compaction.c 57.0 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
10
#include <linux/cpu.h>
11 12 13 14
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
15
#include <linux/sched/signal.h>
16
#include <linux/backing-dev.h>
17
#include <linux/sysctl.h>
18
#include <linux/sysfs.h>
19
#include <linux/page-isolation.h>
20
#include <linux/kasan.h>
21 22
#include <linux/kthread.h>
#include <linux/freezer.h>
23
#include <linux/page_owner.h>
24 25
#include "internal.h"

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

41 42
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

43 44 45
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

46 47 48 49 50
#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)

51 52 53
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
54
	unsigned long high_pfn = 0;
55 56

	list_for_each_entry_safe(page, next, freelist, lru) {
57
		unsigned long pfn = page_to_pfn(page);
58 59
		list_del(&page->lru);
		__free_page(page);
60 61
		if (pfn > high_pfn)
			high_pfn = pfn;
62 63
	}

64
	return high_pfn;
65 66
}

67 68
static void map_pages(struct list_head *list)
{
69 70 71 72 73 74 75 76 77 78
	unsigned int i, order, nr_pages;
	struct page *page, *next;
	LIST_HEAD(tmp_list);

	list_for_each_entry_safe(page, next, list, lru) {
		list_del(&page->lru);

		order = page_private(page);
		nr_pages = 1 << order;

79
		post_alloc_hook(page, order, __GFP_MOVABLE);
80 81
		if (order)
			split_page(page, order);
82

83 84 85 86
		for (i = 0; i < nr_pages; i++) {
			list_add(&page->lru, &tmp_list);
			page++;
		}
87
	}
88 89

	list_splice(&tmp_list, list);
90 91
}

92 93 94 95 96
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

97
#ifdef CONFIG_COMPACTION
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
int PageMovable(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	if (!__PageMovable(page))
		return 0;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
		return 1;

	return 0;
}
EXPORT_SYMBOL(PageMovable);

void __SetPageMovable(struct page *page, struct address_space *mapping)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__SetPageMovable);

void __ClearPageMovable(struct page *page)
{
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	/*
	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
	 * flag so that VM can catch up released page by driver after isolation.
	 * With it, VM migration doesn't try to put it back.
	 */
	page->mapping = (void *)((unsigned long)page->mapping &
				PAGE_MAPPING_MOVABLE);
}
EXPORT_SYMBOL(__ClearPageMovable);

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

207 208 209 210 211 212 213 214 215 216
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

217 218 219 220
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
221
	zone->compact_cached_free_pfn =
222
				pageblock_start_pfn(zone_end_pfn(zone) - 1);
223 224
}

225 226 227 228 229
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
230
static void __reset_isolation_suitable(struct zone *zone)
231 232
{
	unsigned long start_pfn = zone->zone_start_pfn;
233
	unsigned long end_pfn = zone_end_pfn(zone);
234 235
	unsigned long pfn;

236
	zone->compact_blockskip_flush = false;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
253 254

	reset_cached_positions(zone);
255 256
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

272 273
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
274
 * future. The information is later cleared by __reset_isolation_suitable().
275
 */
276 277
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
278
			bool migrate_scanner)
279
{
280
	struct zone *zone = cc->zone;
281
	unsigned long pfn;
282 283 284 285

	if (cc->ignore_skip_hint)
		return;

286 287 288
	if (!page)
		return;

289 290 291
	if (nr_isolated)
		return;

292
	set_pageblock_skip(page);
293

294 295 296 297 298 299
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
300 301
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
302 303 304 305
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
306
	}
307 308 309 310 311 312 313 314
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

315 316
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
317
			bool migrate_scanner)
318 319 320 321
{
}
#endif /* CONFIG_COMPACTION */

322 323 324 325 326 327 328 329 330 331
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
332
{
333 334
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
335
			cc->contended = true;
336 337 338 339 340
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
341

342
	return true;
343 344
}

345 346
/*
 * Compaction requires the taking of some coarse locks that are potentially
347 348 349 350 351 352 353
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
354
 *
355 356 357 358
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
359
 */
360 361
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
362
{
363 364 365 366
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
367

368
	if (fatal_signal_pending(current)) {
369
		cc->contended = true;
370 371
		return true;
	}
372

373
	if (need_resched()) {
374
		if (cc->mode == MIGRATE_ASYNC) {
375
			cc->contended = true;
376
			return true;
377 378 379 380
		}
		cond_resched();
	}

381
	return false;
382 383
}

384 385 386
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
387
 * compaction. This is similar to what compact_unlock_should_abort() does, but
388 389 390 391 392 393 394 395 396 397
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
398
			cc->contended = true;
399 400 401 402 403 404 405 406 407
			return true;
		}

		cond_resched();
	}

	return false;
}

408
/*
409 410 411
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
412
 */
413
static unsigned long isolate_freepages_block(struct compact_control *cc,
414
				unsigned long *start_pfn,
415 416 417
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
418
{
419
	int nr_scanned = 0, total_isolated = 0;
420
	struct page *cursor, *valid_page = NULL;
421
	unsigned long flags = 0;
422
	bool locked = false;
423
	unsigned long blockpfn = *start_pfn;
424
	unsigned int order;
425 426 427

	cursor = pfn_to_page(blockpfn);

428
	/* Isolate free pages. */
429
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
430
		int isolated;
431 432
		struct page *page = cursor;

433 434 435 436 437 438 439 440 441 442
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

443
		nr_scanned++;
444
		if (!pfn_valid_within(blockpfn))
445 446
			goto isolate_fail;

447 448
		if (!valid_page)
			valid_page = page;
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER)) {
				blockpfn += (1UL << comp_order) - 1;
				cursor += (1UL << comp_order) - 1;
			}

			goto isolate_fail;
		}

467
		if (!PageBuddy(page))
468
			goto isolate_fail;
469 470

		/*
471 472 473 474 475
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
476
		 */
477 478 479 480 481 482 483 484 485
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
486 487
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
488 489
			if (!locked)
				break;
490

491 492 493 494
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
495

496 497 498
		/* Found a free page, will break it into order-0 pages */
		order = page_order(page);
		isolated = __isolate_free_page(page, order);
499 500
		if (!isolated)
			break;
501
		set_page_private(page, order);
502

503
		total_isolated += isolated;
504
		cc->nr_freepages += isolated;
505 506
		list_add_tail(&page->lru, freelist);

507 508 509
		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
			blockpfn += isolated;
			break;
510
		}
511 512 513 514
		/* Advance to the end of split page */
		blockpfn += isolated - 1;
		cursor += isolated - 1;
		continue;
515 516 517 518 519 520 521

isolate_fail:
		if (strict)
			break;
		else
			continue;

522 523
	}

524 525 526
	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

527 528 529 530 531 532 533
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

534 535 536
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

537 538 539
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

540 541 542 543 544
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
545
	if (strict && blockpfn < end_pfn)
546 547
		total_isolated = 0;

548 549
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
550
		update_pageblock_skip(cc, valid_page, total_isolated, false);
551

552
	cc->total_free_scanned += nr_scanned;
553
	if (total_isolated)
554
		count_compact_events(COMPACTISOLATED, total_isolated);
555 556 557
	return total_isolated;
}

558 559 560 561 562 563 564 565 566 567 568 569 570
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
571
unsigned long
572 573
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
574
{
575
	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
576 577
	LIST_HEAD(freelist);

578
	pfn = start_pfn;
579
	block_start_pfn = pageblock_start_pfn(pfn);
580 581
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
582
	block_end_pfn = pageblock_end_pfn(pfn);
583 584

	for (; pfn < end_pfn; pfn += isolated,
585
				block_start_pfn = block_end_pfn,
586
				block_end_pfn += pageblock_nr_pages) {
587 588
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
589 590 591

		block_end_pfn = min(block_end_pfn, end_pfn);

592 593 594 595 596 597
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
598 599
			block_start_pfn = pageblock_start_pfn(pfn);
			block_end_pfn = pageblock_end_pfn(pfn);
600 601 602
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

603 604
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
605 606
			break;

607 608
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

625
	/* __isolate_free_page() does not map the pages */
626 627 628 629 630 631 632 633 634 635 636 637
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

638 639 640
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
641
	unsigned long active, inactive, isolated;
642

M
Mel Gorman 已提交
643 644 645 646 647 648
	inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
	active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
			node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
	isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
			node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
649

650
	return isolated > (inactive + active) / 2;
651 652
}

653
/**
654 655
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
656
 * @cc:		Compaction control structure.
657 658 659
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
660 661
 *
 * Isolate all pages that can be migrated from the range specified by
662 663 664 665
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
666
 *
667 668 669
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
670
 */
671 672 673
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
674
{
675
	struct zone *zone = cc->zone;
676
	unsigned long nr_scanned = 0, nr_isolated = 0;
677
	struct lruvec *lruvec;
678
	unsigned long flags = 0;
679
	bool locked = false;
680
	struct page *page = NULL, *valid_page = NULL;
681
	unsigned long start_pfn = low_pfn;
682 683
	bool skip_on_failure = false;
	unsigned long next_skip_pfn = 0;
684 685 686 687 688 689 690

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
691
		/* async migration should just abort */
692
		if (cc->mode == MIGRATE_ASYNC)
693
			return 0;
694

695 696 697
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
698
			return 0;
699 700
	}

701 702
	if (compact_should_abort(cc))
		return 0;
703

704 705 706 707 708
	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
		skip_on_failure = true;
		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
	}

709 710
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
711

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		if (skip_on_failure && low_pfn >= next_skip_pfn) {
			/*
			 * We have isolated all migration candidates in the
			 * previous order-aligned block, and did not skip it due
			 * to failure. We should migrate the pages now and
			 * hopefully succeed compaction.
			 */
			if (nr_isolated)
				break;

			/*
			 * We failed to isolate in the previous order-aligned
			 * block. Set the new boundary to the end of the
			 * current block. Note we can't simply increase
			 * next_skip_pfn by 1 << order, as low_pfn might have
			 * been incremented by a higher number due to skipping
			 * a compound or a high-order buddy page in the
			 * previous loop iteration.
			 */
			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
		}

734 735 736 737 738 739
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
740
		    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
741 742
								&locked, cc))
			break;
743

744
		if (!pfn_valid_within(low_pfn))
745
			goto isolate_fail;
746
		nr_scanned++;
747 748

		page = pfn_to_page(low_pfn);
749

750 751 752
		if (!valid_page)
			valid_page = page;

753
		/*
754 755 756 757
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
758
		 */
759 760 761 762 763 764 765 766 767 768
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
769
			continue;
770
		}
771

772
		/*
773 774 775 776 777
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
778
		 */
779 780 781 782 783
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER))
				low_pfn += (1UL << comp_order) - 1;
784

785
			goto isolate_fail;
786 787
		}

788 789 790 791 792 793 794 795 796 797 798 799 800
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU and non-lru movable pages.
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			/*
			 * __PageMovable can return false positive so we need
			 * to verify it under page_lock.
			 */
			if (unlikely(__PageMovable(page)) &&
					!PageIsolated(page)) {
				if (locked) {
801
					spin_unlock_irqrestore(zone_lru_lock(zone),
802 803 804 805
									flags);
					locked = false;
				}

806
				if (!isolate_movable_page(page, isolate_mode))
807 808 809
					goto isolate_success;
			}

810
			goto isolate_fail;
811
		}
812

813 814 815 816 817 818 819
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
820
			goto isolate_fail;
821

822 823 824 825 826 827 828
		/*
		 * Only allow to migrate anonymous pages in GFP_NOFS context
		 * because those do not depend on fs locks.
		 */
		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
			goto isolate_fail;

829 830
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
831
			locked = compact_trylock_irqsave(zone_lru_lock(zone),
832
								&flags, cc);
833 834
			if (!locked)
				break;
835

836
			/* Recheck PageLRU and PageCompound under lock */
837
			if (!PageLRU(page))
838
				goto isolate_fail;
839 840 841 842 843 844 845 846

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
				low_pfn += (1UL << compound_order(page)) - 1;
847
				goto isolate_fail;
848
			}
849 850
		}

M
Mel Gorman 已提交
851
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
852

853
		/* Try isolate the page */
854
		if (__isolate_lru_page(page, isolate_mode) != 0)
855
			goto isolate_fail;
856

857
		VM_BUG_ON_PAGE(PageCompound(page), page);
858

859
		/* Successfully isolated */
860
		del_page_from_lru_list(page, lruvec, page_lru(page));
861 862
		inc_node_page_state(page,
				NR_ISOLATED_ANON + page_is_file_cache(page));
863 864

isolate_success:
865
		list_add(&page->lru, &cc->migratepages);
866
		cc->nr_migratepages++;
867
		nr_isolated++;
868

869 870 871 872 873 874 875 876 877
		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator.
		 * - this is the lowest page that was isolated and likely be
		 * then freed by migration.
		 */
		if (!cc->last_migrated_pfn)
			cc->last_migrated_pfn = low_pfn;

878
		/* Avoid isolating too much */
879 880
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
881
			break;
882
		}
883 884 885 886 887 888 889 890 891 892 893 894 895

		continue;
isolate_fail:
		if (!skip_on_failure)
			continue;

		/*
		 * We have isolated some pages, but then failed. Release them
		 * instead of migrating, as we cannot form the cc->order buddy
		 * page anyway.
		 */
		if (nr_isolated) {
			if (locked) {
896
				spin_unlock_irqrestore(zone_lru_lock(zone), flags);
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
				locked = false;
			}
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			cc->last_migrated_pfn = 0;
			nr_isolated = 0;
		}

		if (low_pfn < next_skip_pfn) {
			low_pfn = next_skip_pfn - 1;
			/*
			 * The check near the loop beginning would have updated
			 * next_skip_pfn too, but this is a bit simpler.
			 */
			next_skip_pfn += 1UL << cc->order;
		}
913 914
	}

915 916 917 918 919 920 921
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

922
	if (locked)
923
		spin_unlock_irqrestore(zone_lru_lock(zone), flags);
924

925 926 927 928
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
929
	if (low_pfn == end_pfn)
930
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
931

932 933
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
934

935
	cc->total_migrate_scanned += nr_scanned;
936
	if (nr_isolated)
937
		count_compact_events(COMPACTISOLATED, nr_isolated);
938

939 940 941
	return low_pfn;
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
956
	unsigned long pfn, block_start_pfn, block_end_pfn;
957 958 959

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
960
	block_start_pfn = pageblock_start_pfn(pfn);
961 962
	if (block_start_pfn < cc->zone->zone_start_pfn)
		block_start_pfn = cc->zone->zone_start_pfn;
963
	block_end_pfn = pageblock_end_pfn(pfn);
964 965

	for (; pfn < end_pfn; pfn = block_end_pfn,
966
				block_start_pfn = block_end_pfn,
967 968 969 970
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

971 972
		if (!pageblock_pfn_to_page(block_start_pfn,
					block_end_pfn, cc->zone))
973 974 975 976 977
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

978
		if (!pfn)
979
			break;
980 981 982

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
983 984 985 986 987
	}

	return pfn;
}

988 989
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
990 991

/* Returns true if the page is within a block suitable for migration to */
992 993
static bool suitable_migration_target(struct compact_control *cc,
							struct page *page)
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

1006 1007 1008
	if (cc->ignore_block_suitable)
		return true;

1009 1010 1011 1012 1013 1014 1015 1016
	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
		return true;

	/* Otherwise skip the block */
	return false;
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

1027
/*
1028 1029
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
1030
 */
1031
static void isolate_freepages(struct compact_control *cc)
1032
{
1033
	struct zone *zone = cc->zone;
1034
	struct page *page;
1035
	unsigned long block_start_pfn;	/* start of current pageblock */
1036
	unsigned long isolate_start_pfn; /* exact pfn we start at */
1037 1038
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1039
	struct list_head *freelist = &cc->freepages;
1040

1041 1042
	/*
	 * Initialise the free scanner. The starting point is where we last
1043
	 * successfully isolated from, zone-cached value, or the end of the
1044 1045
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
1046 1047 1048
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
1049 1050
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
1051
	 */
1052
	isolate_start_pfn = cc->free_pfn;
1053
	block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1054 1055
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
1056
	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1057

1058 1059 1060 1061 1062
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
1063
	for (; block_start_pfn >= low_pfn;
1064
				block_end_pfn = block_start_pfn,
1065 1066
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
1067 1068 1069
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
1070
		 * to schedule, or even abort async compaction.
1071
		 */
1072 1073 1074
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1075

1076 1077 1078
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
1079 1080 1081
			continue;

		/* Check the block is suitable for migration */
1082
		if (!suitable_migration_target(cc, page))
1083
			continue;
1084

1085 1086 1087 1088
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1089
		/* Found a block suitable for isolating free pages from. */
1090 1091
		isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
					freelist, false);
1092

1093
		/*
1094 1095
		 * If we isolated enough freepages, or aborted due to lock
		 * contention, terminate.
1096
		 */
1097 1098
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
1099 1100 1101 1102 1103
			if (isolate_start_pfn >= block_end_pfn) {
				/*
				 * Restart at previous pageblock if more
				 * freepages can be isolated next time.
				 */
1104 1105
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1106
			}
1107
			break;
1108
		} else if (isolate_start_pfn < block_end_pfn) {
1109
			/*
1110 1111
			 * If isolation failed early, do not continue
			 * needlessly.
1112
			 */
1113
			break;
1114
		}
1115 1116
	}

1117
	/* __isolate_free_page() does not map the pages */
1118 1119
	map_pages(freelist);

1120
	/*
1121 1122 1123 1124
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1125
	 */
1126
	cc->free_pfn = isolate_start_pfn;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1140 1141 1142 1143
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1144
	if (list_empty(&cc->freepages)) {
1145
		if (!cc->contended)
1146
			isolate_freepages(cc);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1172 1173 1174 1175 1176 1177 1178
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1179 1180 1181 1182 1183 1184
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1185
/*
1186 1187 1188
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1189 1190 1191 1192
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
1193 1194 1195
	unsigned long block_start_pfn;
	unsigned long block_end_pfn;
	unsigned long low_pfn;
1196 1197
	struct page *page;
	const isolate_mode_t isolate_mode =
1198
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1199
		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1200

1201 1202 1203 1204 1205
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1206
	block_start_pfn = pageblock_start_pfn(low_pfn);
1207 1208
	if (block_start_pfn < zone->zone_start_pfn)
		block_start_pfn = zone->zone_start_pfn;
1209 1210

	/* Only scan within a pageblock boundary */
1211
	block_end_pfn = pageblock_end_pfn(low_pfn);
1212

1213 1214 1215 1216
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
1217 1218 1219 1220
	for (; block_end_pfn <= cc->free_pfn;
			low_pfn = block_end_pfn,
			block_start_pfn = block_end_pfn,
			block_end_pfn += pageblock_nr_pages) {
1221

1222 1223 1224 1225 1226 1227 1228 1229
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1230

1231 1232
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
1233
		if (!page)
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
1250 1251
		low_pfn = isolate_migratepages_block(cc, low_pfn,
						block_end_pfn, isolate_mode);
1252

1253
		if (!low_pfn || cc->contended)
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

1264 1265
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1266

1267
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1268 1269
}

1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1279
static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1280
			    const int migratetype)
1281
{
1282
	unsigned int order;
1283

1284
	if (cc->contended || fatal_signal_pending(current))
1285
		return COMPACT_CONTENDED;
1286

1287
	/* Compaction run completes if the migrate and free scanner meet */
1288
	if (compact_scanners_met(cc)) {
1289
		/* Let the next compaction start anew. */
1290
		reset_cached_positions(zone);
1291

1292 1293
		/*
		 * Mark that the PG_migrate_skip information should be cleared
1294
		 * by kswapd when it goes to sleep. kcompactd does not set the
1295 1296 1297
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
1298
		if (cc->direct_compaction)
1299 1300
			zone->compact_blockskip_flush = true;

1301 1302 1303 1304
		if (cc->whole_zone)
			return COMPACT_COMPLETE;
		else
			return COMPACT_PARTIAL_SKIPPED;
1305
	}
1306

1307
	if (is_via_compact_memory(cc->order))
1308 1309 1310
		return COMPACT_CONTINUE;

	/* Direct compactor: Is a suitable page free? */
1311 1312
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1313
		bool can_steal;
1314 1315

		/* Job done if page is free of the right migratetype */
1316
		if (!list_empty(&area->free_list[migratetype]))
1317
			return COMPACT_SUCCESS;
1318

1319 1320 1321 1322
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
1323
			return COMPACT_SUCCESS;
1324 1325 1326 1327 1328 1329 1330
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
						true, &can_steal) != -1)
1331
			return COMPACT_SUCCESS;
1332 1333
	}

1334 1335 1336
	return COMPACT_NO_SUITABLE_PAGE;
}

1337 1338 1339
static enum compact_result compact_finished(struct zone *zone,
			struct compact_control *cc,
			const int migratetype)
1340 1341 1342 1343 1344 1345 1346 1347 1348
{
	int ret;

	ret = __compact_finished(zone, cc, migratetype);
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1349 1350
}

1351 1352 1353 1354
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1355
 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1356 1357
 *   COMPACT_CONTINUE - If compaction should run now
 */
1358
static enum compact_result __compaction_suitable(struct zone *zone, int order,
1359
					unsigned int alloc_flags,
1360 1361
					int classzone_idx,
					unsigned long wmark_target)
1362 1363 1364
{
	unsigned long watermark;

1365
	if (is_via_compact_memory(order))
1366 1367
		return COMPACT_CONTINUE;

1368
	watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1369 1370 1371 1372 1373 1374
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
1375
		return COMPACT_SUCCESS;
1376

1377
	/*
1378
	 * Watermarks for order-0 must be met for compaction to be able to
1379 1380 1381 1382 1383 1384 1385
	 * isolate free pages for migration targets. This means that the
	 * watermark and alloc_flags have to match, or be more pessimistic than
	 * the check in __isolate_free_page(). We don't use the direct
	 * compactor's alloc_flags, as they are not relevant for freepage
	 * isolation. We however do use the direct compactor's classzone_idx to
	 * skip over zones where lowmem reserves would prevent allocation even
	 * if compaction succeeds.
1386 1387
	 * For costly orders, we require low watermark instead of min for
	 * compaction to proceed to increase its chances.
1388 1389
	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
	 * suitable migration targets
1390
	 */
1391 1392 1393
	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
				low_wmark_pages(zone) : min_wmark_pages(zone);
	watermark += compact_gap(order);
1394
	if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1395
						ALLOC_CMA, wmark_target))
1396 1397
		return COMPACT_SKIPPED;

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	return COMPACT_CONTINUE;
}

enum compact_result compaction_suitable(struct zone *zone, int order,
					unsigned int alloc_flags,
					int classzone_idx)
{
	enum compact_result ret;
	int fragindex;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
				    zone_page_state(zone, NR_FREE_PAGES));
1410 1411 1412 1413
	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1414 1415
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1416 1417 1418
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
1419 1420 1421 1422 1423 1424
	 * Only compact if a failure would be due to fragmentation. Also
	 * ignore fragindex for non-costly orders where the alternative to
	 * a successful reclaim/compaction is OOM. Fragindex and the
	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
	 * excessive compaction for costly orders, but it should not be at the
	 * expense of system stability.
1425
	 */
1426
	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1427 1428 1429 1430
		fragindex = fragmentation_index(zone, order);
		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
			ret = COMPACT_NOT_SUITABLE_ZONE;
	}
1431 1432 1433 1434 1435 1436 1437 1438

	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
		int alloc_flags)
{
	struct zone *zone;
	struct zoneref *z;

	/*
	 * Make sure at least one zone would pass __compaction_suitable if we continue
	 * retrying the reclaim.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
		enum compact_result compact_result;

		/*
		 * Do not consider all the reclaimable memory because we do not
		 * want to trash just for a single high order allocation which
		 * is even not guaranteed to appear even if __compaction_suitable
		 * is happy about the watermark check.
		 */
1460
		available = zone_reclaimable_pages(zone) / order;
1461 1462 1463
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
		compact_result = __compaction_suitable(zone, order, alloc_flags,
				ac_classzone_idx(ac), available);
1464
		if (compact_result != COMPACT_SKIPPED)
1465 1466 1467 1468 1469 1470
			return true;
	}

	return false;
}

1471
static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1472
{
1473
	enum compact_result ret;
1474
	unsigned long start_pfn = zone->zone_start_pfn;
1475
	unsigned long end_pfn = zone_end_pfn(zone);
1476
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1477
	const bool sync = cc->mode != MIGRATE_ASYNC;
1478

1479 1480
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1481
	/* Compaction is likely to fail */
1482
	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1483
		return ret;
1484 1485 1486

	/* huh, compaction_suitable is returning something unexpected */
	VM_BUG_ON(ret != COMPACT_CONTINUE);
1487

1488 1489
	/*
	 * Clear pageblock skip if there were failures recently and compaction
1490
	 * is about to be retried after being deferred.
1491
	 */
1492
	if (compaction_restarting(zone, cc->order))
1493 1494
		__reset_isolation_suitable(zone);

1495 1496
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
1497 1498 1499
	 * information on where the scanners should start (unless we explicitly
	 * want to compact the whole zone), but check that it is initialised
	 * by ensuring the values are within zone boundaries.
1500
	 */
1501
	if (cc->whole_zone) {
1502
		cc->migrate_pfn = start_pfn;
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
	} else {
		cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
		cc->free_pfn = zone->compact_cached_free_pfn;
		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
			zone->compact_cached_free_pfn = cc->free_pfn;
		}
		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
			cc->migrate_pfn = start_pfn;
			zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
			zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
		}
1516

1517 1518 1519
		if (cc->migrate_pfn == start_pfn)
			cc->whole_zone = true;
	}
1520

1521
	cc->last_migrated_pfn = 0;
1522

1523 1524
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1525

1526 1527
	migrate_prep_local();

1528 1529
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1530
		int err;
1531

1532 1533
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
1534
			ret = COMPACT_CONTENDED;
1535
			putback_movable_pages(&cc->migratepages);
1536
			cc->nr_migratepages = 0;
1537 1538
			goto out;
		case ISOLATE_NONE:
1539 1540 1541 1542 1543 1544
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1545 1546 1547
		case ISOLATE_SUCCESS:
			;
		}
1548

1549
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1550
				compaction_free, (unsigned long)cc, cc->mode,
1551
				MR_COMPACTION);
1552

1553 1554
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1555

1556 1557
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1558
		if (err) {
1559
			putback_movable_pages(&cc->migratepages);
1560 1561 1562 1563
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1564
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1565
				ret = COMPACT_CONTENDED;
1566 1567
				goto out;
			}
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
			/*
			 * We failed to migrate at least one page in the current
			 * order-aligned block, so skip the rest of it.
			 */
			if (cc->direct_compaction &&
						(cc->mode == MIGRATE_ASYNC)) {
				cc->migrate_pfn = block_end_pfn(
						cc->migrate_pfn - 1, cc->order);
				/* Draining pcplists is useless in this case */
				cc->last_migrated_pfn = 0;

			}
1580
		}
1581 1582 1583 1584 1585 1586 1587 1588 1589

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
1590
		if (cc->order > 0 && cc->last_migrated_pfn) {
1591 1592
			int cpu;
			unsigned long current_block_start =
1593
				block_start_pfn(cc->migrate_pfn, cc->order);
1594

1595
			if (cc->last_migrated_pfn < current_block_start) {
1596 1597 1598 1599 1600
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
1601
				cc->last_migrated_pfn = 0;
1602 1603 1604
			}
		}

1605 1606
	}

1607
out:
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
1618
		free_pfn = pageblock_start_pfn(free_pfn);
1619 1620 1621 1622 1623 1624 1625
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1626

1627 1628 1629
	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);

1630 1631
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1632

1633 1634
	return ret;
}
1635

1636
static enum compact_result compact_zone_order(struct zone *zone, int order,
1637
		gfp_t gfp_mask, enum compact_priority prio,
1638
		unsigned int alloc_flags, int classzone_idx)
1639
{
1640
	enum compact_result ret;
1641 1642 1643
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
1644 1645
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1646
		.order = order,
1647
		.gfp_mask = gfp_mask,
1648
		.zone = zone,
1649 1650
		.mode = (prio == COMPACT_PRIO_ASYNC) ?
					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
1651 1652
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1653
		.direct_compaction = true,
1654
		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
1655 1656
		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1657 1658 1659 1660
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1661 1662 1663 1664 1665 1666
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	return ret;
1667 1668
}

1669 1670
int sysctl_extfrag_threshold = 500;

1671 1672 1673
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1674 1675 1676
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1677
 * @mode: The migration mode for async, sync light, or sync migration
1678 1679 1680
 *
 * This is the main entry point for direct page compaction.
 */
1681
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1682
		unsigned int alloc_flags, const struct alloc_context *ac,
1683
		enum compact_priority prio)
1684 1685 1686 1687
{
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1688
	enum compact_result rc = COMPACT_SKIPPED;
1689

1690 1691 1692 1693 1694
	/*
	 * Check if the GFP flags allow compaction - GFP_NOIO is really
	 * tricky context because the migration might require IO
	 */
	if (!may_perform_io)
1695
		return COMPACT_SKIPPED;
1696

1697
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1698

1699
	/* Compact each zone in the list */
1700 1701
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1702
		enum compact_result status;
1703

1704 1705
		if (prio > MIN_COMPACT_PRIORITY
					&& compaction_deferred(zone, order)) {
1706
			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1707
			continue;
1708
		}
1709

1710
		status = compact_zone_order(zone, order, gfp_mask, prio,
1711
					alloc_flags, ac_classzone_idx(ac));
1712 1713
		rc = max(status, rc);

1714 1715
		/* The allocation should succeed, stop compacting */
		if (status == COMPACT_SUCCESS) {
1716 1717 1718 1719 1720 1721 1722
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1723

1724
			break;
1725 1726
		}

1727
		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1728
					status == COMPACT_PARTIAL_SKIPPED))
1729 1730 1731 1732 1733 1734
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
1735 1736 1737 1738

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
1739
		 * case do not try further zones
1740
		 */
1741 1742 1743
		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
					|| fatal_signal_pending(current))
			break;
1744 1745 1746 1747 1748 1749
	}

	return rc;
}


1750
/* Compact all zones within a node */
1751
static void compact_node(int nid)
1752
{
1753
	pg_data_t *pgdat = NODE_DATA(nid);
1754 1755
	int zoneid;
	struct zone *zone;
1756 1757
	struct compact_control cc = {
		.order = -1,
1758 1759
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1760 1761 1762
		.mode = MIGRATE_SYNC,
		.ignore_skip_hint = true,
		.whole_zone = true,
1763
		.gfp_mask = GFP_KERNEL,
1764 1765
	};

1766 1767 1768 1769 1770 1771 1772

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1773 1774 1775 1776 1777
		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);
1778

1779
		compact_zone(zone, &cc);
1780

1781 1782
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
1783 1784 1785 1786
	}
}

/* Compact all nodes in the system */
1787
static void compact_nodes(void)
1788 1789 1790
{
	int nid;

1791 1792 1793
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1794 1795 1796 1797 1798 1799 1800
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

1801 1802 1803 1804
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
1805 1806 1807 1808
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1809
		compact_nodes();
1810 1811 1812

	return 0;
}
1813

1814 1815 1816 1817 1818 1819 1820 1821
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1822
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1823
static ssize_t sysfs_compact_node(struct device *dev,
1824
			struct device_attribute *attr,
1825 1826
			const char *buf, size_t count)
{
1827 1828 1829 1830 1831 1832 1833 1834
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1835 1836 1837

	return count;
}
1838
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1839 1840 1841

int compaction_register_node(struct node *node)
{
1842
	return device_create_file(&node->dev, &dev_attr_compact);
1843 1844 1845 1846
}

void compaction_unregister_node(struct node *node)
{
1847
	return device_remove_file(&node->dev, &dev_attr_compact);
1848 1849
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1850

1851 1852
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
{
1853
	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1854 1855 1856 1857 1858 1859 1860 1861
}

static bool kcompactd_node_suitable(pg_data_t *pgdat)
{
	int zoneid;
	struct zone *zone;
	enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;

1862
	for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
		zone = &pgdat->node_zones[zoneid];

		if (!populated_zone(zone))
			continue;

		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
					classzone_idx) == COMPACT_CONTINUE)
			return true;
	}

	return false;
}

static void kcompactd_do_work(pg_data_t *pgdat)
{
	/*
	 * With no special task, compact all zones so that a page of requested
	 * order is allocatable.
	 */
	int zoneid;
	struct zone *zone;
	struct compact_control cc = {
		.order = pgdat->kcompactd_max_order,
1886 1887
		.total_migrate_scanned = 0,
		.total_free_scanned = 0,
1888 1889 1890
		.classzone_idx = pgdat->kcompactd_classzone_idx,
		.mode = MIGRATE_SYNC_LIGHT,
		.ignore_skip_hint = true,
1891
		.gfp_mask = GFP_KERNEL,
1892 1893 1894 1895

	};
	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
							cc.classzone_idx);
1896
	count_compact_event(KCOMPACTD_WAKE);
1897

1898
	for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
		int status;

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		if (compaction_deferred(zone, cc.order))
			continue;

		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
							COMPACT_CONTINUE)
			continue;

		cc.nr_freepages = 0;
		cc.nr_migratepages = 0;
1914 1915
		cc.total_migrate_scanned = 0;
		cc.total_free_scanned = 0;
1916 1917 1918 1919
		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

1920 1921
		if (kthread_should_stop())
			return;
1922 1923
		status = compact_zone(zone, &cc);

1924
		if (status == COMPACT_SUCCESS) {
1925
			compaction_defer_reset(zone, cc.order, false);
1926
		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1927 1928 1929 1930 1931 1932 1933
			/*
			 * We use sync migration mode here, so we defer like
			 * sync direct compaction does.
			 */
			defer_compaction(zone, cc.order);
		}

1934 1935 1936 1937 1938
		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
				     cc.total_migrate_scanned);
		count_compact_events(KCOMPACTD_FREE_SCANNED,
				     cc.total_free_scanned);

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	/*
	 * Regardless of success, we are done until woken up next. But remember
	 * the requested order/classzone_idx in case it was higher/tighter than
	 * our current ones
	 */
	if (pgdat->kcompactd_max_order <= cc.order)
		pgdat->kcompactd_max_order = 0;
	if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
		pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
}

void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
{
	if (!order)
		return;

	if (pgdat->kcompactd_max_order < order)
		pgdat->kcompactd_max_order = order;

1962 1963 1964 1965 1966 1967 1968
	/*
	 * Pairs with implicit barrier in wait_event_freezable()
	 * such that wakeups are not missed in the lockless
	 * waitqueue_active() call.
	 */
	smp_acquire__after_ctrl_dep();

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	if (pgdat->kcompactd_classzone_idx > classzone_idx)
		pgdat->kcompactd_classzone_idx = classzone_idx;

	if (!waitqueue_active(&pgdat->kcompactd_wait))
		return;

	if (!kcompactd_node_suitable(pgdat))
		return;

	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
							classzone_idx);
	wake_up_interruptible(&pgdat->kcompactd_wait);
}

/*
 * The background compaction daemon, started as a kernel thread
 * from the init process.
 */
static int kcompactd(void *p)
{
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;

	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);

	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(tsk, cpumask);

	set_freezable();

	pgdat->kcompactd_max_order = 0;
	pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;

	while (!kthread_should_stop()) {
		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
		wait_event_freezable(pgdat->kcompactd_wait,
				kcompactd_work_requested(pgdat));

		kcompactd_do_work(pgdat);
	}

	return 0;
}

/*
 * This kcompactd start function will be called by init and node-hot-add.
 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
 */
int kcompactd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kcompactd)
		return 0;

	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
	if (IS_ERR(pgdat->kcompactd)) {
		pr_err("Failed to start kcompactd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kcompactd);
		pgdat->kcompactd = NULL;
	}
	return ret;
}

/*
 * Called by memory hotplug when all memory in a node is offlined. Caller must
 * hold mem_hotplug_begin/end().
 */
void kcompactd_stop(int nid)
{
	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;

	if (kcompactd) {
		kthread_stop(kcompactd);
		NODE_DATA(nid)->kcompactd = NULL;
	}
}

/*
 * It's optimal to keep kcompactd on the same CPUs as their memory, but
 * not required for correctness. So if the last cpu in a node goes
 * away, we get changed to run anywhere: as the first one comes back,
 * restore their cpu bindings.
 */
2054
static int kcompactd_cpu_online(unsigned int cpu)
2055 2056 2057
{
	int nid;

2058 2059 2060
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
2061

2062
		mask = cpumask_of_node(pgdat->node_id);
2063

2064 2065 2066
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2067
	}
2068
	return 0;
2069 2070 2071 2072 2073
}

static int __init kcompactd_init(void)
{
	int nid;
2074 2075 2076 2077 2078 2079 2080 2081 2082
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/compaction:online",
					kcompactd_cpu_online, NULL);
	if (ret < 0) {
		pr_err("kcompactd: failed to register hotplug callbacks.\n");
		return ret;
	}
2083 2084 2085 2086 2087 2088 2089

	for_each_node_state(nid, N_MEMORY)
		kcompactd_run(nid);
	return 0;
}
subsys_initcall(kcompactd_init)

2090
#endif /* CONFIG_COMPACTION */