331 1332 1333 1334
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1335 1336 1337 1338 1339
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1340
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1341 1342 1343 1344 1345 1346 1347
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
1348 1349
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1350
	}
1351

1352 1353
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1354

1355 1356
	migrate_prep_local();

1357 1358
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1359
		int err;
1360
		unsigned long isolate_start_pfn = cc->migrate_pfn;
1361

1362 1363 1364
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1365
			putback_movable_pages(&cc->migratepages);
1366
			cc->nr_migratepages = 0;
1367 1368
			goto out;
		case ISOLATE_NONE:
1369 1370 1371 1372 1373 1374
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1375 1376 1377
		case ISOLATE_SUCCESS:
			;
		}
1378

1379
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1380
				compaction_free, (unsigned long)cc, cc->mode,
1381
				MR_COMPACTION);
1382

1383 1384
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1385

1386 1387
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1388
		if (err) {
1389
			putback_movable_pages(&cc->migratepages);
1390 1391 1392 1393
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1394
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1395 1396 1397
				ret = COMPACT_PARTIAL;
				goto out;
			}
1398
		}
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator. We use the pfn that
		 * isolate_migratepages() started from in this loop iteration
		 * - this is the lowest page that could have been isolated and
		 * then freed by migration.
		 */
		if (!last_migrated_pfn)
			last_migrated_pfn = isolate_start_pfn;

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
		if (cc->order > 0 && last_migrated_pfn) {
			int cpu;
			unsigned long current_block_start =
				cc->migrate_pfn & ~((1UL << cc->order) - 1);

			if (last_migrated_pfn < current_block_start) {
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
				last_migrated_pfn = 0;
			}
		}

1433 1434
	}

1435
out:
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
		free_pfn &= ~(pageblock_nr_pages-1);
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1454

1455 1456
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1457

1458 1459
	return ret;
}
1460

1461
static unsigned long compact_zone_order(struct zone *zone, int order,
1462 1463
		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
		int alloc_flags, int classzone_idx)
1464
{
1465
	unsigned long ret;
1466 1467 1468 1469
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1470
		.gfp_mask = gfp_mask,
1471
		.zone = zone,
1472
		.mode = mode,
1473 1474
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1475 1476 1477 1478
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1479 1480 1481 1482 1483 1484 1485
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1486 1487
}

1488 1489
int sysctl_extfrag_threshold = 500;

1490 1491 1492
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1493 1494 1495
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1496
 * @mode: The migration mode for async, sync light, or sync migration
1497 1498
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1499 1500 1501
 *
 * This is the main entry point for direct page compaction.
 */
1502 1503 1504
unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
			int alloc_flags, const struct alloc_context *ac,
			enum migrate_mode mode, int *contended)
1505 1506 1507 1508 1509
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1510
	int rc = COMPACT_DEFERRED;
1511 1512 1513
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1514

1515
	/* Check if the GFP flags allow compaction */
1516
	if (!order || !may_enter_fs || !may_perform_io)
1517
		return COMPACT_SKIPPED;
1518

1519 1520
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);

1521
	/* Compact each zone in the list */
1522 1523
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1524
		int status;
1525
		int zone_contended;
1526

1527 1528 1529
		if (compaction_deferred(zone, order))
			continue;

1530
		status = compact_zone_order(zone, order, gfp_mask, mode,
1531 1532
				&zone_contended, alloc_flags,
				ac->classzone_idx);
1533
		rc = max(status, rc);
1534 1535 1536 1537 1538
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1539

1540
		/* If a normal allocation would succeed, stop compacting */
1541
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1542
					ac->classzone_idx, alloc_flags)) {
1543 1544 1545 1546 1547 1548 1549
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

1564
		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1565 1566 1567 1568 1569 1570 1571
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1593 1594
	}

1595 1596 1597 1598 1599 1600 1601
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1602 1603 1604 1605
	return rc;
}


1606
/* Compact all zones within a node */
1607
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1618 1619 1620 1621 1622
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1623

1624 1625 1626 1627 1628 1629 1630 1631
		/*
		 * When called via /proc/sys/vm/compact_memory
		 * this makes sure we compact the whole zone regardless of
		 * cached scanner positions.
		 */
		if (cc->order == -1)
			__reset_isolation_suitable(zone);

1632
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1633
			compact_zone(zone, cc);
1634

1635
		if (cc->order > 0) {
1636 1637 1638
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1639 1640
		}

1641 1642
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1643 1644 1645
	}
}

1646
void compact_pgdat(pg_data_t *pgdat, int order)
1647 1648 1649
{
	struct compact_control cc = {
		.order = order,
1650
		.mode = MIGRATE_ASYNC,
1651 1652
	};

1653 1654 1655
	if (!order)
		return;

1656
	__compact_pgdat(pgdat, &cc);
1657 1658
}

1659
static void compact_node(int nid)
1660 1661 1662
{
	struct compact_control cc = {
		.order = -1,
1663
		.mode = MIGRATE_SYNC,
1664
		.ignore_skip_hint = true,
1665 1666
	};

1667
	__compact_pgdat(NODE_DATA(nid), &cc);
1668 1669
}

1670
/* Compact all nodes in the system */
1671
static void compact_nodes(void)
1672 1673 1674
{
	int nid;

1675 1676 1677
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1690
		compact_nodes();
1691 1692 1693

	return 0;
}
1694

1695 1696 1697 1698 1699 1700 1701 1702
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1703
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1704
static ssize_t sysfs_compact_node(struct device *dev,
1705
			struct device_attribute *attr,
1706 1707
			const char *buf, size_t count)
{
1708 1709 1710 1711 1712 1713 1714 1715
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1716 1717 1718

	return count;
}
1719
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1720 1721 1722

int compaction_register_node(struct node *node)
{
1723
	return device_create_file(&node->dev, &dev_attr_compact);
1724 1725 1726 1727
}

void compaction_unregister_node(struct node *node)
{
1728
	return device_remove_file(&node->dev, &dev_attr_compact);
1729 1730
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1731 1732

#endif /* CONFIG_COMPACTION */