compaction.c 43.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 38 39 40 41 42 43 44 45
#ifdef CONFIG_TRACEPOINTS
static const char *const compaction_status_string[] = {
	"deferred",
	"skipped",
	"continue",
	"partial",
	"complete",
};
#endif
46

47 48 49
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

50 51 52
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
53
	unsigned long high_pfn = 0;
54 55

	list_for_each_entry_safe(page, next, freelist, lru) {
56
		unsigned long pfn = page_to_pfn(page);
57 58
		list_del(&page->lru);
		__free_page(page);
59 60
		if (pfn > high_pfn)
			high_pfn = pfn;
61 62
	}

63
	return high_pfn;
64 65
}

66 67 68 69 70 71 72 73 74 75
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

76 77 78 79 80
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
140
static void __reset_isolation_suitable(struct zone *zone)
141 142
{
	unsigned long start_pfn = zone->zone_start_pfn;
143
	unsigned long end_pfn = zone_end_pfn(zone);
144 145
	unsigned long pfn;

146 147
	zone->compact_cached_migrate_pfn[0] = start_pfn;
	zone->compact_cached_migrate_pfn[1] = start_pfn;
148
	zone->compact_cached_free_pfn = end_pfn;
149
	zone->compact_blockskip_flush = false;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

183 184
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
185
 * future. The information is later cleared by __reset_isolation_suitable().
186
 */
187 188
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
189
			bool migrate_scanner)
190
{
191
	struct zone *zone = cc->zone;
192
	unsigned long pfn;
193 194 195 196

	if (cc->ignore_skip_hint)
		return;

197 198 199
	if (!page)
		return;

200 201 202
	if (nr_isolated)
		return;

203
	set_pageblock_skip(page);
204

205 206 207 208 209 210
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
211 212
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
213 214 215 216
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
217
	}
218 219 220 221 222 223 224 225
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

226 227
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
228
			bool migrate_scanner)
229 230 231 232
{
}
#endif /* CONFIG_COMPACTION */

233 234 235 236 237 238 239 240 241 242
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
243
{
244 245 246 247 248 249 250 251
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
252

253
	return true;
254 255
}

256 257
/*
 * Compaction requires the taking of some coarse locks that are potentially
258 259 260 261 262 263 264
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
265
 *
266 267 268 269
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
270
 */
271 272
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
273
{
274 275 276 277
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
278

279 280 281 282
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
283

284
	if (need_resched()) {
285
		if (cc->mode == MIGRATE_ASYNC) {
286 287
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
288 289 290 291
		}
		cond_resched();
	}

292
	return false;
293 294
}

295 296 297
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
298
 * compaction. This is similar to what compact_unlock_should_abort() does, but
299 300 301 302 303 304 305 306 307 308
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
309
			cc->contended = COMPACT_CONTENDED_SCHED;
310 311 312 313 314 315 316 317 318
			return true;
		}

		cond_resched();
	}

	return false;
}

319 320 321
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
322
	/* If the page is a large free page, then disallow migration */
323 324 325 326 327 328 329 330 331
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}
332 333

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
334
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
335 336 337 338 339 340
		return true;

	/* Otherwise skip the block */
	return false;
}

341
/*
342 343 344
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
345
 */
346
static unsigned long isolate_freepages_block(struct compact_control *cc,
347
				unsigned long *start_pfn,
348 349 350
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
351
{
352
	int nr_scanned = 0, total_isolated = 0;
353
	struct page *cursor, *valid_page = NULL;
354
	unsigned long flags = 0;
355
	bool locked = false;
356
	unsigned long blockpfn = *start_pfn;
357 358 359

	cursor = pfn_to_page(blockpfn);

360
	/* Isolate free pages. */
361 362 363 364
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

365 366 367 368 369 370 371 372 373 374
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

375
		nr_scanned++;
376
		if (!pfn_valid_within(blockpfn))
377 378
			goto isolate_fail;

379 380
		if (!valid_page)
			valid_page = page;
381
		if (!PageBuddy(page))
382
			goto isolate_fail;
383 384

		/*
385 386 387 388 389
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
390
		 */
391 392 393 394 395 396 397 398 399
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
400 401
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
402 403
			if (!locked)
				break;
404

405 406 407 408
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
409 410 411 412 413 414 415 416 417 418 419 420 421

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
422
			continue;
423
		}
424 425 426 427 428 429 430

isolate_fail:
		if (strict)
			break;
		else
			continue;

431 432
	}

433 434 435
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

436 437 438
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

439 440 441 442 443
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
444
	if (strict && blockpfn < end_pfn)
445 446 447 448 449
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

450 451
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
452
		update_pageblock_skip(cc, valid_page, total_isolated, false);
453

454
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
455
	if (total_isolated)
456
		count_compact_events(COMPACTISOLATED, total_isolated);
457 458 459
	return total_isolated;
}

460 461 462 463 464 465 466 467 468 469 470 471 472
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
473
unsigned long
474 475
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
476
{
477
	unsigned long isolated, pfn, block_end_pfn;
478 479
	LIST_HEAD(freelist);

480 481 482 483 484
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn += isolated,
				block_end_pfn += pageblock_nr_pages) {
485 486
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
487 488 489

		block_end_pfn = min(block_end_pfn, end_pfn);

490 491 492 493 494 495 496 497 498 499
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

500 501 502
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
			break;

503 504
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

534
/* Update the number of anon and file isolated pages in the zone */
535
static void acct_isolated(struct zone *zone, struct compact_control *cc)
536 537
{
	struct page *page;
538
	unsigned int count[2] = { 0, };
539

540 541 542
	if (list_empty(&cc->migratepages))
		return;

543 544
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
545

546 547
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
548 549 550 551 552
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
553
	unsigned long active, inactive, isolated;
554 555 556

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
557 558
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
559 560 561
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

562
	return isolated > (inactive + active) / 2;
563 564
}

565
/**
566 567
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
568
 * @cc:		Compaction control structure.
569 570 571
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
572 573
 *
 * Isolate all pages that can be migrated from the range specified by
574 575 576 577
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
578
 *
579 580 581
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
582
 */
583 584 585
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
586
{
587
	struct zone *zone = cc->zone;
588
	unsigned long nr_scanned = 0, nr_isolated = 0;
589
	struct list_head *migratelist = &cc->migratepages;
590
	struct lruvec *lruvec;
591
	unsigned long flags = 0;
592
	bool locked = false;
593
	struct page *page = NULL, *valid_page = NULL;
594
	unsigned long start_pfn = low_pfn;
595 596 597 598 599 600 601

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
602
		/* async migration should just abort */
603
		if (cc->mode == MIGRATE_ASYNC)
604
			return 0;
605

606 607 608
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
609
			return 0;
610 611
	}

612 613
	if (compact_should_abort(cc))
		return 0;
614

615 616
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
617 618 619 620 621 622 623 624 625
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
626

627 628
		if (!pfn_valid_within(low_pfn))
			continue;
629
		nr_scanned++;
630 631

		page = pfn_to_page(low_pfn);
632

633 634 635
		if (!valid_page)
			valid_page = page;

636
		/*
637 638 639 640
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
641
		 */
642 643 644 645 646 647 648 649 650 651
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
652
			continue;
653
		}
654

655 656 657 658 659 660 661
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
662
				if (balloon_page_isolate(page)) {
663
					/* Successfully isolated */
664
					goto isolate_success;
665 666
				}
			}
667
			continue;
668
		}
669 670

		/*
671 672 673 674 675 676 677 678
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
679
		 */
680 681
		if (PageTransHuge(page)) {
			if (!locked)
682 683 684 685 686
				low_pfn = ALIGN(low_pfn + 1,
						pageblock_nr_pages) - 1;
			else
				low_pfn += (1 << compound_order(page)) - 1;

687 688 689
			continue;
		}

690 691 692 693 694 695 696 697 698
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

699 700
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
701 702
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
703 704
			if (!locked)
				break;
705

706 707 708 709 710 711 712
			/* Recheck PageLRU and PageTransHuge under lock */
			if (!PageLRU(page))
				continue;
			if (PageTransHuge(page)) {
				low_pfn += (1 << compound_order(page)) - 1;
				continue;
			}
713 714
		}

715 716
		lruvec = mem_cgroup_page_lruvec(page, zone);

717
		/* Try isolate the page */
718
		if (__isolate_lru_page(page, isolate_mode) != 0)
719 720
			continue;

721
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
722

723
		/* Successfully isolated */
724
		del_page_from_lru_list(page, lruvec, page_lru(page));
725 726

isolate_success:
727 728
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
729
		nr_isolated++;
730 731

		/* Avoid isolating too much */
732 733
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
734
			break;
735
		}
736 737
	}

738 739 740 741 742 743 744
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

745 746
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
747

748 749 750 751
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
752
	if (low_pfn == end_pfn)
753
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
754

755 756
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
757

758
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
759
	if (nr_isolated)
760
		count_compact_events(COMPACTISOLATED, nr_isolated);
761

762 763 764
	return low_pfn;
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
	unsigned long pfn, block_end_pfn;

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn = block_end_pfn,
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

790
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

		/*
		 * In case of fatal failure, release everything that might
		 * have been isolated in the previous iteration, and signal
		 * the failure back to caller.
		 */
		if (!pfn) {
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			break;
		}
806 807 808

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
809 810 811 812 813 814
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

815 816
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
817
/*
818 819
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
820
 */
821
static void isolate_freepages(struct compact_control *cc)
822
{
823
	struct zone *zone = cc->zone;
824
	struct page *page;
825
	unsigned long block_start_pfn;	/* start of current pageblock */
826
	unsigned long isolate_start_pfn; /* exact pfn we start at */
827 828
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
829 830
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
831

832 833
	/*
	 * Initialise the free scanner. The starting point is where we last
834
	 * successfully isolated from, zone-cached value, or the end of the
835 836
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
837 838 839
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
840 841
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
842
	 */
843
	isolate_start_pfn = cc->free_pfn;
844 845 846
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
847
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
848

849 850 851 852 853
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
854 855
	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
				block_end_pfn = block_start_pfn,
856 857
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
858
		unsigned long isolated;
859

860 861 862
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
863
		 * to schedule, or even abort async compaction.
864
		 */
865 866 867
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
868

869 870 871
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
872 873 874
			continue;

		/* Check the block is suitable for migration */
875
		if (!suitable_migration_target(page))
876
			continue;
877

878 879 880 881
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

882 883
		/* Found a block suitable for isolating free pages from. */
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
884
					block_end_pfn, freelist, false);
885
		nr_freepages += isolated;
886

887 888 889 890 891 892 893 894 895 896 897 898 899
		/*
		 * Remember where the free scanner should restart next time,
		 * which is where isolate_freepages_block() left off.
		 * But if it scanned the whole pageblock, isolate_start_pfn
		 * now points at block_end_pfn, which is the start of the next
		 * pageblock.
		 * In that case we will however want to restart at the start
		 * of the previous pageblock.
		 */
		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
				isolate_start_pfn :
				block_start_pfn - pageblock_nr_pages;

900 901 902 903 904 905
		/*
		 * isolate_freepages_block() might have aborted due to async
		 * compaction being contended
		 */
		if (cc->contended)
			break;
906 907 908 909 910
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

911 912 913 914
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
915
	if (block_start_pfn < low_pfn)
916
		cc->free_pfn = cc->migrate_pfn;
917

918
	cc->nr_freepages = nr_freepages;
919 920 921 922 923 924 925 926 927 928 929 930 931
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

932 933 934 935
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
936
	if (list_empty(&cc->freepages)) {
937
		if (!cc->contended)
938
			isolate_freepages(cc);
939 940 941 942 943 944 945 946 947 948 949 950 951

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
952 953 954 955 956 957 958 959 960 961 962 963
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

964 965 966 967 968 969 970 971
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
972 973 974
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
975 976 977 978 979
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
980 981 982
	struct page *page;
	const isolate_mode_t isolate_mode =
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
983

984 985 986 987 988
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
989 990

	/* Only scan within a pageblock boundary */
991
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
992

993 994 995 996 997 998
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
	for (; end_pfn <= cc->free_pfn;
			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
999

1000 1001 1002 1003 1004 1005 1006 1007
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1008

1009 1010
		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
		if (!page)
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
								isolate_mode);

		if (!low_pfn || cc->contended)
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1042 1043 1044 1045 1046 1047
	/*
	 * Record where migration scanner will be restarted. If we end up in
	 * the same pageblock as the free scanner, make the scanners fully
	 * meet so that compact_finished() terminates compaction.
	 */
	cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1048

1049
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1050 1051
}

1052 1053
static int compact_finished(struct zone *zone, struct compact_control *cc,
			    const int migratetype)
1054
{
1055
	unsigned int order;
1056
	unsigned long watermark;
1057

1058
	if (cc->contended || fatal_signal_pending(current))
1059 1060
		return COMPACT_PARTIAL;

1061
	/* Compaction run completes if the migrate and free scanner meet */
1062
	if (cc->free_pfn <= cc->migrate_pfn) {
1063
		/* Let the next compaction start anew. */
1064 1065
		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1066 1067
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

1068 1069 1070 1071 1072 1073 1074 1075 1076
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

1077
		return COMPACT_COMPLETE;
1078
	}
1079

1080 1081 1082 1083
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
1084 1085 1086
	if (cc->order == -1)
		return COMPACT_CONTINUE;

1087 1088 1089
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1090 1091
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1092 1093
		return COMPACT_CONTINUE;

1094
	/* Direct compactor: Is a suitable page free? */
1095 1096 1097 1098
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
1099
		if (!list_empty(&area->free_list[migratetype]))
1100 1101 1102 1103
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
1104 1105 1106
			return COMPACT_PARTIAL;
	}

1107 1108 1109
	return COMPACT_CONTINUE;
}

1110 1111 1112 1113 1114 1115 1116
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1117 1118
unsigned long compaction_suitable(struct zone *zone, int order,
					int alloc_flags, int classzone_idx)
1119 1120 1121 1122
{
	int fragindex;
	unsigned long watermark;

1123 1124 1125 1126 1127 1128 1129
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

1130 1131 1132 1133 1134 1135 1136 1137 1138
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1139 1140 1141 1142 1143
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1144 1145
	watermark += (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1146 1147 1148 1149 1150 1151
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1152 1153
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

	return COMPACT_CONTINUE;
}

1166 1167 1168
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
1169
	unsigned long start_pfn = zone->zone_start_pfn;
1170
	unsigned long end_pfn = zone_end_pfn(zone);
1171
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1172
	const bool sync = cc->mode != MIGRATE_ASYNC;
1173
	unsigned long last_migrated_pfn = 0;
1174

1175 1176
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1187 1188 1189 1190 1191 1192 1193 1194
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1195 1196 1197 1198 1199
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1200
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1201 1202 1203 1204 1205 1206 1207
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
1208 1209
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1210
	}
1211

1212 1213
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1214

1215 1216
	migrate_prep_local();

1217 1218
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1219
		int err;
1220
		unsigned long isolate_start_pfn = cc->migrate_pfn;
1221

1222 1223 1224
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1225
			putback_movable_pages(&cc->migratepages);
1226
			cc->nr_migratepages = 0;
1227 1228
			goto out;
		case ISOLATE_NONE:
1229 1230 1231 1232 1233 1234
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1235 1236 1237
		case ISOLATE_SUCCESS:
			;
		}
1238

1239
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1240
				compaction_free, (unsigned long)cc, cc->mode,
1241
				MR_COMPACTION);
1242

1243 1244
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1245

1246 1247
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1248
		if (err) {
1249
			putback_movable_pages(&cc->migratepages);
1250 1251 1252 1253 1254
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1255 1256 1257
				ret = COMPACT_PARTIAL;
				goto out;
			}
1258
		}
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator. We use the pfn that
		 * isolate_migratepages() started from in this loop iteration
		 * - this is the lowest page that could have been isolated and
		 * then freed by migration.
		 */
		if (!last_migrated_pfn)
			last_migrated_pfn = isolate_start_pfn;

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
		if (cc->order > 0 && last_migrated_pfn) {
			int cpu;
			unsigned long current_block_start =
				cc->migrate_pfn & ~((1UL << cc->order) - 1);

			if (last_migrated_pfn < current_block_start) {
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
				last_migrated_pfn = 0;
			}
		}

1293 1294
	}

1295
out:
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
		free_pfn &= ~(pageblock_nr_pages-1);
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1314

1315 1316
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1317

1318 1319
	return ret;
}
1320

1321
static unsigned long compact_zone_order(struct zone *zone, int order,
1322 1323
		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
		int alloc_flags, int classzone_idx)
1324
{
1325
	unsigned long ret;
1326 1327 1328 1329
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1330
		.gfp_mask = gfp_mask,
1331
		.zone = zone,
1332
		.mode = mode,
1333 1334
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1335 1336 1337 1338
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1339 1340 1341 1342 1343 1344 1345
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1346 1347
}

1348 1349
int sysctl_extfrag_threshold = 500;

1350 1351 1352
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1353 1354 1355
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1356
 * @mode: The migration mode for async, sync light, or sync migration
1357 1358
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1359 1360 1361
 *
 * This is the main entry point for direct page compaction.
 */
1362 1363 1364
unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
			int alloc_flags, const struct alloc_context *ac,
			enum migrate_mode mode, int *contended)
1365 1366 1367 1368 1369
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1370
	int rc = COMPACT_DEFERRED;
1371 1372 1373
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1374

1375
	/* Check if the GFP flags allow compaction */
1376
	if (!order || !may_enter_fs || !may_perform_io)
1377
		return COMPACT_SKIPPED;
1378 1379

	/* Compact each zone in the list */
1380 1381
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1382
		int status;
1383
		int zone_contended;
1384

1385 1386 1387
		if (compaction_deferred(zone, order))
			continue;

1388
		status = compact_zone_order(zone, order, gfp_mask, mode,
1389 1390
				&zone_contended, alloc_flags,
				ac->classzone_idx);
1391
		rc = max(status, rc);
1392 1393 1394 1395 1396
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1397

1398
		/* If a normal allocation would succeed, stop compacting */
1399
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1400
					ac->classzone_idx, alloc_flags)) {
1401 1402 1403 1404 1405 1406 1407
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

1422
		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1423 1424 1425 1426 1427 1428 1429
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1451 1452
	}

1453 1454 1455 1456 1457 1458 1459
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1460 1461 1462 1463
	return rc;
}


1464
/* Compact all zones within a node */
1465
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1476 1477 1478 1479 1480
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1481

1482
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1483
			compact_zone(zone, cc);
1484

1485
		if (cc->order > 0) {
1486 1487 1488
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1489 1490
		}

1491 1492
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1493 1494 1495
	}
}

1496
void compact_pgdat(pg_data_t *pgdat, int order)
1497 1498 1499
{
	struct compact_control cc = {
		.order = order,
1500
		.mode = MIGRATE_ASYNC,
1501 1502
	};

1503 1504 1505
	if (!order)
		return;

1506
	__compact_pgdat(pgdat, &cc);
1507 1508
}

1509
static void compact_node(int nid)
1510 1511 1512
{
	struct compact_control cc = {
		.order = -1,
1513
		.mode = MIGRATE_SYNC,
1514
		.ignore_skip_hint = true,
1515 1516
	};

1517
	__compact_pgdat(NODE_DATA(nid), &cc);
1518 1519
}

1520
/* Compact all nodes in the system */
1521
static void compact_nodes(void)
1522 1523 1524
{
	int nid;

1525 1526 1527
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1540
		compact_nodes();
1541 1542 1543

	return 0;
}
1544

1545 1546 1547 1548 1549 1550 1551 1552
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1553
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1554
static ssize_t sysfs_compact_node(struct device *dev,
1555
			struct device_attribute *attr,
1556 1557
			const char *buf, size_t count)
{
1558 1559 1560 1561 1562 1563 1564 1565
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1566 1567 1568

	return count;
}
1569
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1570 1571 1572

int compaction_register_node(struct node *node)
{
1573
	return device_create_file(&node->dev, &dev_attr_compact);
1574 1575 1576 1577
}

void compaction_unregister_node(struct node *node)
{
1578
	return device_remove_file(&node->dev, &dev_attr_compact);
1579 1580
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1581 1582

#endif /* CONFIG_COMPACTION */