compaction.c 48.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19
#include <linux/kasan.h>
20 21
#include "internal.h"

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

37 38
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

39 40 41
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

42 43 44
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
45
	unsigned long high_pfn = 0;
46 47

	list_for_each_entry_safe(page, next, freelist, lru) {
48
		unsigned long pfn = page_to_pfn(page);
49 50
		list_del(&page->lru);
		__free_page(page);
51 52
		if (pfn > high_pfn)
			high_pfn = pfn;
53 54
	}

55
	return high_pfn;
56 57
}

58 59 60 61 62 63 64
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
65
		kasan_alloc_pages(page, 0);
66 67 68
	}
}

69 70 71 72 73
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

117
#ifdef CONFIG_COMPACTION
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

/* Do not skip compaction more than 64 times */
#define COMPACT_MAX_DEFER_SHIFT 6

/*
 * Compaction is deferred when compaction fails to result in a page
 * allocation success. 1 << compact_defer_limit compactions are skipped up
 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 */
void defer_compaction(struct zone *zone, int order)
{
	zone->compact_considered = 0;
	zone->compact_defer_shift++;

	if (order < zone->compact_order_failed)
		zone->compact_order_failed = order;

	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;

	trace_mm_compaction_defer_compaction(zone, order);
}

/* Returns true if compaction should be skipped this time */
bool compaction_deferred(struct zone *zone, int order)
{
	unsigned long defer_limit = 1UL << zone->compact_defer_shift;

	if (order < zone->compact_order_failed)
		return false;

	/* Avoid possible overflow */
	if (++zone->compact_considered > defer_limit)
		zone->compact_considered = defer_limit;

	if (zone->compact_considered >= defer_limit)
		return false;

	trace_mm_compaction_deferred(zone, order);

	return true;
}

/*
 * Update defer tracking counters after successful compaction of given order,
 * which means an allocation either succeeded (alloc_success == true) or is
 * expected to succeed.
 */
void compaction_defer_reset(struct zone *zone, int order,
		bool alloc_success)
{
	if (alloc_success) {
		zone->compact_considered = 0;
		zone->compact_defer_shift = 0;
	}
	if (order >= zone->compact_order_failed)
		zone->compact_order_failed = order + 1;

	trace_mm_compaction_defer_reset(zone, order);
}

/* Returns true if restarting compaction after many failures */
bool compaction_restarting(struct zone *zone, int order)
{
	if (order < zone->compact_order_failed)
		return false;

	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
		zone->compact_considered >= 1UL << zone->compact_defer_shift;
}

189 190 191 192 193 194 195 196 197 198
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

199 200 201 202
static void reset_cached_positions(struct zone *zone)
{
	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
203 204
	zone->compact_cached_free_pfn =
			round_down(zone_end_pfn(zone) - 1, pageblock_nr_pages);
205 206
}

207 208 209 210 211
/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
212
static void __reset_isolation_suitable(struct zone *zone)
213 214
{
	unsigned long start_pfn = zone->zone_start_pfn;
215
	unsigned long end_pfn = zone_end_pfn(zone);
216 217
	unsigned long pfn;

218
	zone->compact_blockskip_flush = false;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
235 236

	reset_cached_positions(zone);
237 238
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

254 255
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
256
 * future. The information is later cleared by __reset_isolation_suitable().
257
 */
258 259
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
260
			bool migrate_scanner)
261
{
262
	struct zone *zone = cc->zone;
263
	unsigned long pfn;
264 265 266 267

	if (cc->ignore_skip_hint)
		return;

268 269 270
	if (!page)
		return;

271 272 273
	if (nr_isolated)
		return;

274
	set_pageblock_skip(page);
275

276 277 278 279 280 281
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
282 283
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
284 285 286 287
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
288
	}
289 290 291 292 293 294 295 296
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

297 298
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
299
			bool migrate_scanner)
300 301 302 303
{
}
#endif /* CONFIG_COMPACTION */

304 305 306 307 308 309 310 311 312 313
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
314
{
315 316 317 318 319 320 321 322
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
323

324
	return true;
325 326
}

327 328
/*
 * Compaction requires the taking of some coarse locks that are potentially
329 330 331 332 333 334 335
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
336
 *
337 338 339 340
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
341
 */
342 343
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
344
{
345 346 347 348
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
349

350 351 352 353
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
354

355
	if (need_resched()) {
356
		if (cc->mode == MIGRATE_ASYNC) {
357 358
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
359 360 361 362
		}
		cond_resched();
	}

363
	return false;
364 365
}

366 367 368
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
369
 * compaction. This is similar to what compact_unlock_should_abort() does, but
370 371 372 373 374 375 376 377 378 379
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
380
			cc->contended = COMPACT_CONTENDED_SCHED;
381 382 383 384 385 386 387 388 389
			return true;
		}

		cond_resched();
	}

	return false;
}

390
/*
391 392 393
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
394
 */
395
static unsigned long isolate_freepages_block(struct compact_control *cc,
396
				unsigned long *start_pfn,
397 398 399
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
400
{
401
	int nr_scanned = 0, total_isolated = 0;
402
	struct page *cursor, *valid_page = NULL;
403
	unsigned long flags = 0;
404
	bool locked = false;
405
	unsigned long blockpfn = *start_pfn;
406 407 408

	cursor = pfn_to_page(blockpfn);

409
	/* Isolate free pages. */
410 411 412 413
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

414 415 416 417 418 419 420 421 422 423
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

424
		nr_scanned++;
425
		if (!pfn_valid_within(blockpfn))
426 427
			goto isolate_fail;

428 429
		if (!valid_page)
			valid_page = page;
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

		/*
		 * For compound pages such as THP and hugetlbfs, we can save
		 * potentially a lot of iterations if we skip them at once.
		 * The check is racy, but we can consider only valid values
		 * and the only danger is skipping too much.
		 */
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER)) {
				blockpfn += (1UL << comp_order) - 1;
				cursor += (1UL << comp_order) - 1;
			}

			goto isolate_fail;
		}

448
		if (!PageBuddy(page))
449
			goto isolate_fail;
450 451

		/*
452 453 454 455 456
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
457
		 */
458 459 460 461 462 463 464 465 466
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
467 468
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
469 470
			if (!locked)
				break;
471

472 473 474 475
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
476 477 478 479 480 481 482 483 484 485 486

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
487 488 489 490 491 492 493
			cc->nr_freepages += isolated;
			if (!strict &&
				cc->nr_migratepages <= cc->nr_freepages) {
				blockpfn += isolated;
				break;
			}

494 495
			blockpfn += isolated - 1;
			cursor += isolated - 1;
496
			continue;
497
		}
498 499 500 501 502 503 504

isolate_fail:
		if (strict)
			break;
		else
			continue;

505 506
	}

507 508 509 510 511 512 513
	/*
	 * There is a tiny chance that we have read bogus compound_order(),
	 * so be careful to not go outside of the pageblock.
	 */
	if (unlikely(blockpfn > end_pfn))
		blockpfn = end_pfn;

514 515 516
	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
					nr_scanned, total_isolated);

517 518 519
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

520 521 522 523 524
	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
525
	if (strict && blockpfn < end_pfn)
526 527 528 529 530
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

531 532
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
533
		update_pageblock_skip(cc, valid_page, total_isolated, false);
534

535
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
536
	if (total_isolated)
537
		count_compact_events(COMPACTISOLATED, total_isolated);
538 539 540
	return total_isolated;
}

541 542 543 544 545 546 547 548 549 550 551 552 553
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
554
unsigned long
555 556
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
557
{
558
	unsigned long isolated, pfn, block_end_pfn;
559 560
	LIST_HEAD(freelist);

561 562 563 564 565
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn += isolated,
				block_end_pfn += pageblock_nr_pages) {
566 567
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
568 569 570

		block_end_pfn = min(block_end_pfn, end_pfn);

571 572 573 574 575 576 577 578 579 580
		/*
		 * pfn could pass the block_end_pfn if isolated freepage
		 * is more than pageblock order. In this case, we adjust
		 * scanning range to right one.
		 */
		if (pfn >= block_end_pfn) {
			block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
			block_end_pfn = min(block_end_pfn, end_pfn);
		}

581 582 583
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
			break;

584 585
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

615
/* Update the number of anon and file isolated pages in the zone */
616
static void acct_isolated(struct zone *zone, struct compact_control *cc)
617 618
{
	struct page *page;
619
	unsigned int count[2] = { 0, };
620

621 622 623
	if (list_empty(&cc->migratepages))
		return;

624 625
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
626

627 628
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
629 630 631 632 633
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
634
	unsigned long active, inactive, isolated;
635 636 637

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
638 639
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
640 641 642
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

643
	return isolated > (inactive + active) / 2;
644 645
}

646
/**
647 648
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
649
 * @cc:		Compaction control structure.
650 651 652
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
653 654
 *
 * Isolate all pages that can be migrated from the range specified by
655 656 657 658
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
659
 *
660 661 662
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
663
 */
664 665 666
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
667
{
668
	struct zone *zone = cc->zone;
669
	unsigned long nr_scanned = 0, nr_isolated = 0;
670
	struct list_head *migratelist = &cc->migratepages;
671
	struct lruvec *lruvec;
672
	unsigned long flags = 0;
673
	bool locked = false;
674
	struct page *page = NULL, *valid_page = NULL;
675
	unsigned long start_pfn = low_pfn;
676 677 678 679 680 681 682

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
683
		/* async migration should just abort */
684
		if (cc->mode == MIGRATE_ASYNC)
685
			return 0;
686

687 688 689
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
690
			return 0;
691 692
	}

693 694
	if (compact_should_abort(cc))
		return 0;
695

696 697
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
698 699
		bool is_lru;

700 701 702 703 704 705 706 707 708
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
709

710 711
		if (!pfn_valid_within(low_pfn))
			continue;
712
		nr_scanned++;
713 714

		page = pfn_to_page(low_pfn);
715

716 717 718
		if (!valid_page)
			valid_page = page;

719
		/*
720 721 722 723
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
724
		 */
725 726 727 728 729 730 731 732 733 734
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
735
			continue;
736
		}
737

738 739 740 741 742
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
743 744
		is_lru = PageLRU(page);
		if (!is_lru) {
745
			if (unlikely(balloon_page_movable(page))) {
746
				if (balloon_page_isolate(page)) {
747
					/* Successfully isolated */
748
					goto isolate_success;
749 750 751
				}
			}
		}
752 753

		/*
754 755 756 757 758
		 * Regardless of being on LRU, compound pages such as THP and
		 * hugetlbfs are not to be compacted. We can potentially save
		 * a lot of iterations if we skip them at once. The check is
		 * racy, but we can consider only valid values and the only
		 * danger is skipping too much.
759
		 */
760 761 762 763 764
		if (PageCompound(page)) {
			unsigned int comp_order = compound_order(page);

			if (likely(comp_order < MAX_ORDER))
				low_pfn += (1UL << comp_order) - 1;
765

766 767 768
			continue;
		}

769 770 771
		if (!is_lru)
			continue;

772 773 774 775 776 777 778 779 780
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

781 782
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
783 784
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
785 786
			if (!locked)
				break;
787

788
			/* Recheck PageLRU and PageCompound under lock */
789 790
			if (!PageLRU(page))
				continue;
791 792 793 794 795 796 797 798

			/*
			 * Page become compound since the non-locked check,
			 * and it's on LRU. It can only be a THP so the order
			 * is safe to read and it's 0 for tail pages.
			 */
			if (unlikely(PageCompound(page))) {
				low_pfn += (1UL << compound_order(page)) - 1;
799 800
				continue;
			}
801 802
		}

803 804
		lruvec = mem_cgroup_page_lruvec(page, zone);

805
		/* Try isolate the page */
806
		if (__isolate_lru_page(page, isolate_mode) != 0)
807 808
			continue;

809
		VM_BUG_ON_PAGE(PageCompound(page), page);
810

811
		/* Successfully isolated */
812
		del_page_from_lru_list(page, lruvec, page_lru(page));
813 814

isolate_success:
815 816
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
817
		nr_isolated++;
818 819

		/* Avoid isolating too much */
820 821
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
822
			break;
823
		}
824 825
	}

826 827 828 829 830 831 832
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

833 834
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
835

836 837 838 839
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
840
	if (low_pfn == end_pfn)
841
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
842

843 844
	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
						nr_scanned, nr_isolated);
845

846
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
847
	if (nr_isolated)
848
		count_compact_events(COMPACTISOLATED, nr_isolated);
849

850 851 852
	return low_pfn;
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
	unsigned long pfn, block_end_pfn;

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn = block_end_pfn,
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

878
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

		/*
		 * In case of fatal failure, release everything that might
		 * have been isolated in the previous iteration, and signal
		 * the failure back to caller.
		 */
		if (!pfn) {
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			break;
		}
894 895 896

		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
			break;
897 898 899 900 901 902
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

903 904
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	/* If the page is a large free page, then disallow migration */
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
		return true;

	/* Otherwise skip the block */
	return false;
}

928 929 930 931 932 933 934 935 936 937
/*
 * Test whether the free scanner has reached the same or lower pageblock than
 * the migration scanner, and compaction should thus terminate.
 */
static inline bool compact_scanners_met(struct compact_control *cc)
{
	return (cc->free_pfn >> pageblock_order)
		<= (cc->migrate_pfn >> pageblock_order);
}

938
/*
939 940
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
941
 */
942
static void isolate_freepages(struct compact_control *cc)
943
{
944
	struct zone *zone = cc->zone;
945
	struct page *page;
946
	unsigned long block_start_pfn;	/* start of current pageblock */
947
	unsigned long isolate_start_pfn; /* exact pfn we start at */
948 949
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
950
	struct list_head *freelist = &cc->freepages;
951

952 953
	/*
	 * Initialise the free scanner. The starting point is where we last
954
	 * successfully isolated from, zone-cached value, or the end of the
955 956
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
957 958 959
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
960 961
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
962
	 */
963
	isolate_start_pfn = cc->free_pfn;
964 965 966
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
967
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
968

969 970 971 972 973
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
974
	for (; block_start_pfn >= low_pfn;
975
				block_end_pfn = block_start_pfn,
976 977
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
978

979 980 981
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
982
		 * to schedule, or even abort async compaction.
983
		 */
984 985 986
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
987

988 989 990
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
991 992 993
			continue;

		/* Check the block is suitable for migration */
994
		if (!suitable_migration_target(page))
995
			continue;
996

997 998 999 1000
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

1001
		/* Found a block suitable for isolating free pages from. */
1002
		isolate_freepages_block(cc, &isolate_start_pfn,
1003
					block_end_pfn, freelist, false);
1004

1005
		/*
1006 1007
		 * If we isolated enough freepages, or aborted due to async
		 * compaction being contended, terminate the loop.
1008 1009 1010 1011 1012 1013 1014 1015
		 * Remember where the free scanner should restart next time,
		 * which is where isolate_freepages_block() left off.
		 * But if it scanned the whole pageblock, isolate_start_pfn
		 * now points at block_end_pfn, which is the start of the next
		 * pageblock.
		 * In that case we will however want to restart at the start
		 * of the previous pageblock.
		 */
1016 1017 1018 1019 1020
		if ((cc->nr_freepages >= cc->nr_migratepages)
							|| cc->contended) {
			if (isolate_start_pfn >= block_end_pfn)
				isolate_start_pfn =
					block_start_pfn - pageblock_nr_pages;
1021
			break;
1022 1023 1024 1025 1026 1027 1028
		} else {
			/*
			 * isolate_freepages_block() should not terminate
			 * prematurely unless contended, or isolated enough
			 */
			VM_BUG_ON(isolate_start_pfn < block_end_pfn);
		}
1029 1030 1031 1032 1033
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

1034
	/*
1035 1036 1037 1038
	 * Record where the free scanner will restart next time. Either we
	 * broke from the loop and set isolate_start_pfn based on the last
	 * call to isolate_freepages_block(), or we met the migration scanner
	 * and the loop terminated due to isolate_start_pfn < low_pfn
1039
	 */
1040
	cc->free_pfn = isolate_start_pfn;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

1054 1055 1056 1057
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
1058
	if (list_empty(&cc->freepages)) {
1059
		if (!cc->contended)
1060
			isolate_freepages(cc);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

1086 1087 1088 1089 1090 1091 1092
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

1093 1094 1095 1096 1097 1098
/*
 * Allow userspace to control policy on scanning the unevictable LRU for
 * compactable pages.
 */
int sysctl_compact_unevictable_allowed __read_mostly = 1;

1099
/*
1100 1101 1102
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
1103 1104 1105 1106 1107
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
1108
	unsigned long isolate_start_pfn;
1109 1110
	struct page *page;
	const isolate_mode_t isolate_mode =
1111
		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1112
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1113

1114 1115 1116 1117 1118
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
1119 1120

	/* Only scan within a pageblock boundary */
1121
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1122

1123 1124 1125 1126 1127 1128
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
	for (; end_pfn <= cc->free_pfn;
			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1129

1130 1131 1132 1133 1134 1135 1136 1137
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
1138

1139 1140
		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
		if (!page)
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
1157
		isolate_start_pfn = low_pfn;
1158 1159 1160
		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
								isolate_mode);

1161 1162
		if (!low_pfn || cc->contended) {
			acct_isolated(zone, cc);
1163
			return ISOLATE_ABORT;
1164
		}
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174
		/*
		 * Record where we could have freed pages by migration and not
		 * yet flushed them to buddy allocator.
		 * - this is the lowest page that could have been isolated and
		 * then freed by migration.
		 */
		if (cc->nr_migratepages && !cc->last_migrated_pfn)
			cc->last_migrated_pfn = isolate_start_pfn;

1175 1176 1177 1178 1179 1180 1181 1182 1183
		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
1184 1185
	/* Record where migration scanner will be restarted. */
	cc->migrate_pfn = low_pfn;
1186

1187
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197 1198
/*
 * order == -1 is expected when compacting via
 * /proc/sys/vm/compact_memory
 */
static inline bool is_via_compact_memory(int order)
{
	return order == -1;
}

1199
static int __compact_finished(struct zone *zone, struct compact_control *cc,
1200
			    const int migratetype)
1201
{
1202
	unsigned int order;
1203
	unsigned long watermark;
1204

1205
	if (cc->contended || fatal_signal_pending(current))
1206
		return COMPACT_CONTENDED;
1207

1208
	/* Compaction run completes if the migrate and free scanner meet */
1209
	if (compact_scanners_met(cc)) {
1210
		/* Let the next compaction start anew. */
1211
		reset_cached_positions(zone);
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

1222
		return COMPACT_COMPLETE;
1223
	}
1224

1225
	if (is_via_compact_memory(cc->order))
1226 1227
		return COMPACT_CONTINUE;

1228 1229 1230
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);

1231 1232
	if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
							cc->alloc_flags))
1233 1234
		return COMPACT_CONTINUE;

1235
	/* Direct compactor: Is a suitable page free? */
1236 1237
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];
1238
		bool can_steal;
1239 1240

		/* Job done if page is free of the right migratetype */
1241
		if (!list_empty(&area->free_list[migratetype]))
1242 1243
			return COMPACT_PARTIAL;

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
#ifdef CONFIG_CMA
		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
		if (migratetype == MIGRATE_MOVABLE &&
			!list_empty(&area->free_list[MIGRATE_CMA]))
			return COMPACT_PARTIAL;
#endif
		/*
		 * Job done if allocation would steal freepages from
		 * other migratetype buddy lists.
		 */
		if (find_suitable_fallback(area, order, migratetype,
						true, &can_steal) != -1)
1256 1257 1258
			return COMPACT_PARTIAL;
	}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	return COMPACT_NO_SUITABLE_PAGE;
}

static int compact_finished(struct zone *zone, struct compact_control *cc,
			    const int migratetype)
{
	int ret;

	ret = __compact_finished(zone, cc, migratetype);
	trace_mm_compaction_finished(zone, cc->order, ret);
	if (ret == COMPACT_NO_SUITABLE_PAGE)
		ret = COMPACT_CONTINUE;

	return ret;
1273 1274
}

1275 1276 1277 1278 1279 1280 1281
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
1282
static unsigned long __compaction_suitable(struct zone *zone, int order,
1283
					int alloc_flags, int classzone_idx)
1284 1285 1286 1287
{
	int fragindex;
	unsigned long watermark;

1288
	if (is_via_compact_memory(order))
1289 1290
		return COMPACT_CONTINUE;

1291 1292 1293 1294 1295 1296 1297 1298 1299
	watermark = low_wmark_pages(zone);
	/*
	 * If watermarks for high-order allocation are already met, there
	 * should be no need for compaction at all.
	 */
	if (zone_watermark_ok(zone, order, watermark, classzone_idx,
								alloc_flags))
		return COMPACT_PARTIAL;

1300 1301 1302 1303 1304
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
1305 1306
	watermark += (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1307 1308 1309 1310 1311 1312
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1313 1314
	 * index of -1000 would imply allocations might succeed depending on
	 * watermarks, but we already failed the high-order watermark check
1315 1316 1317 1318 1319 1320 1321
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1322
		return COMPACT_NOT_SUITABLE_ZONE;
1323 1324 1325 1326

	return COMPACT_CONTINUE;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
unsigned long compaction_suitable(struct zone *zone, int order,
					int alloc_flags, int classzone_idx)
{
	unsigned long ret;

	ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
	trace_mm_compaction_suitable(zone, order, ret);
	if (ret == COMPACT_NOT_SUITABLE_ZONE)
		ret = COMPACT_SKIPPED;

	return ret;
}

1340 1341 1342
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
1343
	unsigned long start_pfn = zone->zone_start_pfn;
1344
	unsigned long end_pfn = zone_end_pfn(zone);
1345
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1346
	const bool sync = cc->mode != MIGRATE_ASYNC;
1347

1348 1349
	ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
							cc->classzone_idx);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1360 1361 1362 1363 1364 1365 1366 1367
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1368 1369 1370 1371 1372
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1373
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1374
	cc->free_pfn = zone->compact_cached_free_pfn;
1375 1376
	if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
		cc->free_pfn = round_down(end_pfn - 1, pageblock_nr_pages);
1377 1378
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
1379
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1380
		cc->migrate_pfn = start_pfn;
1381 1382
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1383
	}
1384
	cc->last_migrated_pfn = 0;
1385

1386 1387
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync);
1388

1389 1390
	migrate_prep_local();

1391 1392
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1393
		int err;
1394

1395 1396
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
1397
			ret = COMPACT_CONTENDED;
1398
			putback_movable_pages(&cc->migratepages);
1399
			cc->nr_migratepages = 0;
1400 1401
			goto out;
		case ISOLATE_NONE:
1402 1403 1404 1405 1406 1407
			/*
			 * We haven't isolated and migrated anything, but
			 * there might still be unflushed migrations from
			 * previous cc->order aligned block.
			 */
			goto check_drain;
1408 1409 1410
		case ISOLATE_SUCCESS:
			;
		}
1411

1412
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1413
				compaction_free, (unsigned long)cc, cc->mode,
1414
				MR_COMPACTION);
1415

1416 1417
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1418

1419 1420
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1421
		if (err) {
1422
			putback_movable_pages(&cc->migratepages);
1423 1424 1425 1426
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
1427
			if (err == -ENOMEM && !compact_scanners_met(cc)) {
1428
				ret = COMPACT_CONTENDED;
1429 1430
				goto out;
			}
1431
		}
1432 1433 1434 1435 1436 1437 1438 1439 1440

check_drain:
		/*
		 * Has the migration scanner moved away from the previous
		 * cc->order aligned block where we migrated from? If yes,
		 * flush the pages that were freed, so that they can merge and
		 * compact_finished() can detect immediately if allocation
		 * would succeed.
		 */
1441
		if (cc->order > 0 && cc->last_migrated_pfn) {
1442 1443 1444 1445
			int cpu;
			unsigned long current_block_start =
				cc->migrate_pfn & ~((1UL << cc->order) - 1);

1446
			if (cc->last_migrated_pfn < current_block_start) {
1447 1448 1449 1450 1451
				cpu = get_cpu();
				lru_add_drain_cpu(cpu);
				drain_local_pages(zone);
				put_cpu();
				/* No more flushing until we migrate again */
1452
				cc->last_migrated_pfn = 0;
1453 1454 1455
			}
		}

1456 1457
	}

1458
out:
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	/*
	 * Release free pages and update where the free scanner should restart,
	 * so we don't leave any returned pages behind in the next attempt.
	 */
	if (cc->nr_freepages > 0) {
		unsigned long free_pfn = release_freepages(&cc->freepages);

		cc->nr_freepages = 0;
		VM_BUG_ON(free_pfn == 0);
		/* The cached pfn is always the first in a pageblock */
		free_pfn &= ~(pageblock_nr_pages-1);
		/*
		 * Only go back, not forward. The cached pfn might have been
		 * already reset to zone end in compact_finished()
		 */
		if (free_pfn > zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = free_pfn;
	}
1477

1478 1479
	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
				cc->free_pfn, end_pfn, sync, ret);
1480

1481 1482 1483
	if (ret == COMPACT_CONTENDED)
		ret = COMPACT_PARTIAL;

1484 1485
	return ret;
}
1486

1487
static unsigned long compact_zone_order(struct zone *zone, int order,
1488 1489
		gfp_t gfp_mask, enum migrate_mode mode, int *contended,
		int alloc_flags, int classzone_idx)
1490
{
1491
	unsigned long ret;
1492 1493 1494 1495
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1496
		.gfp_mask = gfp_mask,
1497
		.zone = zone,
1498
		.mode = mode,
1499 1500
		.alloc_flags = alloc_flags,
		.classzone_idx = classzone_idx,
1501 1502 1503 1504
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1505 1506 1507 1508 1509 1510 1511
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1512 1513
}

1514 1515
int sysctl_extfrag_threshold = 500;

1516 1517 1518
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @gfp_mask: The GFP mask of the current allocation
1519 1520 1521
 * @order: The order of the current allocation
 * @alloc_flags: The allocation flags of the current allocation
 * @ac: The context of current allocation
1522
 * @mode: The migration mode for async, sync light, or sync migration
1523 1524
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1525 1526 1527
 *
 * This is the main entry point for direct page compaction.
 */
1528 1529 1530
unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
			int alloc_flags, const struct alloc_context *ac,
			enum migrate_mode mode, int *contended)
1531 1532 1533 1534 1535
{
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1536
	int rc = COMPACT_DEFERRED;
1537 1538 1539
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1540

1541
	/* Check if the GFP flags allow compaction */
1542
	if (!order || !may_enter_fs || !may_perform_io)
1543
		return COMPACT_SKIPPED;
1544

1545 1546
	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);

1547
	/* Compact each zone in the list */
1548 1549
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
								ac->nodemask) {
1550
		int status;
1551
		int zone_contended;
1552

1553 1554 1555
		if (compaction_deferred(zone, order))
			continue;

1556
		status = compact_zone_order(zone, order, gfp_mask, mode,
1557 1558
				&zone_contended, alloc_flags,
				ac->classzone_idx);
1559
		rc = max(status, rc);
1560 1561 1562 1563 1564
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1565

1566
		/* If a normal allocation would succeed, stop compacting */
1567
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1568
					ac->classzone_idx, alloc_flags)) {
1569 1570 1571 1572 1573 1574 1575
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

1590
		if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1591 1592 1593 1594 1595 1596 1597
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1619 1620
	}

1621 1622 1623 1624 1625 1626 1627
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1628 1629 1630 1631
	return rc;
}


1632
/* Compact all zones within a node */
1633
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1644 1645 1646 1647 1648
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1649

1650 1651 1652 1653 1654
		/*
		 * When called via /proc/sys/vm/compact_memory
		 * this makes sure we compact the whole zone regardless of
		 * cached scanner positions.
		 */
1655
		if (is_via_compact_memory(cc->order))
1656 1657
			__reset_isolation_suitable(zone);

1658 1659
		if (is_via_compact_memory(cc->order) ||
				!compaction_deferred(zone, cc->order))
1660
			compact_zone(zone, cc);
1661

1662 1663
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1664 1665 1666 1667 1668 1669 1670

		if (is_via_compact_memory(cc->order))
			continue;

		if (zone_watermark_ok(zone, cc->order,
				low_wmark_pages(zone), 0, 0))
			compaction_defer_reset(zone, cc->order, false);
1671 1672 1673
	}
}

1674
void compact_pgdat(pg_data_t *pgdat, int order)
1675 1676 1677
{
	struct compact_control cc = {
		.order = order,
1678
		.mode = MIGRATE_ASYNC,
1679 1680
	};

1681 1682 1683
	if (!order)
		return;

1684
	__compact_pgdat(pgdat, &cc);
1685 1686
}

1687
static void compact_node(int nid)
1688 1689 1690
{
	struct compact_control cc = {
		.order = -1,
1691
		.mode = MIGRATE_SYNC,
1692
		.ignore_skip_hint = true,
1693 1694
	};

1695
	__compact_pgdat(NODE_DATA(nid), &cc);
1696 1697
}

1698
/* Compact all nodes in the system */
1699
static void compact_nodes(void)
1700 1701 1702
{
	int nid;

1703 1704 1705
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1706 1707 1708 1709 1710 1711 1712
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

1713 1714 1715 1716
/*
 * This is the entry point for compacting all nodes via
 * /proc/sys/vm/compact_memory
 */
1717 1718 1719 1720
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1721
		compact_nodes();
1722 1723 1724

	return 0;
}
1725

1726 1727 1728 1729 1730 1731 1732 1733
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1734
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1735
static ssize_t sysfs_compact_node(struct device *dev,
1736
			struct device_attribute *attr,
1737 1738
			const char *buf, size_t count)
{
1739 1740 1741 1742 1743 1744 1745 1746
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1747 1748 1749

	return count;
}
1750
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1751 1752 1753

int compaction_register_node(struct node *node)
{
1754
	return device_create_file(&node->dev, &dev_attr_compact);
1755 1756 1757 1758
}

void compaction_unregister_node(struct node *node)
{
1759
	return device_remove_file(&node->dev, &dev_attr_compact);
1760 1761
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1762 1763

#endif /* CONFIG_COMPACTION */