compaction.c 56.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
10
#include <linux/cpu.h>
11 12 13 14 15
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
16
#include <linux/sysctl.h>
17
#include <linux/sysfs.h>
18
#include <linux/page-isolation.h>
19
#include <linux/kasan.h>
20 21
#include <linux/kthread.h>
#include <linux/freezer.h>
22
#include <linux/page_owner.h>
23 24
#include "internal.h"

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

40 41
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

42 43 44
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

45 46 47 48 49
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

50 51 52
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
53
	unsigned long high_pfn = 0;
54 55

	list_for_each_entry_safe(page, next, freelist, lru) {
56
		unsigned long pfn = page_to_pfn(page);
57 58
		list_del(&page->lru);
		__free_page(page);
59 60
		if (pfn > high_pfn)
			high_pfn = pfn;
61 62
	}

63
	return high_pfn;
64 65
}

66 67
static void map_pages(struct list_head *list)
{
68 69 70 71 72 73 74 75 76 77
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;

78
		post_alloc_hook(page, order, __GFP_MOVABLE);
79 80
		if (order)
			split_page(page, order);
81

82 83 84 85
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
86
	}
87 88

	list_splice(&tmp_list, list);
89 90
}

91 92 93 94 95
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

96
#ifdef CONFIG_COMPACTION
97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

206 207 208 209 210 211 212 213 214 215
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

216 217 218 219
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
220
	zone->compact_cached_free_pfn =
221
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
222 223
}

224 225 226 227 228
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
229
static void __reset_isolation_suitable(struct zone *zone)
230 231
{
	unsigned long start_pfn = zone->zone_start_pfn;
232
	unsigned long end_pfn = zone_end_pfn(zone);
233 234
	unsigned long pfn;

235
	zone->compact_blockskip_flush = false;
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
252 253

	reset_cached_positions(zone);
254 255
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

271 272
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
273
 * future. The information is later cleared by __reset_isolation_suitable().
274
 */
275 276
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
277
			bool migrate_scanner)
278
{
279
	struct zone *zone = cc->zone;
280
	unsigned long pfn;
281 282 283 284

	if (cc->ignore_skip_hint)
		return;

285 286 287
	if (!page)
		return;

288 289 290
	if (nr_isolated)
		return;

291
	set_pageblock_skip(page);
292

293 294 295 296 297 298
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
299 300
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
301 302 303 304
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
305
	}
306 307 308 309 310 311 312 313
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

314 315
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
316
			bool migrate_scanner)
317 318 319 320
{
}
#endif /* CONFIG_COMPACTION */

321 322 323 324 325 326 327 328 329 330
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
331
{
332 333
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
334
			cc->contended = true;
335 336 337 338 339
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
340

341
	return true;
342 343
}

344 345
/*
 * Compaction requires the taking of some coarse locks that are potentially
346 347 348 349 350 351 352
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
353
 *
354 355 356 357
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
358
 */
359 360
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
361
{
362 363 364 365
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
366

367
	if (fatal_signal_pending(current)) {
368
		cc->contended = true;
369 370
		return true;
	}
371

372
	if (need_resched()) {
373
		if (cc->mode == MIGRATE_ASYNC) {
374
			cc->contended = true;
375
			return true;
376 377 378 379
		}
		cond_resched();
	}

380
	return false;
381 382
}

383 384 385
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
386
 * compaction. This is similar to what compact_unlock_should_abort() does, but
387 388 389 390 391 392 393 394 395 396
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
397
			cc->contended = true;
398 399 400 401 402 403 404 405 406
			return true;
		}

		cond_resched();
	}

	return false;
}

407
/*
408 409 410
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
411
 */
412
static unsigned long isolate_freepages_block(struct compact_control *cc,
413
				unsigned long *start_pfn,
414 415 416
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
417
{
418
	int nr_scanned = 0, total_isolated = 0;
419
	struct page *cursor, *valid_page = NULL;
420
	unsigned long flags = 0;
421
	bool locked = false;
422
	unsigned long blockpfn = *start_pfn;
423
	unsigned int order;
424 425 426

	cursor = pfn_to_page(blockpfn);

427
	/* Isolate free pages. */
428
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
429
		int isolated;
430 431
		struct page *page = cursor;

432 433 434 435 436 437 438 439 440 441
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

442
		nr_scanned++;
443
		if (!pfn_valid_within(blockpfn))
444 445
			goto isolate_fail;

446 447
		if (!valid_page)
			valid_page = page;
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER)) {
				blockpfn += (1UL << comp_order) - 1;
				cursor += (1UL << comp_order) - 1;
			}

			goto isolate_fail;
		}

466
		if (!PageBuddy(page))
467
			goto isolate_fail;
468 469

		/*
470 471 472 473 474
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
475
		 */
476 477 478 479 480 481 482 483 484
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
485 486
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
487 488
			if (!locked)
				break;
489

490 491 492 493
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
494

495 496 497
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
498 499
		if (!isolated)
			break;
500
		set_page_private(page, order);
501

502
		total_isolated += isolated;
503
		cc->nr_freepages += isolated;
504 505
		list_add_tail(&page->lru, freelist);

506 507 508
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
509
		}
510 511 512 513
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
514 515 516 517 518 519 520

isolate_fail:
		if (strict)
			break;
		else
			continue;

521 522
	}

523 524 525
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

526 527 528 529 530 531 532
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

533 534 535
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

536 537 538
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

539 540 541 542 543
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
544
	if (strict && blockpfn < end_pfn)
545 546
		total_isolated = 0;

547 548
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
549
		update_pageblock_skip(cc, valid_page, total_isolated, false);
550

551
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
552
	if (total_isolated)
553
		count_compact_events(COMPACTISOLATED, total_isolated);
554 555 556
	return total_isolated;
}

557 558 559 560 561 562 563 564 565 566 567 568 569
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
570
unsigned long
571 572
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
573
{
574
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
575 576
	LIST_HEAD(freelist);

577
	pfn = start_pfn;
578
	block_start_pfn = pageblock_start_pfn(pfn);
579 580
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
581
	block_end_pfn = pageblock_end_pfn(pfn);
582 583

	for (; pfn < end_pfn; pfn += isolated,
584
				block_start_pfn = block_end_pfn,
585
				block_end_pfn += pageblock_nr_pages) {
586 587
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
588 589 590

		block_end_pfn = min(block_end_pfn, end_pfn);

591 592 593 594 595 596
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
597 598
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
599 600 601
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

602 603
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
604 605
			break;

606 607
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

624
	/* __isolate_free_page() does not map the pages */
625 626 627 628 629 630 631 632 633 634 635 636
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

637
/* Update the number of anon and file isolated pages in the zone */
638
static void acct_isolated(struct zone *zone, struct compact_control *cc)
639 640
{
	struct page *page;
641
	unsigned int count[2] = { 0, };
642

643 644 645
	if (list_empty(&cc->migratepages))
		return;

646 647
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
648

M
Mel Gorman 已提交
649 650
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, count[0]);
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, count[1]);
651 652 653 654 655
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
656
	unsigned long active, inactive, isolated;
657

M
Mel Gorman 已提交
658 659 660 661 662 663
	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
664

665
	return isolated > (inactive + active) / 2;
666 667
}

668
/**
669 670
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
671
 * @cc:		Compaction control structure.
672 673 674
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
675 676
 *
 * Isolate all pages that can be migrated from the range specified by
677 678 679 680
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
681
 *
682 683 684
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
685
 */
686 687 688
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
689
{
690
	struct zone *zone = cc->zone;
691
	unsigned long nr_scanned = 0, nr_isolated = 0;
692
	struct lruvec *lruvec;
693
	unsigned long flags = 0;
694
	bool locked = false;
695
	struct page *page = NULL, *valid_page = NULL;
696
	unsigned long start_pfn = low_pfn;
697 698
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
699 700 701 702 703 704 705

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
706
		/* async migration should just abort */
707
		if (cc->mode == MIGRATE_ASYNC)
708
			return 0;
709

710 711 712
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
713
			return 0;
714 715
	}

716 717
	if (compact_should_abort(cc))
		return 0;
718

719 720 721 722 723
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

724 725
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

749 750 751 752 753 754
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
755
		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
756 757
								&locked, cc))
			break;
758

759
		if (!pfn_valid_within(low_pfn))
760
			goto isolate_fail;
761
		nr_scanned++;
762 763

		page = pfn_to_page(low_pfn);
764

765 766 767
		if (!valid_page)
			valid_page = page;

768
		/*
769 770 771 772
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
773
		 */
774 775 776 777 778 779 780 781 782 783
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
784
			continue;
785
		}
786

787
		/*
788 789 790 791 792
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
793
		 */
794 795 796 797 798
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER))
				low_pfn += (1UL << comp_order) - 1;
799

800
			goto isolate_fail;
801 802
		}

803 804 805 806 807 808 809 810 811 812 813 814 815
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
816
					spin_unlock_irqrestore(zone_lru_lock(zone),
817 818 819 820 821 822 823 824
									flags);
					locked = false;
				}

				if (isolate_movable_page(page, isolate_mode))
					goto isolate_success;
			}

825
			goto isolate_fail;
826
		}
827

828 829 830 831 832 833 834
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
835
			goto isolate_fail;
836

837 838
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
839
			locked = compact_trylock_irqsave(zone_lru_lock(zone),
840
								&flags, cc);
841 842
			if (!locked)
				break;
843

844
			/* Recheck PageLRU and PageCompound under lock */
845
			if (!PageLRU(page))
846
				goto isolate_fail;
847 848 849 850 851 852 853 854

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
				low_pfn += (1UL << compound_order(page)) - 1;
855
				goto isolate_fail;
856
			}
857 858
		}

M
Mel Gorman 已提交
859
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
860

861
		/* Try isolate the page */
862
		if (__isolate_lru_page(page, isolate_mode) != 0)
863
			goto isolate_fail;
864

865
		VM_BUG_ON_PAGE(PageCompound(page), page);
866

867
		/* Successfully isolated */
868
		del_page_from_lru_list(page, lruvec, page_lru(page));
869 870

isolate_success:
871
		list_add(&page->lru, &cc->migratepages);
872
		cc->nr_migratepages++;
873
		nr_isolated++;
874

875 876 877 878 879 880 881 882 883
		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator.
		 * - this is the lowest page that was isolated and likely be
		 * then freed by migration.
		 */
		if (!cc->last_migrated_pfn)
			cc->last_migrated_pfn = low_pfn;

884
		/* Avoid isolating too much */
885 886
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
887
			break;
888
		}
889 890 891 892 893 894 895 896 897 898 899 900 901

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
902
				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
				locked = false;
			}
			acct_isolated(zone, cc);
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			cc->last_migrated_pfn = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
920 921
	}

922 923 924 925 926 927 928
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

929
	if (locked)
930
		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
931

932 933 934 935
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
936
	if (low_pfn == end_pfn)
937
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
938

939 940
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
941

942
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
943
	if (nr_isolated)
944
		count_compact_events(COMPACTISOLATED, nr_isolated);
945

946 947 948
	return low_pfn;
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
963
	unsigned long pfn, block_start_pfn, block_end_pfn;
964 965 966

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
967
	block_start_pfn = pageblock_start_pfn(pfn);
968 969
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
970
	block_end_pfn = pageblock_end_pfn(pfn);
971 972

	for (; pfn < end_pfn; pfn = block_end_pfn,
973
				block_start_pfn = block_end_pfn,
974 975 976 977
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

978 979
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
980 981 982 983 984
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

985
		if (!pfn)
986
			break;
987 988 989

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
990 991 992 993 994 995
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

996 997
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
		return true;

	/* Otherwise skip the block */
	return false;
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1031
/*
1032 1033
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1034
 */
1035
static void isolate_freepages(struct compact_control *cc)
1036
{
1037
	struct zone *zone = cc->zone;
1038
	struct page *page;
1039
	unsigned long block_start_pfn;	/* start of current pageblock */
1040
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1041 1042
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1043
	struct list_head *freelist = &cc->freepages;
1044

1045 1046
	/*
	 * Initialise the free scanner. The starting point is where we last
1047
	 * successfully isolated from, zone-cached value, or the end of the
1048 1049
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1050 1051 1052
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1053 1054
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1055
	 */
1056
	isolate_start_pfn = cc->free_pfn;
1057
	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1058 1059
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1060
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1061

1062 1063 1064 1065 1066
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1067
	for (; block_start_pfn >= low_pfn;
1068
				block_end_pfn = block_start_pfn,
1069 1070
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1071 1072 1073
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
1074
		 * to schedule, or even abort async compaction.
1075
		 */
1076 1077 1078
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1079

1080 1081 1082
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1083 1084 1085
			continue;

		/* Check the block is suitable for migration */
1086
		if (!suitable_migration_target(page))
1087
			continue;
1088

1089 1090 1091 1092
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1093
		/* Found a block suitable for isolating free pages from. */
1094 1095
		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
					freelist, false);
1096

1097
		/*
1098 1099
		 * If we isolated enough freepages, or aborted due to lock
		 * contention, terminate.
1100
		 */
1101 1102
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
1103 1104 1105 1106 1107
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1108 1109
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1110
			}
1111
			break;
1112
		} else if (isolate_start_pfn < block_end_pfn) {
1113
			/*
1114 1115
			 * If isolation failed early, do not continue
			 * needlessly.
1116
			 */
1117
			break;
1118
		}
1119 1120
	}

1121
	/* __isolate_free_page() does not map the pages */
1122 1123
	map_pages(freelist);

1124
	/*
1125 1126 1127 1128
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1129
	 */
1130
	cc->free_pfn = isolate_start_pfn;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1144 1145 1146 1147
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1148
	if (list_empty(&cc->freepages)) {
1149
		if (!cc->contended)
1150
			isolate_freepages(cc);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1176 1177 1178 1179 1180 1181 1182
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1183 1184 1185 1186 1187 1188
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1189
/*
1190 1191 1192
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1193 1194 1195 1196
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1197 1198 1199
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1200 1201
	struct page *page;
	const isolate_mode_t isolate_mode =
1202
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1203
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1204

1205 1206 1207 1208 1209
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1210
	block_start_pfn = pageblock_start_pfn(low_pfn);
1211 1212
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1213 1214

	/* Only scan within a pageblock boundary */
1215
	block_end_pfn = pageblock_end_pfn(low_pfn);
1216

1217 1218 1219 1220
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1221 1222 1223 1224
	for (; block_end_pfn <= cc->free_pfn;
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1225

1226 1227 1228 1229 1230 1231 1232 1233
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1234

1235 1236
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1237
		if (!page)
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
1254 1255
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1256

1257 1258
		if (!low_pfn || cc->contended) {
			acct_isolated(zone, cc);
1259
			return ISOLATE_ABORT;
1260
		}
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1271 1272
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1273

1274
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284 1285
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1286
static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1287
			    const int migratetype)
1288
{
1289
	unsigned int order;
1290
	unsigned long watermark;
1291

1292
	if (cc->contended || fatal_signal_pending(current))
1293
		return COMPACT_CONTENDED;
1294

1295
	/* Compaction run completes if the migrate and free scanner meet */
1296
	if (compact_scanners_met(cc)) {
1297
		/* Let the next compaction start anew. */
1298
		reset_cached_positions(zone);
1299

1300 1301
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1302
		 * by kswapd when it goes to sleep. kcompactd does not set the
1303 1304 1305
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1306
		if (cc->direct_compaction)
1307 1308
			zone->compact_blockskip_flush = true;

1309 1310 1311 1312
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1313
	}
1314

1315
	if (is_via_compact_memory(cc->order))
1316 1317
		return COMPACT_CONTINUE;

1318 1319 1320
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1321 1322
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1323 1324
		return COMPACT_CONTINUE;

1325
	/* Direct compactor: Is a suitable page free? */
1326 1327
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1328
		bool can_steal;
1329 1330

		/* Job done if page is free of the right migratetype */
1331
		if (!list_empty(&area->free_list[migratetype]))
1332 1333
			return COMPACT_PARTIAL;

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
			return COMPACT_PARTIAL;
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
						true, &can_steal) != -1)
1346 1347 1348
			return COMPACT_PARTIAL;
	}

1349 1350 1351
	return COMPACT_NO_SUITABLE_PAGE;
}

1352 1353 1354
static enum compact_result compact_finished(struct zone *zone,
			struct compact_control *cc,
			const int migratetype)
1355 1356 1357 1358 1359 1360 1361 1362 1363
{
	int ret;

	ret = __compact_finished(zone, cc, migratetype);
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1364 1365
}

1366 1367 1368 1369 1370 1371 1372
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1373
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1374
					unsigned int alloc_flags,
1375 1376
					int classzone_idx,
					unsigned long wmark_target)
1377 1378 1379 1380
{
	int fragindex;
	unsigned long watermark;

1381
	if (is_via_compact_memory(order))
1382 1383
		return COMPACT_CONTINUE;

1384 1385 1386 1387 1388 1389 1390 1391 1392
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1393 1394 1395 1396 1397
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1398
	watermark += (2UL << order);
1399 1400
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
				 alloc_flags, wmark_target))
1401 1402 1403 1404 1405 1406
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1407 1408
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1409 1410 1411 1412 1413 1414 1415
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1416
		return COMPACT_NOT_SUITABLE_ZONE;
1417 1418 1419 1420

	return COMPACT_CONTINUE;
}

1421
enum compact_result compaction_suitable(struct zone *zone, int order,
1422 1423
					unsigned int alloc_flags,
					int classzone_idx)
1424
{
1425
	enum compact_result ret;
1426

1427 1428
	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1429 1430 1431 1432 1433 1434 1435
	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
1457
		available = zone_reclaimable_pages(zone) / order;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
		if (compact_result != COMPACT_SKIPPED &&
				compact_result != COMPACT_NOT_SUITABLE_ZONE)
			return true;
	}

	return false;
}

1469
static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1470
{
1471
	enum compact_result ret;
1472
	unsigned long start_pfn = zone->zone_start_pfn;
1473
	unsigned long end_pfn = zone_end_pfn(zone);
1474
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1475
	const bool sync = cc->mode != MIGRATE_ASYNC;
1476

1477 1478
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1479 1480
	/* Compaction is likely to fail */
	if (ret == COMPACT_PARTIAL || ret == COMPACT_SKIPPED)
1481
		return ret;
1482 1483 1484

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
1485

1486 1487
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1488
	 * is about to be retried after being deferred.
1489
	 */
1490
	if (compaction_restarting(zone, cc->order))
1491 1492
		__reset_isolation_suitable(zone);

1493 1494 1495 1496 1497
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1498
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1499
	cc->free_pfn = zone->compact_cached_free_pfn;
1500
	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1501
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1502 1503
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
1504
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1505
		cc->migrate_pfn = start_pfn;
1506 1507
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1508
	}
1509 1510 1511 1512

	if (cc->migrate_pfn == start_pfn)
		cc->whole_zone = true;

1513
	cc->last_migrated_pfn = 0;
1514

1515 1516
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1517

1518 1519
	migrate_prep_local();

1520 1521
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1522
		int err;
1523

1524 1525
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
1526
			ret = COMPACT_CONTENDED;
1527
			putback_movable_pages(&cc->migratepages);
1528
			cc->nr_migratepages = 0;
1529 1530
			goto out;
		case ISOLATE_NONE:
1531 1532 1533 1534 1535 1536
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1537 1538 1539
		case ISOLATE_SUCCESS:
			;
		}
1540

1541
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1542
				compaction_free, (unsigned long)cc, cc->mode,
1543
				MR_COMPACTION);
1544

1545 1546
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1547

1548 1549
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1550
		if (err) {
1551
			putback_movable_pages(&cc->migratepages);
1552 1553 1554 1555
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1556
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1557
				ret = COMPACT_CONTENDED;
1558 1559
				goto out;
			}
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
				cc->last_migrated_pfn = 0;

			}
1572
		}
1573 1574 1575 1576 1577 1578 1579 1580 1581

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
1582
		if (cc->order > 0 && cc->last_migrated_pfn) {
1583 1584
			int cpu;
			unsigned long current_block_start =
1585
				block_start_pfn(cc->migrate_pfn, cc->order);
1586

1587
			if (cc->last_migrated_pfn < current_block_start) {
1588 1589 1590 1591 1592
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
1593
				cc->last_migrated_pfn = 0;
1594 1595 1596
			}
		}

1597 1598
	}

1599
out:
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
1610
		free_pfn = pageblock_start_pfn(free_pfn);
1611 1612 1613 1614 1615 1616 1617
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1618

1619 1620
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1621

1622 1623
	return ret;
}
1624

1625
static enum compact_result compact_zone_order(struct zone *zone, int order,
1626
		gfp_t gfp_mask, enum compact_priority prio,
1627
		unsigned int alloc_flags, int classzone_idx)
1628
{
1629
	enum compact_result ret;
1630 1631 1632 1633
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1634
		.gfp_mask = gfp_mask,
1635
		.zone = zone,
1636 1637
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1638 1639
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1640
		.direct_compaction = true,
1641 1642 1643 1644
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1645 1646 1647 1648 1649 1650
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	return ret;
1651 1652
}

1653 1654
int sysctl_extfrag_threshold = 500;

1655 1656 1657
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1658 1659 1660
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1661
 * @mode: The migration mode for async, sync light, or sync migration
1662 1663 1664
 *
 * This is the main entry point for direct page compaction.
 */
1665
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1666
		unsigned int alloc_flags, const struct alloc_context *ac,
1667
		enum compact_priority prio)
1668 1669 1670 1671 1672
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1673
	enum compact_result rc = COMPACT_SKIPPED;
1674

1675
	/* Check if the GFP flags allow compaction */
1676
	if (!may_enter_fs || !may_perform_io)
1677
		return COMPACT_SKIPPED;
1678

1679
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1680

1681
	/* Compact each zone in the list */
1682 1683
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1684
		enum compact_result status;
1685

1686 1687
		if (compaction_deferred(zone, order)) {
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1688
			continue;
1689
		}
1690

1691
		status = compact_zone_order(zone, order, gfp_mask, prio,
1692
					alloc_flags, ac_classzone_idx(ac));
1693 1694
		rc = max(status, rc);

1695
		/* If a normal allocation would succeed, stop compacting */
1696
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1697
					ac_classzone_idx(ac), alloc_flags)) {
1698 1699 1700 1701 1702 1703 1704
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1705

1706
			break;
1707 1708
		}

1709
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1710
					status == COMPACT_PARTIAL_SKIPPED))
1711 1712 1713 1714 1715 1716
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
1717 1718 1719 1720

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
1721
		 * case do not try further zones
1722
		 */
1723 1724 1725
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
					|| fatal_signal_pending(current))
			break;
1726 1727 1728 1729 1730 1731
	}

	return rc;
}


1732
/* Compact all zones within a node */
1733
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1744 1745 1746 1747 1748
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1749

1750 1751 1752 1753 1754
		/*
		 * When called via /proc/sys/vm/compact_memory
		 * this makes sure we compact the whole zone regardless of
		 * cached scanner positions.
		 */
1755
		if (is_via_compact_memory(cc->order))
1756 1757
			__reset_isolation_suitable(zone);

1758 1759
		if (is_via_compact_memory(cc->order) ||
				!compaction_deferred(zone, cc->order))
1760
			compact_zone(zone, cc);
1761

1762 1763
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1764 1765 1766 1767 1768 1769 1770

		if (is_via_compact_memory(cc->order))
			continue;

		if (zone_watermark_ok(zone, cc->order,
				low_wmark_pages(zone), 0, 0))
			compaction_defer_reset(zone, cc->order, false);
1771 1772 1773
	}
}

1774
void compact_pgdat(pg_data_t *pgdat, int order)
1775 1776 1777
{
	struct compact_control cc = {
		.order = order,
1778
		.mode = MIGRATE_ASYNC,
1779 1780
	};

1781 1782 1783
	if (!order)
		return;

1784
	__compact_pgdat(pgdat, &cc);
1785 1786
}

1787
static void compact_node(int nid)
1788 1789 1790
{
	struct compact_control cc = {
		.order = -1,
1791
		.mode = MIGRATE_SYNC,
1792
		.ignore_skip_hint = true,
1793 1794
	};

1795
	__compact_pgdat(NODE_DATA(nid), &cc);
1796 1797
}

1798
/* Compact all nodes in the system */
1799
static void compact_nodes(void)
1800 1801 1802
{
	int nid;

1803 1804 1805
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1806 1807 1808 1809 1810 1811 1812
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

1813 1814 1815 1816
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
1817 1818 1819 1820
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1821
		compact_nodes();
1822 1823 1824

	return 0;
}
1825

1826 1827 1828 1829 1830 1831 1832 1833
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1834
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1835
static ssize_t sysfs_compact_node(struct device *dev,
1836
			struct device_attribute *attr,
1837 1838
			const char *buf, size_t count)
{
1839 1840 1841 1842 1843 1844 1845 1846
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1847 1848 1849

	return count;
}
1850
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1851 1852 1853

int compaction_register_node(struct node *node)
{
1854
	return device_create_file(&node->dev, &dev_attr_compact);
1855 1856 1857 1858
}

void compaction_unregister_node(struct node *node)
{
1859
	return device_remove_file(&node->dev, &dev_attr_compact);
1860 1861
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1862

1863 1864
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
1865
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1866 1867 1868 1869 1870 1871 1872 1873
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

1874
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
		.ignore_skip_hint = true,

	};
	bool success = false;

	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
	count_vm_event(KCOMPACTD_WAKE);

1909
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

1929 1930
		if (kthread_should_stop())
			return;
1931 1932 1933 1934 1935 1936
		status = compact_zone(zone, &cc);

		if (zone_watermark_ok(zone, cc.order, low_wmark_pages(zone),
						cc.classzone_idx, 0)) {
			success = true;
			compaction_defer_reset(zone, cc.order, false);
1937
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

	if (!waitqueue_active(&pgdat->kcompactd_wait))
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

		kcompactd_do_work(pgdat);
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
{
	int nid;

	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
		for_each_node_state(nid, N_MEMORY) {
			pg_data_t *pgdat = NODE_DATA(nid);
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);

			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
				/* One of our CPUs online: restore mask */
				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
		}
	}
	return NOTIFY_OK;
}

static int __init kcompactd_init(void)
{
	int nid;

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}
subsys_initcall(kcompactd_init)

2084
#endif /* CONFIG_COMPACTION */